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M. Thompson 
Schlumberger Cambridge Research, 

Cambridge CB3 OHG, U.K. 

J. R. Willis 
School of Mathematical Sciences, 

University of Bath, 
Bath BA2 7AY, U.K. 

A Reformation of the Equations of 
Anisotropic Poroelasticity 
The constitutive equations of linear poroelastioity presented by Biot (1955) and 
Biot and Willis (1957) extended the description of rock behavior into the realm of 
saturated porous rocks. For isotropic material behavior, Rice and Cleary (1976) 
gave a formulation which involved material constants whose physical interpretation 
was particularly simple and direct; this is an aid both to their measurement and to 
the interpretation of predictions from the theory. This paper treats anisotropic 
poroelasticity in terms of material tensors with interpretations similar to those of 
the constants employed by Rice and Cleary. An effective stress principle is derived 
for such anisotropic material. The material tensors are defined, rigorously, from 
the stress field and pore fluid content changes produced by boundary displacements 
compatible with a uniform mean strain and uniform pore pressure increments. Such 
displacements and pore pressure increments lead to homogeneous deformation on 
all scales significantly larger than the length scale of microstructural inhomogeneities. 
This macroscopic behavior is related to the microscopic behavior of the solid skel
eton. The tensors which describe the microscopic behavior of the solid skeleton 
would be difficult, even impossible, to measure, but their introduction allows re
lationships between measurable quantities to be identified. The end product of the 
analysis is a set of constitutive equations in which the parameters are all measurable 
directly from well-accepted testing procedures. Relationships exist between meas
urable quantities that can be used to verify that the constitutive equations described 
here are valid for the rock under consideration. The case of transverse isotropy is 
discussed explicitly for illustration. 

1 Introduction 
The background to the work presented here lies in rock 

mechanics so it is convenient to describe the problem in those 
terms, although the application area for the work is much 
broader than that. 

When carrying out mechanical testing of rocks, even dry 
nonporous rocks, there can be problems of repeatability and 
inconsistency in results over different size scales. Some of the 
difficulties arise through large-scale inhomogeneity and from 
the distribution of flaws which can result in small complete 
specimens being stronger than large ones. The testing tech
niques themselves can also present difficulties. After great care 
has been taken to deal with such problems, if there remain 
wide variations between tests then the tendency is to test many 
samples and average the results. However, there can be un
foreseen bias in the tests which is not helped by averaging. 
The material constitutive description may be inadequate such 
that there are some constitutive parameters which lie outside 
experimental control. It was just this sort of inadequacy that 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
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IL 60208, and will be accepted until two months after final publication of the 
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occurred in the testing of saturated porous media until the full 
importance was realized of the water content in specimen prep
aration and storage and of pore pressure during testing. The 
linear poroelastic description of Biot (1955) and Biot and Willis 
(1957) was crucial in explaining the relevance of pore pressure. 
Biot and Willis outlined experiments sufficient for identifi
cation of the constants in their theory but experimental de
termination is simpler relative to the formulation of Rice and 
Cleary (1976), since the constants introduced therein have very 
direct physical interpretations. 

When testing shales, even while restricting attention to me
chanical behavior independent of chemistry, there are still 
problems remaining. Shales are often bedded and behave in 
an anisotropic, nonlinear manner and include inhomogeneities 
on the microscale. With such a rock the behavior lies outside 
the descriptive range of isotropic linear poroelasticity. This 
paper gives the constitutive equations describing the incre
mental behavior of an anisotropic poroelastic material. The 
incremental nature of the constitutive equations allows them 
to be applied incrementally to nonlinear behavior. The param
eters that appear in these equations can be obtained by standard 
triaxial tests familiar to rock mechanics experimentalists. A 
valuable aspect of the work is the derivation of an effective 
stress principle, even in this case of anisotropy. 

Figure 1 illustrates the relationship of the skeleton material 
to the saturated porous elastic medium. The term skeleton 
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I Inhomogeneous porous medium. 

prescribed boundary displacement u 
prescribed boundary pressure p 

Fig. 1 Representation of the porous material at different scales, with 
an indication of the associated mechanical properties 

material does not mean an intact piece of rock with no water 
rather like a dry sponge, but instead refers to a representative 
piece of the material that makes up the skeleton. The skeleton 
material will be regarded as nonporous, even when there is 
immobile water such as bound water in shales. The mechanical 
properties of the skeleton are not expected to be within our 
capability of measuring. In our derivation the skeleton material 
need not be homogeneous and bedding could well occur on a 
large scale across the structure of the skeleton. 

A departure from the usual test procedure is to prescribe 
the boundary displacements rather than controlling the bound
ary stresses. Testing the rock involves the determination of: 
• the drained compliances M. Drained here refers to a sat
urated specimen at atmospheric pressure, not a dry material. 
8 the undrained compliances M" and the tensor b which re
lates pore pressure change to stress increment. In such a test 
no fluid is allowed to cross the boundary of the sample. It is 
difficult to prevent fluid crossing the boundaries while also 
measuring the pore pressure but it can be done with care. (See, 
for example, Mesri, Adachi, and Ullrick (1976)). 
• the strain field generated by isotropic stress equal to pore 
pressure magnitude. 

It is presumed that during tests the pressure distribution 
throughout the sample is uniform so that in some low perme
ability rocks, the testing time will be long. The testing scale 
imposes a form of averaging which then decides the spatial 
scale over which the constitutive equations are applicable. Sup
pose the rock has inhomogeneities on a scale Lt and the meas
urement scale is Lm. If Lm»Lh then it is acceptable to apply 
the results to larger scales of rock. Furthermore, the results 
will be independent of the type of boundary condition that is 
applied. If Lm = 0(L,), then each sample will be unique, the 
results cannot be scaled up and will apply only for boundary 
conditions of the proposed displacement type. Note that, unless 
assumptions are made about the homogeneity of the material, 
the scale of application cannot be smaller than the testing scale 

for no information has been obtained on the smaller scale. It 
is important that time scales of application are slow enough 
to allow inertia effects to be ignored for these are not included 
in this constitutive behavior. This rules out the application of 
these constitutive equations to acoustic, wave travel. 

The tensors M" and b, which can be measured, are expres
sible in terms of the unmeasurable properties of the skeleton 
material; the tensor b generalizes the parameters, A and B, 
introduced by Skempton (1954) and we will refer to it as the 
"Skempton tensor." Elimination of the tensors for the solid 
skeleton between the equations results in relations between 
drained and undrained compliances and the Skempton ten
sor: The structure of these relations shows that not all com
ponents of the drained and undrained compliance tensors can 
be independent. The tensor which appears in the "effective 
stress" principle is also identified and expressed in terms of 
drained and undrained compliances and the Skempton tensor. 

The outcome of the analysis is a set of constitutive relations 
(for strain increment versus stress and fluid pressure incre
ments, and for increment in fluid content) in which the pa
rameters that appear are given explicitly in terms of drained 
and undrained compliances and the components of the Skemp
ton tensor. They are illustrated by an explicit treatment of 
transverse isotropy, with full isotropy following as a limiting 
case. 

2 Basic Relations 
Throughout this work, a will denote an increment of stress 

and e will denote the corresponding increment of strain, su
perimposed upon some known initial state of deformation of 
a fluid-saturated porous medium. The medium, as initially 
deformed, occupies a region of space denoted by Q, whose 
bounding surface is 90 (Fig. 1). The solid skeleton occupies 
Qs, while the pores occupy 0P, so that 0 is the union of Qs and 
Qp. The porosity <p is the ratio of the volumes of 0P and 0. 

For the purpose of specifying test conditions by which the 
constitutive parameters are defined, only quasi-static incre
ments are considered, so that a is self-equilibrated over 0̂  and 
the fluid pressure increment p is uniform over 0^. It is thus 
assumed that all points of Qp are connected to 90 by paths 
lying wholly within 0P. "Islands" of fluid isolated from 90 
may be present but these are considered as part of tis. We could 
specify traction or displacement boundary conditions on 90. 
However, to be definite, an idealized mode of loading is en
visaged in which the boundary 90 is regarded as a permeable 
surface which can be subjected to incremental displacements 
of the form M, = a,y Xj. Here, av are constants and Xj are com
ponents of the position vector x of a generic point of 90. Since 
90 is permeable, the fluid pressure increment p is controllable 
independently of the constant tensor a. The average displace
ment gradient over 0 is a exactly. The average strain ? is the 
symmetric part of a. Since rigid rotations have no effect on 
constitutive behavior, a will be taken as symmetric, and hence 
identical to 5, in the sequel. Application of such displacement 
boundary conditions is well established in the context of the 
micromechanics of composite materials (Hill, 1963). 

The average stress increment in the porous medium has ((/') 
component 

'̂y = TQT J an<nkXjds (1) 

exactly, where 101 denotes the volume of 0 and the unit normal 
n is directed out of 0. Constitutive behavior is taken as in
crementally linear, so increments in mean stress, strain, and 
fluid pressure are related linearly and are thus additive. Thus, 
it is legitimate to define tensors M, m so that 

( = M:a + (M:5-m)p (2) 

during any loading of the class described above. Here, M 
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denotes the fourth-order tensor of compliances under drained 
conditions (p = 0), while the second-order tensor m defines the 
response to an "all-round" pressure changep, so that 5 = -p8. 
The tensor 8 has components dy. Notation is employed, in (2) 
and the sequel, in which a dot implies contraction over a single 
repeated suffix. Thus, M: a denotes a second-order tensor with 
components Mijkl ok/. 

An "effective stress" principle follows immediately from 
(2). Introducing L as the tensor inverse to M, it follows that 
(2) is equivalent to 

i = M:£, _ (3) 

where the effective stress increment E is given by 

E = a + ap, (4) 

with 

a = 5 -L :m. (5) 

This form for a is sufficient to define it experimentally from 
the measurables M and m. One of the objectives of this work 
will be to relate a to other physical properties. 

If now as denotes the average value of a over Qs, it follows 
that 

o = {\-<(>)os-lpph, (6) 

since the stress in the pores is -p8, exactly. Correspondingly, 
if the mean value of t over ty, is Is, tensors Ms, ms may be 
defined so that 

ts = Ms:as + (Ms:&-ms)p. (7) 

Ms and m1 are difficult to measure directly but it should be 
noted that (7) defines them, even when the skeleton is inhom-
ogeneous. If the skeleton is, in fact, homogeneous, then Ms is 
its tensor of compliances and ms = Ms:5. This follows because 
in a homogeneous medium, any stress field with average value 
as generates a strain field with average value Ms:as and so, in 
particular, when as = -p&, 1 = - Ms:5p directly, or - msp from 
(7). The introduction of Ms and ms as definitions is necessary 
when the skeleton is inhomogeneous. 

It is also true, generally, that 

m = 5:M*, (8) 

subject only to the condition that the skeleton has local com
pliances with the "usual" symmetry: In suffix notation, 
M'ijki=M'kuj, where here M ' denotes the local compliance of 
the skeleton material. The proof is given in the Appendix. It 
follows that the expression (5) for the tensor a related to the 
effective stress reduces to that given by Carroll (1979) so long 
as (8) holds. Carroll's derivation applied only to a homoge
neous skeleton. 

Before moving on, it is noted that elimination of as between 
(6) and (7) yields 

? = Ms:(a +p8)/(l - *>) - msp. (9) 
An expression is now developed for the increment f in fluid 

content (defined as increment of fluid mass divided by initial 
fluid density), per unit volume of the porous medium, induced 
by the average stress and pressure increments a and p. Let v 
represent the fractional volume change of the pores. Then, 
analogously to (6), 

&:t = (l-?)b:Is + <pv. (10) 

But also, 
v=-Cfp+t/v, (11) 

where Cf denotes fluid compressibility. Therefore, from (10) 
and (11), 

f = 5 : i - ( l - * , ) « : ? * + ^ C ^ , (12) 

and so, from (2) and (9), 

f=5 : (M-M*) : f f+ [C-C s -6 : (m-m J ) 

+ v(Cf-b:ms))p, (13) 

where the overall drained compressibility C is defined as 

C=6:M:6, (14) 

with a similar definition for Cs. 
When the skeleton is composed of homogeneous material, 

so that m = ms = Ms:8, (13) reduces to 

t=fc(M-Msy.d+[C-Cs + <p(Cf-Cs)]p. (15) 

In the particular case of undrained deformation, f = 0 and 
(13) then yields 

p=-b:a, (16) 

where 

b = &:(M-Ms)/[C-Cs-8:(m-ms) + <p(.Cf-8:ms)]. (17) 

The tensor b generalizes the Skempton parameters A, B, which 
apply to transversely isotropic porous media (Skempton, 1954). 

It follows now that, during undrained deformation, 

i = M":ff, (18) 

where 

M" = M - ( M : 5 - m ) x b (19) 

or, in suffix notation, 

M"jk/ = Mm - (Mijl>p - mu)bk,. (20) 

Equation (19) is sufficient to determine b from the measure-
ables M, M", and m although it is defined also through (16) 
directly. It may be noted that M" has the usual symmetry when 
the skeleton does, so that (8) holds. 

The basic constitutive relations are (2) and (13). The latter 
equation was developed via explicit consideration of the mi-
cromechanics and, in consequence, involves tensors Ms, ms 

which are not susceptible to direct measurement. The approach 
via micromechanics has previously been followed by Nur and 
Byerlee (1971), Carroll (1979), Carroll and Katsube (1983) and 
others1 but only for the case of a skeleton composed of ho
mogeneous material. The phenomenological approach initi
ated by Biot pays less explicit attention to the behavior of the 
skeleton (though the parameters introduced are motivated 
through appreciation of micromechanical processes). The ap
proach of Biot introduces, in addition, thermodynamic po
tentials which impose a priori symmetry restrictions which need 
not always be realized. A result of the form of (19), with (8) 
incorporated, was derived by Rudnicki (1985), through con
sideration of Maxwell relations for a thermodynamic potential. 
Rudnicki's equation was given for moduli rather than com
pliances, but similar arguments are applicable for the present 
formulation: The relevant thermodynamic potential is the 
Helmholtz function \[/ for which 

dt = o:de+pd{ (21) 

(Rudnicki, personal communication). The argument given in 
the Appendix has the advantage of precision: Equation (8) 
follows rigorously, even for a sample whose macroscopic di
mensions are of the order of the microstructural dimensions, 
so long as the skeleton material has the requisite local symmetry 
and the boundary conditions are of the type assumed, but not 
necessarily for other boundary conditions. 

Throughout the remainder of this paper, (8) will be assumed 
to hold. 

3 Elimination of Unmeasurable Quantities 
It has been remarked already that the tensors Ms, ms are 

not susceptible to direct measurement. They can, however, be 

'A minor flaw in the derivation of Carroll (1979), repeated in later work, is 
that a boundary condition a-n = a-n is applied over the whole of 3fi, even though 
the fluid can sustain only hydrostatic stress. His derivation thus applies strictly 
to a medium, none of whose pores intersect the outer boundary. Use of the 
displacement boundary condition removes this difficulty. 
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eliminated between the preceding equations in a variety of 
ways. First, it follows from (19) (or (20)) that 

(M:8 - mij = (MiJkl - M?jkl)/bkl, (22) 

with no sum on k, I, for any values of k, I for which bki^-0. 
Thus, there are several equations relating components of M" 
to components of M. One explicit equation, equivalent to (22), 
is obtained by noting from (19) that 

(M - M"):8 = (M:S - m)(b:S), 

so that 

M:8-m = (M-M"):8/(b:8). (23) 

Also, contracting (23) with 8, 

C - C s = ( C - C " ) / ( b : 8 ) , (24) 

while, from (17), 

b:8 = ( C - C s ) / [ C - C i - 8 : ( m - m s ) + ^ (C / -8 :m s ) ] . (25) 

Hence, 

[C- Cs- 8:(m - ms) + <p(Cf- 8:ms)] = ( C - C")/(b:S)2. (26) 

Thus, the general relation (13) can be written 

Second-order tensors such as m have the form 

m = diag (m, m, m'). (35) 

It follows from (8) that 

m = (1 - vs-v;)/Es, m' = (1 -2v,) /E;. (36) 

Equation (14) gives 

C = 2(\-v-v")/E+(\-2v')/E'. (37) 

The tensor b has the form 

b = diag(/7, b, b'), (38) 

where, in terms of the parameters A and B of Skempton (1954), 

b = {\-A)B/2,b'=AB, (39) 

so thatB = 2b + b'=b:b. 
The relations (19) can now be given in the explicit form 

E~EU
Z 

— + — = 
E E~ 

1-v-

E Es 

i-v-v" \-vs-v; 

b, 

_ 8:(M-M"):a (C-C")p (27) 
(b:8) (b:«)' 

having used (8), and (5) can be written 

a = (8-L:M":8)/(b:8). (28) 

The expression (27) can also be given in terms of a, by noting 
that, from (28), 

M:a = (M-MB):8/(b:8) (29) 

and hence that 

8:M:a = (C-C")/(b:S). (30) 

Thus, (27) gives 

f= ct-M-.a + [(S:M:«)/(b:S)]p. (31) 

It is possible also to eliminate a in favor of ?: The neatest 
result is obtained by using the effective stress principle em
bodied in (3)-(5), to give 

f = a:l- [a:M:a- (8:M:«)/(b:8)]p. (32) 

4 Transverse Isotropy 
If the material is transversely isotropic, with its axis of sym

metry parallel to 0x3, the stress-strain relations (3) can be given 
in the form 

1 v v' 
e n = p ^n-T, E22~TT; E33, 

— v 1 v' 
622 = _ 7 T E n + p S22-TTT £33. 

-V" 1 
« 3 3 - TT~ (^11 + ^22)+TT7 ^33> 

1 1 
6 1 2 - r p ; El2> €23-ZT77 ^23 . ^13 = 

-V' Vu fl-V-v" l-Vs-Vs l u , 

-E^+¥r[~E—^E—^' 

E Eu \ E' El 

j i_ 
E'~EL' 

\-2v' \-2v's 

E' ~ Ei 

together with 

I_J__0 —_ —- o 
G Gu G' G/, 

b', (40) 

(41) 

The first of equations (41) is implied by the first two of equa
tions (40). It allows Eu to be expressed in terms of E and the 
relevant Poisson's ratios. Also, the relation (34) (which applies 
also to M"), allows £•„ to be expressed in terms of E (or E') 
and Poisson's ratios. Thus, 

Ei=^=(±)(l±^)E=(^)(^ 1 + v, 
l + v 

-)E'. (42) 

Calculation of a from (28) is tedious because of the need 
to find the inverse L of M. The result is that 

(43) 

1G' 
(33) 

recalling that E refers to the effective stress (4). In (33), G is 
the shear modulus in the plane of isotropy and is equal to E/ 
[2(1 + v)]. The usual symmetry (as employed in the Appendix) 
implies 

a- = diag (a, a, a'), 

where 

(̂  l~v — 2pv Eu 

. , ( 1 - 2 ^ ) " 
+ V E' 

. , f, E> 
" - ( / l-v-2v'v" 2' E, 

+(.-.)<1;2'",l }/{2b 

/(2b+ b'), 

V V 

~E=1E; (34) 

In view of the long expressions for a, there is some advantage 
in using the forms (31), (32) for f. First, 

1 

This will be assumed throughout this section. The constants 
in (33) are otherwise independent. The tensors M" and M* can 
be expressed in similar explicit forms, although there is not 
necessarily any relation corresponding to (34) for M*. 

M:a = diagJ— [(1 — v)a — v"a'\, 
(E 

| [(1-!»)«-»-*«'], ^7 (« ' -2v '«) J (45) 

and hence, 
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f = [(1 - v)a-u"a'](du + a22)/E + (a' -2v'a)a3 3/E' 

+ [2(\-v-v")a/E+(\-2v')a'/E']p/{2b + b'), (46) 

having also used (34). Also, using (45),. equation (32) can be 
given as 

f =«(?!!+?22) + a'?33 

- {2a[(l - v)a- v"a']/E+ a'(a' -2v'a)/E' 

-(2l(l-v)a-v"a']/E+(a'-2v'a)/E')/(2b + b')]p. (47) 

It is emphasized that a variety of different forms for (44), 
(46), and (47) could be derived, by making use of (34) and (40) 
as, for example, in (42). The interdependencies implied by (34) 
and (40) might perhaps also provide checks on experimental 
measurements. 

5 Isotropy 
When the overall structure of the porous medium is iso

tropic, primed variables are equal to corresponding unprimed 
ones and equations (40) yield 

1-2J» 1-2PU (\-2V 1 - 2 I > , \ „ 
(48) B 

and 
1 + v l + vu J = 0, (49) 

where B = 3b, since b' =b. Equation (49) is also equivalent to 
(41). Equations (44) both imply 

or, using (49) 

E(\-2vu)] 
a=]l-E^T2j^/B (50) 

(51) 
{l + vu)(\-2v)B 

This last form also follows easily from formulae given by Rice 
and Cleary (1976). Equation (46) simplifies to 

(1-2*-) 
r=- a{an + a22 + ai3 + 3p/B}, (52) 

in agreement with Rice and Cleary (1976) and (47) gives 

( 3 U-2i>) ") 
r = « p n + e B + £ i ! - j ( B a - l ) i - j i D . (53) 

Rearrangement of (53) using 2G = E/{\ + v) and (51) gives 

2GB\\ + vu)\\-2v)$ 2GB(\ + VU) 

%UU-P)(1-2VU) 3(1 -2vu) 

in agreement with Detournay (1986). 

(e n + e22 + e33), (54) 

6 Concluding Remarks 
The main results of this work are contained in equations 

(19) and (31) (or (32)) together with (28) which gives the tensor 
a that appears in the effective stress principle. The equations 
should be useful in practice because they are expressed in terms 
of the tensors of compliances M, M" under drained and un-
drained conditions respectively, and the "Skempton tensor" 
b, all of which are obtainable directly from experiments. The 
equations (19) yield relations between components of M and 
M", whose verification might provide checks on experimental, 
measurements. The micromechanical considerations on which 
the derivations are based introduce tensors Ms, ms which relate 
to the properties of the solid skeleton. This part of the analysis 
is related to that of Nur and Byerlee (1971) or Carroll (1979) 
in the case that the skeleton is homogeneous. The present 
analysis, however, is applicable to an inhomogeneous skeleton 
and hence also to incremental deformation of a nonlinear 
porous medium, in which the increment is superimposed upon 

a deformation which is inevitably inhomogeneous on the mi-
croscale. 
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APPENDIX 

The relation (8) is proved by noting that, when the skeleton 
has compliances with the 'usual' symmetry, Betti's theorem 
implies 

1 (ffi«n)«u2ds= I (a2-n)»U! ds, (Al) 

where dQs denotes the boundary of ils, Ui is the displacement 
associated with o\ and u2 is the displacement associated with 
a2. Now let <7i be associated with ei andpu and o2 be associated 
with e2 andp2 , in the manner defined in Section 2. Thus, (Al) 
can be expanded to 

1 (o,i«n+/>in)«(?2,x) ds-pi \ n»u2 ds 
•Mi) Jdas 

= \ (o2*n+p2n)>(trx)ds-p2\ ti-uyds, (A2) 
J3S! J8S2S 

since ai'n+pin = 0 wherever dfi bounds fluid. The relation (1) 
allows (A2) to be written 

(ai+pi8y.H2-(l-<p)pld:e2 

= (o2+p28):el-(.l-<p)P2te\, (A3) 

the forms for the integrals over dQs following from Gauss' 
theorem. Substituting for ?,• and ef using (2) and (9) reduces 
(A3) to 

(<r [ :M: a2 — a2:M:ai) 

+ (SiM^iffj -p2a 1) - (p{a2 -p2a{):M:b) 

+ (m-b-My.(p{d2-p2o{) = 0, (A4) 

and this implies both the symmetry of M and the relation (8), 
since p„ <r, are arbitrary. Symmetry of Ms is not, however, 
guaranteed. 
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An Expression of Elastic-Plastic 
Constitutive Law Incorporating 
Vertex Formation and Kinematic 
Hardening 

A phenomenological corner theory was proposed for elastic-plastic materials by the 
authors in the previous paper {Goya and Ito, 1980). The theory was developed by 
introducing two transition parameters, n(a) and (3(a), which, respectively, denote 
the normalized magnitude and direction angle of plastic strain increments, and both 
monotonously vary with the direction angle of stress increments. The purpose of 
this report is to incorporate the Bauschinger effect into the above theory. This is 
achieved by the introduction ofZiegler's kinematic hardening rule. To demonstrate 
the validity and applicability of a newly developed theory, we analyze the bilinear 
strain-path problem using the developed equation, in which, after some linear load
ing, the path is abruptly changed to various directions. In the calculation, specific 
functions, such as fi(a) = Cos(.5ira/amax) and /3(a) = (amax- .5ir)a/amax, are cho
sen for the transition parameters. As has been demonstrated by numerous experi
mental research on this problem, the results in this report also show a distinctive 
decrease of the effective stress just after the change of path direction. Discussions 
are also made on the uniqueness of the inversion of the constitutive equation, and 
sufficient conditions for such uniqueness are revealed in terms of ii{a), (3(a) and 
some work-hardening coefficients. 

1 Introduction 
The classical ./2-flow theory is a widely used constitutive 

equation for plastic deformation analyses, while the ,/2-defor-
mation theory, which is interpreted as a constitutive equation 
with a singular point on the yield surface, may not be suitable 
for deformation analyses because of its failures in taking ac
count of unloading and neutral loading. However, these the
ories result in quite contrary conclusions about the applicability 
to bifurcation analyses of shell-type structures: The classical 
flow theory gives unobservable predictions for buckling or 
necking problems of shell-type structures, while ^-deforma
tion theory gives rather realistic values. Motivated by this par
adox, several new theories of plasticity have been discussed 
(Christoffersen and Hutchinson, 1979; Ito, 1982; Gotoh, 1985). 

Christoffersen and Hutchinson (1979) have proposed a new 
phenomenological corner theory of plasticity, which takes ad
vantage of the properties of a singular point on the yield sur
face. The theory is called ./2-corner theory, which was developed 
to agree with /2-deformation theory for nearly proportional 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OP MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED ME

CHANICS. 

Discussion on this paper should be addressed to the Technical Editor, Prof. 
Leon M. Keer, The Technological Institute, Northwestern University, Evanston, 
IL 60208, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by the 
ASMEAppiiedMechanicsDivision, June 10,1988; final revision, Feb. 21,1990. 

loadings. The ./2-corner theory has been used in a number of 
finite element method analyses (Tomita and Shindo, 1986; 
Tevergaard et al., 1981), since this theory is the first corner 
theory which has a general but applicable form and also in
corporates a smooth transition to elastic unloading for in
creasingly nonproportional stress increments. 

Gotoh (1985) has discussed, from the viewpoint of tensor 
algebra, a general form of plastic constitutive equations which 
ensures one-to-one correspondence between plastic strain in
crements and stress increments. The simplest form of Gotoh's 
theory was reduced to a corner theory, which is different from 
the one presented by Christoffersen and Hutchinson. 

The above two theories, however, include somewhat and 
ambiguous transition parameters from the viewpoint of phys
ical interpretation, such as/(G) in Christoffersen and Hutch
inson's theory and P(Q) in Gotoh's theory. 

Using the Kroner-Budiansky-Wu model for polycrystalline 
metals, Ito has numerically studied a constitutive relation for 
stress paths abruptly changing their direction from a propor
tional loading direction. In the discussion of the calculated 
results, Ito introduced two new independent transition param
eters such as Li(a) and /3(a). These have been defined as the 
parameters with some physical interpretation: n(a) determines 
the dependence of the normalized magnitude of plastic strain 
increments on an angular measure a, which denotes the di
rection angle of deviatoric stress increments and is defined to 
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be measured from the proportional loading direction, and /3(a) 
determines the dependence of plastic strain increment direc
tions on the angular measure a. 

Recently the authors (1990) proposed a new simple corner 
theory for plasticity by assuming that the plastic strain incre
ment is considered to be decomposed into two tensor com
ponents: the one projected onto the direction of the deviatoric 
stress increment and the other, onto the direction normal to 
the plastic potential surface. It was shown that the two pa
rameters, )i(a) and /3(a), could naturally be embodied in the 
proposed theory. The research elucidated that those two pa
rameters were essential in describing the property of the corner 
theory. The sufficient conditions on ju(a) and /3(a) for ensuring 
the existence of the unique inversion of the constitutive equa
tion are also revealed. 

In this report, we develop the above theory to incorporate 
the Bauschinger effect, which must be considered for analyses 
of plastic deformations subject to reverse loading. The research 
on corner theory, which takes into account the Baushinger 
effect, seems to be scant. Only Tomita et al. (1986) have tried 
to develop /2-corner theory, proposed by Christoffersen and 
Hutchinson, by introducing a virtual smooth surface, which 
was supposed to translate according to Ziegler's kinematic 
hardening rule during plastic loading and also to be activated 
as a subsequent yield surface after elastic unloading once occurs 
from a preceding plastic state. The developed law, however, 
seems to include somewhat uncertain points, since the discus
sions of the relationship between the initial yield surface and 
so introduced subsequent yield surfaces were not contained in 
the report. 

All the stresses and strains discussed in this report are defined 
in the rectangular Cartesian coordinates system. Furthermore, 
the choice of the appropriate rate (or increment) measure, 
canceling the effect of material rotation, will be not alluded 
in the paper, since the authors believe that this rate measure 
problem is not perfectly solved yet, though several papers have 
been published concerning this problem (Dafalias, 1983). 

2 General Description of Goya and Ito's Theory (1990) 
A new constitutive equation was developed based on the 

fundamental assumption that the plastic potential exists and 
stress increments a effect plastic strain increments tp. By the 
use of scalar weighting functions Kp(ot,P) and KD(a,fi), the 
equation is expressed as an averaging rule incorporating both 
effects by plastic potential and deviatoric stress increments: 
the plastic increment e'' is assumed to consist of two different 
incremental strains as shown in the following expression: 

ep=ep
D+tp

F (1) 

where 

ip
D = KD\ip\ij'/\ij'\ (2) 

t"F = KF\ep\a'/\a'\ (3) 

KF = sin(a - /3)/sina (4) 

# f l = sin/3/sina (5) 

adcos-^ir'-.a'/Oir'Wv'l)} (6) 

Pdcos-1{tp:a'/0'tp\\a'\)}. (7) 

Fig. 1 Geometrical relations among a plastic potential, yield surface, 
angular measures, stress increment, and strain increments: (a) magnified 
view of the vicinity of a plastic loading point, (b) general view 
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Fig. 2 Variation of p(a) and /3(a) calculated from several already estab
lished theories 

Figure 1(a) illustrates the fundamental relationships, in the 
vicinity of the loading point, among the strain increments, 
angular measures, yield surface, and plastic potential with a 
smooth surface. Note that the yield surface does not necessarily 
coincide with the plastic potential surface when the corner is 
formed at the loading point. Figure 1(b), however, shows that 
the plastic potential can be identical to the yield surface, as 
has been assumed in 72-flow theory, when the current stress 
point is located exactly on or inside the plastic potential surface. 
As the main hypotheses introduced in the theory, the following 
relations are assumed between the stress increment and cor
responding strain increment: 

b=H\ot'e
p/(i(a) 

/3 = /3(a) 

(8a) 

(86) 

where bd^{i/2)b':b', e t fV(2/3)e ' :e ' and H'tot(>0) is the 
slope of a stress-strain curve for proportional loading. Figure 

N o m e n c l a t u r e 

a = stress tensor 
e = strain tensor 
8 = Kronecker delta 
a = translation of plastic potential 
e„ = change of volume 
) = increments of ( ) 

) ' = deviatoric component of ( ) 
I I = magnitude of tensors 

= inner product of tensors 
= angular measure of stress in

crement direction 
= angular measure of strain in

crement direction 
= nondimensional magnitude 

parameter of strain incre
ments 

E = Young's modulus 
G = shear modulus 
K = bulk modulus 
v = Poisson's ratio 

Superscripts 

( )" = plastic component of ( ) 
( )e = elastic component of ( ) 
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2 shows the variations of /x(a) and j3(a) calculated from several 
established theories. 

Then, assuming the Mises-type plastic potential and noting 
the relation 

a cosa = ~o, (9) 

we can obtain, after some manipulation, the following equa
tions about the two components of the plastic strain increment 
in Eq. (1): 

ff'"(a)" (10) 

t"D = (3/2)KD 

ffCOSai/'tl 

jx(a)b' 

H\ 
(11) 

Assuming that Hooke's law governs the relation between 
elastic strain increments and stress increments, and that a total 
strain increment consists of both elastic and plastic parts, we 
finally obtain the following constitutive equation for plastic 
loading: 

\2G* 
b = 2G*\ e + (12) 

where G ; elastic shear modulus 
K ; elastic bulk modulus 

G* = GH'm/(H\ot + 3GKDlx) (13) 

; instantaneous effective shear modulus 

S* = 2d2[H'totcosa/(3G) + IMCOSI3}/(3KFIJL) (14) 

It has been proved that Eq. (12) ensures one-to-one corre
spondence between the stress increment and strain increment, 
if the transition parameters are assumed to satisfy the following 
conditions within the range 0 < a < a m a x . 

(i) ft(0) = 1 and n(amax) = 0, and 
n(a) decreases monotonically with respect to a. 

(ii) (3(0) = 0 and P(amax) = amax - TT/2, and 
/3(a) increases monotonically with respect to a. 

As has been proposed by Christoffersen and Hutchinson, 
amax is defined through the geometrical relation between the 
radius of the plastic potential and the location of a current 
loading point, see Fig. 1(b). Then, the following equation 
holds: 

sinamax = max — 

a(potential) 
a(current) 

(15) 

where it is assumed that the singular part of the yield surface 
forms an enveloping surface of hyperplanes, which are tan
gential to the plastic potential and also intersecting with each 
other at the current loading point, see Fig. 1(b). Therefore, 
when a stress increment or a strain increment causes elastic 
unloading from a current plastic stress state, the conical part 
of the yield surface reduces its vertex angle: The conical part 
of the yield surface is deformable during unloading, though 
the rest part of the yield surface is left unchanged. 

The criteria have been revealed for judging whether an ap
plied strain increment causes plastic loading or elastic unload
ing, and were written as follows: 

(iii) If _V ^cos(amax) then plastic loading occurs, 
at 

and Eq. (12) should be used. 
a1: t ' 

(iv) If _— < cos(amax) then elastic unloading occurs, 
at 

and Hooke's law should be used. 

3 Derivation of Corner Theory Incorporating Kine
matic-Hardening Rule 

By the application of a kinematic-hardening rule to the tran
sition of plastic potential, a new constitutive equation is directly 

YIELD 
SURFACE 

YIELD 
SURFACE 

Fig. 3 Schematic of a translating plastic potential and a yield surface 
with vertex formation 

derived from the corner theory briefly described in the pre
ceding section. 

In Fig. 3(a), a typical situation at a general stress state is 
illustrated for the plastic potential, yield surface, and stresses 
in the deviatoric stress space, namely <r'-space. Some fun
damental ideas are drawn out through the consideration of 
geometrical relations among these quantities. To facilitate the 
incorporation of the kinematic-hardening rule with the corner 
theory, let us introduce a new stress defined by the following 
equation: 

S = o-a, (16) 

where a is a tensor denoting the translation of the plastic 
potential. 

Figure 3(b) shows the schematic relations among some basic 
quantities in S' -space, whose origin moves with the center of 
the translating plastic potential. For the translation of the 
origin, following Ziegler's kinematic rule is assumed in this 
report: 

a = H'kTs/S, (17) 

where H'k(>0) denotes the kinematic-hardening coefficient. 
Let us assume that the corner theory discussed in Section 2 

similarly holds in the S'-space: The a'-space is replaced by 
S'-space in this section and S' plays the role of a' in Section 
2. Thus, we simply obtain the following equations for Eqs. 
(5)-(8). 

S=H'kp/ix(a) 

S = Scos(a) 

•tp
F=(3/2)KFW-^ 

S' n(a)S 

t"D = (3/2)KD 

SH'cosa. 

H(a)$ ' 
H' 

(18) 

(19) 

(20) 

(21) 

A total strain increment is expressed as the sum of elastic and 
plastic parts: 

(22) 

with 

e ' = t" + e* 

b'=2Gte (23) 

Substituting S' =a' -a' andEq. (23) intoEq. (22), we obtain 
the following equations 

. , _ S ' QKfG + H'JpS 
6 2G* 2GH'kS 

(24) 

Taking the inner product of the deviatoric stress S' to both 

sides of Eq. (24), then solving the result with respect to S, we 
obtain the following equation: 
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of 1 n(KfG + H'k/3) 
(2G* GH'cosa 

The substitution of Eq. (25) into Eq. (24) yields: 

S ' . , 3ix(3KFG + H'k)S'(S':'e') 

(25) 
H' —H'p0t + H v, (31) 

2G* 2S2, (H' cosa + ixH' k + 3/xGcos/3) 
(26) 

Now, substituting Eqs . (17) and (26) into the relation a' 
= S ' + a' and using Eq. (18), we finally obtain the following 
constitutive relation: 

ir = 2G* « + : l - 2 v 
ev& 

(S':e)S 
(27) 

where 

E V 
2S 2f? ' (H'cosa+ jiH'k + 3/xGcosff) 

(28) 

(29) 

%G(KPH'-tiKDH'k) 

v*dy+EKDii/{2H'). 

For the verification of the applicability of the Eq. (27), it 
is indispensable to ensure that , assuming a current stress is at 
a plastic loading state, we can judge whether a given total 
strain increment e causes plastic loading or elastic unloading. 
Furthermore, it must be proved that Eq. (27) gives a unique 
stress increment a for the given strain increment e: one-to-
one correspondence must exist between strain and stress in
crements. These two requirements are deeply connected with 
each other and the details of the discussions are described in 
the Appendix. The conclusion for the first requirement can be 
described as follows: 

If S ' : e ' /(S e ) > cosam a x , then plastic loading is caused, 

however, if S ' : e ' / ( S e ) < c o s a m a x , then elastic unloading is 
caused. 

The uniqueness of Eq. (27) can be proved if the parameters , 
/*(«) and |8(a), satisfy the conditions (i) and (ii) described in 
Section 2, and H' >H'k holds. The last inequality condition 
is too sufficient to ensure the uniqueness comparing with the 
precise condition given in the Appendix, though it is useful 
due to its simplicity. 

Some fundamental features of the developed theory will be 
revealed through the application to an uniaxial tension prob
lem. Especially, it is necessary to investigate the mutual re
lationships among the work-hardening coefficients introduced 
in this report , since the coefficients have been used so far 
without discussing in the details. First, we can easily obtain 
the following relations for an uniaxial problem: 

KF+KD=l, S = S „ S ' i = - 2 S ' 2 = - 2 S ' 3 = 2S , /3 

G* = GH'/(H'+3KDG), 

Z* = 2Si2(H' +H'k + 3G)H'/{9G(KFH' -KnH'k)]. 

Substituting these relations into Eq. (27), then arranging the 
result, we obtain the following equation: 

ff1 = ( H ' + / / ' i ) e i " . 

Thus, we know that the sum of// ' and H'k equals to the slope 
of (jj - ef curve obtained by the uniaxial tension test. Denoting 
the slope by H'm, we obtain the following relation: 

H'm = H'+H'k. (30) 

Furthermore, we can derive another relation concerning the 
coefficient H' by assuming several specific material properties. 
Let us suppose that a material has no vertex at the loading 
point on the yield surface, then the coefficient H' becomes 
perfectly identical to the value, denoted by H' pot, for the plastic 
potential, which is expanded isotropically in S ' - space by added 
plastic work. If we suppose that the vertex is formed at the 
loading point on the yield surface, then the relation among 
the coefficients H', i / ' p o t and H'„ can be written as: 

where H'v(>0) is a coefficient in relation to the vertex for
mation. 

From the analogy to J2-flov/ theory, it is reasonable to as
sume following relation for the growth of the plastic potential 
due to plastic work-hardening: 

•Spot = -fv pote • (32) 

The kinematic corner theory, developed in this report , re
gards the yield surface as the one different from the plastic 
potential in" the vicinity of a current plastic loading point (see 
Figs. 1 and 3). The yield surface can be singular at the plastic 
loading point, though the plastic potential is assumed to be 
regular wherever, and Ziegler's kinematic rule is assumed to 
the translation of the plastic potential. Substituting /x(0) = 1, 
the proportional loading condition, into Eq. (18) and com
paring the results with Eq. (32), we easily notice that the emerg
ence or the growth of the vertex is possible only for nearly 
proportional loading with positive H' v. 

4 Examination of the Developed Constitutive Equation 
Several experimental a n d / o r theoretical studies have been 

made on the problems of changing strain paths. Ohashi et al. 
(1981) have studied experimentally the constitutive properties 
of a brass subject to an abrupt change of strain-path direction 
after uniaxial tension. They revealed that the decrease of the 
effective stress a was observed just after the change of direc
tion, though a given strain increment, added after the change, 
still caused a plastic deformation. The same phenomena were 
similarly observed in other studies as well (Tokuda et al . , 1986). 
The phenomena, however, are not explainable from the view
point of J2-flow theory: In /2-flow theory, the decrease of 
the effective stress a immediately implies unloading and never 
causes plastic deformation. 

To investigate the essential features of the developed con
stitutive equation without intermixing the effect of material 
rotation, we suppose that the stress principal axis be fixed 
relative to the material. Now, disregarding the question of 
choice of appropriate rate measure, we can analyze the above 
problem for the several paths illustrated in Fig. 4. It should 
be noticed that , in this problem, only pure-shear deformation 
is allowable due to the restriction on the rotation of the stress 
principal axis. In Fig. 4, the angular measure -q determines 
changed directions of strain paths . The material is propor
tionally deformed in the first loading stage 0-A along the strain 
path of e32 = 0 up to €31 = 0 .1 . Then, at point A, the direction 
of the strain path is suddenly changed to a direction with e32 & 0. 
In the second loading stage A - B , the path is subjected to retain 
this direction. The effective stress and effective plastic strain 
are calculated by the following equations: 

(33) a=(3(o- 3 1
2 + a32

2))1 / 2 

I - (34) 

£ ' - S P A C E 

Fig. 4 A strain path subject to abrupt change of this direction 
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subject to abrupt change. The sudden decrease of a can be 
clearly observed in any solid curves just after the change of 
the path. This means that the drop is explainable by only 
introducing the kinematic-hardening effect. 

Figure 5(b) shows the curves for the case (b), where the 
hardening coefficients are chosen as H' = lOOMPa, 
H'k= lOOMPa and H' v= 50MPa. The results in Fig. 5(b) show 
that, when r) is chosen as 30 deg or 60 deg, the slope just after 
the change of the direction becomes more gentle than the rest 
of the data obtained choosing other values for t). It can be 
said, therefore, that the vertex formation causes gradual de
crease of the effective stress for the abrupt change of the strain 
path. The numerical results for the case where -q is chosen as 
120 deg, 150 deg, or 180 deg show the similar results as obtained 
in Fig. 4(a): This similarity is inferable, since we have as
sumed that the vertex can be diminished after the loading point 
once passes inside the plastic potential. 

13 
\ 
ID 

..b 

.0 

.5 

PROPORTIONAL LOADING _______ 

- \- r^SSS^A^^^ 7 =3°° 
-===

:lfS=:\ o 60° - T T A 120O 90° 
180° 15° 

(b) 

0.1 0.2 
EQUIVALENT PLASTIC STRAIT 

Fig. 5 Variation of effective stress for strain-path changing problems 
<r0 = 100Mpa, H',o, = 200MPa, H' =100Mpa;(a)H'k = lOOMPa, H'v = 0 MPa; 
only with kinematic hardening, (b) H'k = lOOMPa, H'v= 50MPa; with both 
kinematic hardening and vertex formation 

As the transition parameters, we choose the following func
tions due to their simplicity but also their good agreement with 
the data obtained from polycrystalline model analyses (Ito, 
1982), though it is possible to choose any pair of functions 
that satisfy the conditions (i) and (ii): 

(i) f-o(oi) = cos 
2a„ 

(35) 

(ii) po(a) = 
("max - 7r/2)a 

The calculations are made by setting elastic constants as: 
Young's modulus £' = 75GPa and Poisson's ration e = 0.3. To 
draw out essential features of the developed constitutive equa
tion, let us suppose that all the work-hardening coefficients 
are constant: The material is assumed to harden according 
to the linear relation <r = o-o + // ' t o te

p for proportional loading 
where ao is the initial yield stress. The following two sets of 
the work-hardening coefficients are chosen as typical examples: 

(a) H'k?±0, H'v=0; without vertex formation effect 
(b) H'k?s 0, H' y^ 0; with both kinematic hardening and 

vertex formation effects. 
Figure 5(a) illustrates the relations between the effective 

stress and effective plastic strain of the case (a) for various 
strain paths defined in Fig. 4. The plastic-hardening coeffi-
cients are chosen as: / / ' = lOOMPa, H'k= lOOMPa and// 'K=0 
MPa. In the figure, the broken line shows the curve for pro
portional loading and the solid lines are those for the paths 

5 Concluding Remarks 
The corner theory, previously proposed by Goya and Ito, 

was naturally developed to incorporate the Ziegler's kinematic-
hardening rule. 

For the verification of the applicability of the developed 
theory, the theory was applied to the problem of changing 
strain paths. A qualitative agreement with experimental data 
was demonstrated through numerical simulation. The sharp 
decrease of the effective stress a was simulated by only intro
ducing the kinematic-hardening effect. The vertex formation 
on the yield surface, therefore, can not be simply proved by 
the emergence of this decrease. It was demonstrated, however, 
that the vertex formation makes the slope of this decreasing 
part gentle for the relatively small change of the strain-path 
direction. This may be a useful information of experimentally 
confirm the formation of the vertex at the current loading 
point. 

It should be noticed that the developed theory allows the 
vertex to disappear from the yield surface whenever the current 
loading point is on or within the plastic potential surface and 
then the yield surface becomes precisely identical to the plastic 
potential until the next emergence of the vertex. It was proved 
that the derived equation has a unique inversion, and the suf
ficient conditions for the uniqueness were given with simple 
expression in terms of n(a), /3(a), / / ' , and H'k. 

The developed corner theory can be interpreted as a naturally 
generalized expression of 72-flow theory, /2-deformation the
ory, and several other 72-corner theories, since the developed 
theory can be coincident with any other established /2-theory 
simply by choosing specific functions or values for the intro
duced parameters such as fi(a), 0(a), Kj, KD, H'k, and / / ' . 
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A P P E N D I X 

From Eq. (24), it follows that 

S ' : e ' /cosa KfG + H'k/3 

^ + » 
(Al) 

(A2) 

SS \iu~ GH 

By use of the definition iu /S ' / IS ' I, Eq. (Al) is written as 

n: e cosa \[3(KfG + H'k/3) 

^ ~V6G* ^ yJlGH' 

The substitution of the following relation 

cos/3 = KDcosa + Kf 

and the definition of G* into Eq. (A2) yields 

n : e ' / / ' cosa V3cos/3 H'k , , ,, 
-=—= —= 1- _ _ + - — - . (A4) 

e" VfyG V2 V6G 
On the other hand, from Eq. (22), we get 

(3/2)!2=ec ' :ec '+2ec ' :e'+(3/2)7p 2 . (A5) 
Because of the relation a' = S ' + it', the elastic strain incre
ment ee' can be interpreted as the sum of two components, 
e V and e V , which are, respectively, defined as te

a'da'/ 
(2G)and ie

s'dS'/(2G). 
Then, we get 

£ c ' : ^ = ( e V + e V ) : e p 

^ 1 - n + ̂ - l ) : i p , where W S V I S ' I 
V6G V6G/i / 

= (2G)-'[//'A.COS/3 + (//'/,x)cos(a - /3)) e pi (A6) 

and 
, 1 2 ^ + 4//^c^ + 2 / ^ W * 

4G2 \ 3/T 3/t 3 / 

Substituting Eqs. (A6) and (A7) into Eq. (A5) and manip
ulating the results, we obtain the following equation: 

9Gl - + 2- + H'k 

1/2 
2 f / / 'cos(a-/3) „ , ~) , 

The substitution of Eq. (A8) into Eq. (A4) yields 

=F(a) or cos0«e ' =F(a), 
3/2 k 

(A8) 

(A9.10) 

where 

™ x ,fH'cosa „ H'k 
F(^I^G- + C0S^ + ^G 

1 IH'1 _H'H'kcosa , TTI 2 

9G \ /i n 
2 f / / 'cos(a-ff) 

3G( 
+ //'tcos/3 +1 

-1/2 

(All) 

9 « € ' (/COS 
n . x i ' 

/V2I 
(A12) 

From the conditions that £i(0) = l, /3(0) = 0, ji(amax) = 0 and 
(3(amax) = «max - w/2, it is straightforward to show that 

F= 1 at a = 0, and F= cosamax- at a = amax. (A13) 

Therefore, from Eq. (A9), it is concluded that if ot = 0, then 
Qne'=0 and if a = amax then Qne' = amax. 

Furthermore, we need to show that F(a) is monotone de
creasing with a within the range 0 < a < a m a x . Differentiating 
Eq. (All) with respect to a we get 

da Fit 
(A14) 

where 

(A3) Fdend-^-2 r - v U9GZ 
H" H'H' frcoscx 2 

+^P^+^'H+i (Ai5) 

Fnumrf(// 'sina + 3/iGsin|8) 

* [ - / / ' ( / / ' + nH'kCOSa + 3G/xcos(a - (3)) 

+ (rf/i/da) (3G// ' sin(a - ,8) + / / ' */ / ' sina) 

- (d@/da)3Gix [ 3G/* + /i//'*cos/3 + H' cos(a - /?) ) ] . (A16) 

The numerator, Fnum , is simply shown to be positive for any 
a. Now, to check the sign of dF/da, the consideration is 
required with respect to the sign of each term in the square 
brackets of Eq. (A 16), since (// 'sina + 3/tGsin/3) > 0 for any 

a. 
From the first term, 

- / / ' ( / / ' +^ / / ' t cosa + 3G/xcos(a-/3)j 
<-H'(H'-H'k), (A7) 

since / / ' > 0 , / / ' * ; > 0 , 0< /*< l and 0<a - /3<Tr /2 for any a. 

From the second term, 

(dti/da){3GH'sm(a-P) + H'H'isma} < 0 (A18) 

since dfj./da<0 and 0<a-j5<ir/2 for any a. 

From the third term, 
since d@/da>0 and 0</3<a m a x -7 r /2 for any a. 

Now, it is clear that F(a) is monotone decreasing with a 
within the range 0 < a < a m a x , if H' >H'k:F(a) is a function 
with one-to-one correspondence with respect to a. Therefore, 
considering the relation given by Eqs. (A9), (All) and just 
proved condition about F(a), the plastic loading range deter
mined from a is identical to the one from Qne'. Then, we 
can conclude as follows: 

If 

If 

n:e ' 

/3/2e 
= §cosamax, then e' falls within plastic loading range. 

n:e 
/3/2e 

= <cosamax, then e ' falls within elastic unloading 

and range. 
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Description of Nonproportional 
Cyclic Plasticity of Stainless Steel 
by a Two-Surface Model 
A simple elastic-plastic constitutive model based on the two-surface theory is de
veloped to describe deformation behavior of austenitic stainless steels under mul-
tiaxial cyclic loading. Dependency of saturated stress range both on strain range 
and the proportionality of loading is considered. To establish a precise procedure 
for determination of material constants for nonproportional loading, the intervar-
iable relation in the axial-torsional circular strain-path condition is studied in detail. 
A full procedure is then developed for determination of all material parameters. 
Finally, the effectiveness of the present model is demonstrated by application to 
axial-torsional cyclic tests for type 304 stainless steel at 550°C. 

1 Introduction 
Austenitic stainless steels (type 304 and type 316) are exten

sively used as structural materials in Liquid Metal Reactor 
(LMR) plants because of their various advantageous charac
teristics, especially their high-temperature strength. Therefore, 
the characterization of their mechanical behavior in the op
erating temperature range (200-550°C) of LMR plants be
comes very important for the structural design of these plants. 
Behavior under cyclic loadings is of special importance because 
the principal concern in the structural design of LMR plants 
is the failure caused by repeated cycles of thermal transient 
loadings. 

The results of extensive research carried out in the past 
indicate that these materials exhibit various complicated be
haviors in these temperature ranges. They show significant 
cyclic hardening in uniaxial isothermal tests at these temper
atures, in contrast to a small amount of hardening at room 
temperature. Moreover, the stress range at a stabilized cycle 
in constant strain-range cyclic tests increases with the imposed 
strain range. Behavior under nonisothermal conditions is also 
so complicated that straightforward application of the con
stitutive models developed under isothermal conditions often 
gives inaccurate results (Ohno et al., 1988). Finally, in the 
multiaxial stress state, it has been observed in many tests that 
the materials show different hardening behavior in nonpro
portional loading than that in proportional loading. The effect 
of this should be properly accounted for because the loadings 
given to each part of the real components are not proportional, 
although the deviation from proportionality could largely de
pend on the specific condition of the structures. 

Various kinds of nonproportional cyclic loading tests were 
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conducted recently using axial-torsional loading systems with 
thin-wall cylinder specimens. Krempl et al. (1984) conducted 
cyclic loading tests for type 304 stainless steel at room tem
perature controlling axial strain and torsional strain in both 
in-phase and out-of-phase modes. Similar experiments were 
conducted by Cailletaud et al. (1984) on 316L stainless steel 
at room temperature. McDowell (1985) performed cyclic load
ing tests on type 304 stainless steel at room temperature with 
various strain paths in axial-torsional strain space, which in
clude circular, elliptical paths and more irregular ones con
sisting of several linear segments. Similar tests were carried 
out by Benallal and Marquis (1987) for type 316 stainless steel 
at room temperature. Tanaka et al. (1985) also studied the 
cyclic hardening behavior of type 316 stainless steel at room 
temperature using several kinds of paths specified in plastic 
(not total) strain space. 

All these experiments, for either type 304 or type 316 stainless 
steel, show a similar trend and clearly indicate that cyclic hard
ening behavior largely depends on the proportionality of the 
loadings. It was also generally observed in these tests that the 
circular strain path defined in the equivalent strain plane yields 
the greatest amount of cyclic hardening among the various 
types of strain paths with the same equivalent strain ranges. 
Based on this finding, Murakami et al. (1987) conducted a 
series of uniaxial cyclic tests and circular strain-path tests for 
type 316 stainless steel at several temperatures between room 
temperature and 700°C. Their study shows that the difference 
between stress ranges at a stabilized cycle in these two kinds 
of tests is significant throughout the temperature range ex
pected for structural components of LMR plants. 

As for the uniaxial cyclic behavior of these stainless steels, 
many research works have been done on modeling with elastic-
plastic or elastic-viscoplastic constitutive equations. Some re
cent models (Ohno and Kachi, 1986; Nouailhas, 1987) have 
the capability of representing deformation behavior under uni
axial cyclic loading, including cyclic hardening processes and 
stress-strain hysteresis shape in each cycle, with fairly good 
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accuracy. However, these models yield poor predictions for 
multiaxial cyclic loading if there is some degree of nonpro-
portionality due to ignorance of the above-mentioned char
acteristic of the materials. This fact has led several investigators 
to the effort of improving constitutive models for better rep
resentation of the material behavior under nonproportional 
cyclic loadings. 

McDowell (1985a) made a detailed examination of the ex
perimental stress-strain relations at the stabilized state in sev
eral axial-torsional tests with different strain paths and showed 
that the Mroz-type kinematic hardening rule (Mroz, 1967) gives 
the best description of the rate as well as the direction of 
movement of the yield surface compared with other rules. Then 
he constructed, based on this observation, one set of elastic-
plastic constitutive equations based on the two-surface theory 
for describing the cyclic hardening behavior of the material 
under nonproportional cyclic loadings (McDowell, 1985b). 

Tanaka et al. (1986a,b) developed an elastic-plastic consti
tutive model for nonproportional cyclic loading by modifying 
the model of Ohno and Kachi (1986). Their model also uses 
the two-surface theory with two kinds of cyclic nonhardening 
regions assumed in the plastic strain space. 

Benallal and Marquis (1987) proposed a modification of the 
elastic-viscoplastic constitutive model of Chaboche (1977) based 
on their experimental results. In their model cyclic hardening 
is expressed by the expansion of the yield surface toward an 
asymptotic value which changes according to the degree of 
nonproportionality of the loading. 

These new models give much better predictions of the hard
ening behavior under nonproportional loading than the clas
sical models. However, further work is necessary for more 
detailed evaluation of the capability of these models. At the 
same time the possibility of simpler formulations should be 
continuously sought in order to make practical application 
easier. 

In this paper, a simple elastic-plastic constitutive model will 
be presented with an example of successful application to type 
304 stainless steel at a high temperature. The elastic-plastic 
constitutive model presented by Ohno and Kachi (1986) was 
used as a starting point for development, and several modi
fications were made to obtain the desired accuracy. The present 
model employs the two-surface theory to describe the nonlinear 
stress-strain relation during one cycle. Cyclic hardening is rep
resented mainly by expansion of the bounding surface. De
pendency of the stress range at the saturated state on the strain 
range is accounted for by using a progressively growing surface 
assumed in the plastic strain space. 

Following the establishment of the fundamental structure 
of the constitutive equations, an intervariable relation existing 
at the steady-state cycle in the circular strain-path condition 
was examined in detail. This examination led to an exact pro
cedure for determining the material parameters relevant to 
nonproportional loading. A detailed procedure was then de
veloped for determination of all material parameters from the 
results of cyclic uniaxial and circular strain-path loading tests. 
Finally, the present model was applied to type 304 stainless 
steel at 550 °C. 

2 Constitutive Model 

2.1 Background. The present model is based on the model 
proposed by Ohno and Kachi (1986) and utilizes the concepts 
of the two-surface model and the cyclic nonhardening region. 
The idea of the two surface model was initially proposed by 
Krieg (1975) as well as Dafalias and Popov (1975). The use of 
this model enables one to describe the nonlinearity of the stress-
strain relation during cyclic loadings without ad hoc rules. It 
should be noted that the nonlinear kinematic hardening model 
presented by Chaboche (1977) has a very strong similarity to 
the two-surface model as pointed out in (Chaboche and Rous-

selier, 1983) and (Benallal and Marquis, 1987). It can be easily 
shown that both models become completely equivalent in a 
special case. 

Cyclic hardening can be represented by the expansion of the 
bounding surface and the yield surface in the two-surface the
ory. The expansion of the former surface leads to a general 
increase of the stress range and that of the latter surface brings 
about the expansion of the purely elastic domain. Ohno et al. 
(1988) showed that the stress-strain relation in uniaxial cyclic 
loadings can be described with good accuracy for type 304 
stainless steel at various temperatures by only the expansion 
of the bounding surface. 

The cyclic nonhardening region defined in the plastic strain 
space is the most important concept developed by Ohno (1982). 
The use of this concept enables one to describe cyclic hardening 
behavior under irregular loading with more reality than when 
using the simpler maximum plastic strain range criterion pre
viously suggested in (Chaboche et al., 1979). 

2.2 Description of the Present Model. The present model 
assumes both the yield (loading) surface and the bounding 
surface to be hyperspheres in deviatoric stress space. They are 
represented as 

f=(3/2)(su-aij)(su-au)-

F=(3/2)(sv-a$)(su-a$)-

(1) 

(2) 

where s,y is the stress deviator, ay is the center of the yield 
surface, and afj the center of the bounding surface, K and H* 
represent the sizes of the yield surface and the bounding sur
face, respectively. The image point on the bounding surface 
is given according to the following Mroz-type mapping rule: 

s^afj+lsy-a^K*/^ (3) 

It is assumed that the evolution of ay, ay, K and K* takes place 
according to the following equations in which superimposed 
dots represent the derivatives with respect to time: 

aij=A(&)p(Srj-sij)/8, 6 = V ( 3 / 2 ) ( 4 - ^ ) ( 5 * - 5 , y ) , (4) 

a* = (2/3)^6* (5) 

K = K0+K, K=C(Q(p, q)-k)p, (6) 

K*=K$ + K*,XK*=C*(Q*(p,<l)-k*)P, (?) 

p = y/(2/3)kf/efj. (8) 

Equation (4) means that the center of the yield surface moves 
in the direction of (sfj - Sy) by the rate A(8)p depending on 
that norm, 8. The functional form of A(8) can be determined 
on the basis of the observation of stress-strain behavior as 
shown in the later section. Equations (6) and (7) mean that 
the sizes of the yield surface and bounding surface change with 
plastic strain, approaching the values of K0 + Q{p, q) and KQ 
+ Q*(fi> <J), respectively. K0 + Q(p, q) and K0* + Q*(fi, q) 
represent the sizes of these surfaces at the stabilized state in 
cyclic loading with plastic strain range, Aep = 2p and the 
proportional coefficient, q. 

The hardening index surface, whose definition is the same 
as that of the cyclic nonhardening region (Ohno, 1982) but 
used in a somewhat different way, is defined as a hypersphere 
in plastic strain space as follows: 

g = (2/3)(4-l3y)(e?i-py)-p2. (9) 

Here, fly and p represent the center and the size of the surface 
and they develop according to the following equations: 

/3,y = V372(l-c)I>,y, „„ = V273(eg-|8„)/p, (10) 
P=cYp, (11) 

[2/3 vykfj/p g = 0and vy'efj>0 
g < Oor vy'efj<0, 

(12) 
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where c is a constant which determines the rate of the expansion 
of the surface. A large c value accelerates the cyclic hardening 
process, although the saturated state is not affected by the 
choice of this value, provided that the value is not too large. 

The variable q is used for representing the effect of the 
proportionality of the loading, q becomes 1 or 0 for the pro
portional loading or circular strain-path loading condition, 
respectively, and assumes an intermediate value for other gen
eral loadings. Various expressions are possible to satisfy this 
requirement, and the best one should be chosen based on 
extensive study on the cyclic hardening behavior under various 
loading conditions. In the literature, various proposals have 
been made by several investigators for the expression of similar 
parameters in their models to describe the difference in hard
ening behavior under different loading conditions (McDowell, 
1985b; Tanaka et al., 1986a,b; Benallal and Marquis, 1987). 
In this study, however, no evaluation was made concerning 
the effectiveness of these expressions since we only dealt with 
two limit states, i.e., uniaxial and circular strain-path loadings, 
where the choice of the expression makes no difference. 

Finally, the model assumes the conventional normality rule 
in order to determine the direction of plastic strain increments: 

tf=Msv-<*„), (13) 
where X is a scaler variable to be determined from the con
sistency condition / = 0 and the elastic stress-strain relation
ship. 

2.3 Comparison With Other Models. As mentioned in the 
Introduction, several constitutive models have been proposed 
for the same purpose as the present model. A brief discussion 
will be given here concerning the similarities and differences 
between the present model and others. 

(a) Model of McDowell (1985b). The two-surface the
ory is used in the McDowell model as in the present model. 
Although the two models differ in various detailed aspects, 
especially in the forms of the kinematic hardening functions, 
the most noticeable difference can be found in the means used 
to account for the strain-range dependency of cyclic hardening. 
McDowell used the maximum plastic strain-range criterion 
modified by introduction of a fading memory term to cope 
with the hardening behavior under variable strain-range cy
cling. On the other hand, the hardening index surface, which 
is fundamentally the same as the cyclic nonhardening region 
proposed by Ohno (1982), is used in the present model for the 
same purpose. However, it is not clear whether a reasonable 
prediction can be made by the McDowell's modification for 
a variety of strain histories, even in the uniaxial stress state, 
for which the effectiveness of the cyclic nonhardening region 
has been presented (Ohno, 1982; Ohno and Kachi, 1986). 

(b) Model of Tanaka et al. (1986a,b). This model uti
lizes the concepts of the two-surface theory and the cyclic 
nonhardening region. In their model, it is assumed that the 
sizes of the yield and the bounding surfaces directly depend 
on the size of the cyclic nonhardening regions. Hence, the use 
of two cyclic nonhardening regions (called proportional and 
perfect nonhardening regions) at the same time is required for 
distinguishing cyclic hardening behavior under proportional 
and nonproportional loadings, which makes the model struc
ture rather complicated. Indirect dependence of isotropic hard
ening on the size of the hardening index surface assumed in 
the present model (see equations (6) and (7)) makes the use of 
two regions unnecessary and results in a simpler structure of 
the constitutive model. 

(c) Model of Benallal and Marquis (1987). Although 
formally expressed in a different way, time-independent limit 
of their model is equivalent to a particular form of the two 
surface model, in which the function A (<5) is a linear function 

of 5 and K = 0 in the notation in the present study. These 
assumptions make the model simpler, but at the same time 
they limit the capability of the description of the stress-strain 
relation to some extent. It was not intended in their model to 
represent the strain-range dependency of cyclic hardening, al
though this can be easily done by assuming some variables to 
be functions of the size of the hardening index surface as well 
as of the proportionality coefficient, as is done in the present 
model. 

3 Analysis of the Intervariable Relation at Stabilized 
Circular Strain-Path Cycle 

Here, special attention is given to the intervariable relation 
existing at the stabilized cycle in circular strain-path loading, 
where the axial strain ezz and the engineering shear strain yrz 

change according to the following equations: 

e^=(Ae«/2)cos(o)0, (14) 

7 r j = (A7 r l /2)cos(uf-ir /2) , (15) 

where w is angular frequency of the loading cycle, t is the time, 
and the ratio of the amplitudes A7rz/Ae2Z = V3~. 

For convenience, the following vectors are defined: 

e= (ei = e«, 62 = 7 r z /V3) = ef,+ e", (16) 

£e=(ef = 4 , e| = 7 W 3 ) , (17) 

«p=(ef=e^,eS = 7&/V3), (18) 

a=(ai = azz, o2 = \f3Tn), (19) 

a = («i = (3/2)a a , a2 = V3a a ) , (20) 

a* = (af = (3/2)o&, cti = V 3 0 - (21) 
In the circular strain-path condition, the trace of t forms a 
circle of the diameter, ea = Aea = A7ri/\/3~. 

If one assumes the Poisson's ratio of 0.5 for convenience 
(in the actual calculation example shown in Section 5, 0.3 was 
assumed), Hooke's law can be simply stated as 

a = Ete, (22) 

where E is the Young's modulus. It should be noted that under 
this condition, all the vectors defined above have a constant 
norm throughout the cycle, i.e., form a complete circular trace, 
in the stabilized condition (k = k* = 0). 

Equation (21) leads to the following equation: 

Et = <r + Et". (23) 

The normality rule requires 

i" = \(o-a). (24) 

Considering tptp = 0 due to the circular movement of ep, 

ep.(a-a) = 0. (25) 

Here, a • b means an inner product of two vectors, a and b. 
The yield condition can be stated as 

\a-a\=K. (26) 

Here, lal means a norm of the vector, a. 
The image point on the bounding surface is given by 

ff* = a * + K*(<r-«)//<. (27) 

Here, a* is given simply as 

a*=Ke". (28) 

Finally, movement of the center of the yield surface is described 
by 

i ^ ( S ) ^ l e J , b=\a*-a\. (29) 
o 

The condition a • a = 0 requires that 

<x.(a*-0) = O. (30) 
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Fig. 1 Intervariable relation in steady-state circular strain-path condi
tion 

The relation of these vectors can be obtained graphically 
using three angles, <j>, 6, and x as shown in Fig. 1. Here these 
angles give the phase differences of the stress, the center of 
the yield surface and the plastic strain vectors against total 
strain vectors, respectively. Afterwards, scaler symbols without 
subscripts will be used to represent the norms of various vector 
variables. 

From equation (23), 4> and 0 can be easily obtained as 

<t> = C0S-l[(e2 + ee2-ep2)/2eee}. (31) 

e = cos-~l[(e2 + ep2-ee2)/2ie"}. (32) 

Consideration of equations (25) and (26) leads to the following 
equations: 

K = (7sin(0 + A:)/cos(0 + x), (33) 

a = KCOs(0 + <£)/sin(0-.x:). (34) 

Moreover, the following equations can be derived from equa
tions (26), (28), and (30). 

K* = <7Cos(<£ - x)/sin(0 + x)- Kep/tan(e + x), (35) 

5 = | a* - aI = ( <TCOS(0 + </>)-Ke") /sin(0 + x), (36) 

Finally, equation (29) can be used to derive the following scaler 
relation: 

a=A(5)e". (37) 

Equations (33)-(37) can be used for obtaining the values of 
K and K* as well as x if the function for the hardening modulus 
A (8) is given. Since these equations are related to each other, 
some iteration procedure needs to be used for the general 
functional forms of A(S). One method which is used in this 
study is shown in Table 1. 

These equations are quite general so that they can be used 
for determination of the material constants of any other con
stitutive models if they are based on the two-surface theory or 
an equivalent theory. In particular, it is expected that consid
eration of the above relationship will produce a better method 
of constants determination than the method described by Tan-
aka et al. (1986b) for their constitutive model. 

4 Procedure for Determination of Material Constants 
and Functions 

The present model has six material constants and three func-

Table 1 Iteration procedure for determination of x 

1) Assume x = 0 

2) K = a sin(<j>-x)/cos(6+x) 

3) 6 = | a - a * | =» {ocos(<t>+9)-K£P}/sin(e+x) 

4) a = A ( 6 ) E P 

5) x = $ - sin {< cos (<j>+8)/a} 

6) If Ix-xJ^ 10~3 stop 

If |x-x |> 10~3 x = (x+x )/2 go to 2) 

tions to be determined. The six constants are K0, KO . K, C, C*, 
and c whereas the three functions areA(&), Q{p,q), and Q*{p,q). 
A general procedure for their determination from the test re
sults of the constant strain range tests under uniaxial and 
circular strain-path conditions will be given below. For the 
function Q(p,q) and Q*(p,q), only a procedure for determi
nation of the functional forms at q = 0 and q = 1 will be 
shown in this paper. Of course, the simplest forms of these 
functions are given as follows: 

Q(p,q)^(l-q)Q(p,0) + qQ(p,l), (38) 

Q'(p,q) = (l-q)Q'{p,0) + qQ*(p,l). (39) 

(i) Determination of K0: The initial size of the yield sur
face K0 can be determined most easily as a point of departure 
from the linear stress-strain relationship in initial loading al
though some ambiguity exists depending on the precision of 
the measurements. 

(ii) Determination of K, Q(p,l), and A(S): At the stabi
lized cycle in the constant strain range uniaxial cyclic tests, p 
becomes equal to Atp/2, where Aep represents the plastic-strain 
range observed at the stabilized cycle. Moreover, K and K* can 
be given as 

K = K0 + Q(Aep/2,l), (40) 

K* = K$ + Q*(Aep/2,l). (41) 

K, at each stabilized condition, can be estimated as the half of 
the stress range of the linear portion in the hysteresis loops. 
Then the function Q(pA) can be determined by fitting each 
value of Q(Aep/2,l) = K - K0 as a function of p = Aep/2. 

The following equations are useful for determining the value 
of if and the function A(5) from the relation between the axial 
stress, a, and the axial plastic strain, ep, in the stabilized cycle. 

H'=do/d(P = A(b), 8= \sgn(a)K*+Kep-o\. (42) 

Based on the plotting of the relation between H and {a - Kep) 
for several cases of the strain range, we can optimize the value 
of K* for each value of Aep as well as the value of K and the 
function A (5). More detailed explanation of the procedure used 
in this study will be given in the next section. 

(iii) Determination of «o > C, C*, c, and Q*(p, 1): Next, 
the values of KQ , C, C, and c can be determined based on the 
experimental data on the cyclic hardening process in the con
stant strain range uniaxial cyclic tests. The following knowl
edges are helpful for determining these constants. 

(a) KQ determines the stress level in the initial phase of the 
cyclic hardening process. 

(b) c determines the number of cycles to saturation of the 
stress range. As in the Ohno model (Ohno et al., 1988), 
the following expression is useful for obtaining an 
approximate value of c from the number of cycles 
required for the attainment of saturated behavior, A^. 

JV,c= 1 (43) 
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Fig. 2 Stress-strain relation in various loadings 

( c ) C* and C determine the growth rates of the total stress 
range and the elastic response range, respectively, in 
the cyclic hardening process. 

The function Q*(p, 1) can be determined by fitting each value 
of Q*(Aep/2,\) = K* - K0* as a function of p = Ae"/2. 

(iv) Determination of Q(p,0) and Q*(p,0): At the stabi
lized cycle in the constant strain-range circular strain-path tests, 
p becomes equal to Atp/2% where Ae" means the axial plastic 
strain range at the stabilized cycle. The following equations 
hold under this condition: 

K = K0 + Q(Aep/2,0), (44) 

K* = Ko* + Q*(AeP/2,0). (45) 
Analysis of the intervariable relation at the stabilized cycle 

shown in the last section gives a precise procedure for deter
mining K and K* . For example, substitution of the total strain 
range, the stress range and the plastic strain range at the sta
bilized cycle makes an exact determination of K and K* possible 
by solving equations (31)-(37) with the function A (5) previously 
determined from the results of uniaxial tests in the procedure 
(ii). 

Finally, the functions Q(p,0) and Q*(p,0) can be determined 
by fitting each value of Q(Aep/2,0) = K - K0 and Q*(Ae"/2,0) 
— K* - KO, respectively, as a function of p = A6p/2. 

5 Application to Type 304 Stainless Steel at 550 °C 
5.1 Outline of Experimental Program. The test material is 

annealed type 304 stainless steel. Uniaxial tension-compression 
cyclic tests were conducted at four constant strain ranges with 
the strain rate of 0.1 percent/sec. Circular strain-path tests 
were also performed at three strain amplitudes ea = A'ezz = 
AYn/VJ with the equivalent strain rate (t\\ + T?Z/3) I /2 equal 
to 0.1 percent/sec. All tests were conducted at 550°C in air 
environment. 

The main result is shown in Fig. 2, where the relation between 
stress and strain amplitudes at the stabilized cycle is plotted 
for both kinds of tests. The monotonic stress-strain relation 
is also given here. Significant enhancement of cyclic hardening 
by nonproportional loading can be clearly observed. 

O K = 0 

a K = 2000 MPa 

D K = 4000 MPa 

H' = 3(K* + KEP - 0)2 

( K = 2000 MPa > 

100 200 300 Ttc* = 335 MPa 

a - K e P (MPa) 

Fig. 3 Procedure for determining material constant K 
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Fig. 4 Determination of material hardening function H' 

5.2 Determination of Material Constants and Functions. 
Material constants and functions involved in the present con
stitutive model were determined according to the procedure 
briefly described in the previous section. Some details of the 
procedure will be given with the resulting values and functions 
in the following. 

First, from the first cycle of uniaxial cyclic tests, K0 was 
determined as 100 MPa, where the Young's modulus was as
sumed as 157 GPa. 

Secondly, from the tension-going portion of the stress-strain 
curve at the saturated condition in the uniaxial cyclic test with 
the largest strain range (Ae =1.47 percent), the values of the 
plastic hardening modulus H' = da/de" were plotted against 
(a - Ke") for several values of K between 0 and the final slope 
of 0 - e" relation. The result is shown in Fig. 3. Based on this 
figure, the value of K was determined in such a way that it 
resulted in the best fit of the data points, although it required 
human judgement. In this case, an assumption of K = 4000 
MPa yielded an apparently nonsmooth behavior in the high-
stress regime while a value of 2000 MPa allowed a smooth 
interpolation to be made. K = 2000 MPa was selected on the 
basis of this observation and K* in this condition was obtained 
as 335 MPa by an extrapolation to H' = 0. Tests with a larger 
strain range will make it possible to obtain a more precise value 
forA-. 

Next, similar relations were plotted for the results of the 
test with other three strain ranges, using the fixed value of K. 
This procedure gave us a set of almost parallel four curves, 
from which the optimal value of K* was determined for each 
strain range. Then, the relations between H' and 5 = a* -
a = K* + Ke" - a were replotted for all strain ranges, and 
the functional form of H' = A (5) was finally determined. 
Fortunately, an excellent approximation was possible with the 
following very simple equation, as shown in Fig. 4. 
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Table 2 Result of analysis of circular strain path tests 

Input Data 

E (%) 

0.5 

0.355 

0.25 

o(MPa) 

393 

345 

304 

EpOT 

0.365 

0.21 

0.09 

Result of Analysis 

<t>(deg) 

44.2 

33.5 

18.6 

e(deg) 

28.5 

35.3 

43.7 

x(deg) 

25.7 

10.5 

-9.8 

a(MPa) 

200 

179 

170 

6(MPa) 

135 

169 

251 

K(MPa) 

213 

193 

174 

Q(MPa) 

113 

93 

74 

K (MPa) 

454 

439 

478 

Q (MPa) 

279 

264 

303 

Table 3 Summary of material constants and functions 

K = 100 MPa 

Kg = 175 MPa 

K = 2000 MPa 

c = 0.01 

C = 15 

* 
C = 15 

A(6) = 3.0{6(MPa)}2'0 (MPa) 

Q(p,D = 0 

Q(p,0) = 610{p(nm/mm)}0"30 

Q*(p,l) = 390{p(mm/mm)}0-17 

Q (p,0) = 280 MPa 

<MPa) 

(MPa) 

H'=A{8)=3.0520 (H' and 6 in MPa) 
The cyclically stabilized behavior in these tests also showed 
that there was virtually no increase in the linear elastic range 
even after the large growth of the total stress range. Q(p,\) = 
0 was assumed based on this observation. 

As the next step, the value of c was determined as 0.01 from 
the approximate number of cycles to saturation of hardening 
observed in the uniaxial cyclic tests. Then, the values of K* 
and C* were determined by several iterations of comparison 
between predictions and test data on the cyclic hardening proc
ess. It was found that the following constants generally yielded 
good agreement between the test data and simulation results 
for four test conditions. 

K0* = 175 MPa, C* = 12 
At the same time, the function g*(p,l) was determined as 

Q*(p,l) = 390p°"(Q* in MPa and p in mm/mm). 

The value of C was set equal to C* for the sake of simplicity. 
Finally, the functions <2(p,0) and Q*(p,0) were determined 

using the results of three circular strain-path tests. The results 
of the analysis for three test cases are shown in Table 2. The 
calculated results for these tests indicated that Q(Aep/2,0) 
showed a clear dependence on Ae" but that Q*(Ae"/2,0) did 
not. The following expressions were employed based on this 
indication: 

20,0) = 610 p0'30 (Q in MPa and p in mm/mm), 
Q*(p,0) = 280 MPa. 

For convenience, the material constants and the functions 
determined by the above procedure are summarized in Table 
3. 

5.3 Result of Simulation. A small computer program was 
developed for performing the calculation based on the present 
constitutive model. A simple Euler scheme was used for time 
integration of the rate equations included in the model. In 
order to have the yield condition (equation (26)) satisfied at 
the end of each calculational step, the radial return method 
(Simo and Taylor, 1985) was applied. One hundred steps were 
used for the calculation of one cycle. 
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- 4 0 0 

— i i i r 
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TEST DATA 

-0 .8 -0 .6 -0 .4 -0.2 0.0 0.2 0.4 0.6 0.8 

STRAIN (%) 

Fig. 5 Comparison of stabilized stress-strain relations in uniaxial cyclic 
loading condition 

Figures 5-8 show a comparison of the experimental and 
theoretical results. Generally very good agreement was ob
tained in these comparisons. In particular, the stress-strain 
relations at the saturated state in both uniaxial and circular 
strain-path loadings were simulated with very small deviation 
from the experimental data. Not only the stress ranges but also 
the shapes of the stress-strain curves were described well. This 
comes from the employment of the precise procedure devel
oped in the present study for determining the material constants 
and functions. 

On the other hand, prediction of the cyclic hardening process 
in uniaxial loadings was not as excellent as the prediction of 
stabilized stress-strain behavior. 

As can be seen in Fig. 7, the strain-range dependency of the 
number of cycles required for saturation of cyclic hardening 
was not simulated well by the model. It is expected that im
proved description can be obtained by employment of larger 
c and smaller C and C* values than those used in the present 
simulation. But there is a possibility of imposing a too large 
memory effect with a larger value of c (e.g., maximum plastic 
strain-range criterion of Chaboche et al., 1979, for c = 0.5). 

Very good agreement was obtained for the hardening rate 
under the circular strain-path condition was shown in Fig. 8. 
The model predicted more rapid attainment of the saturated 
stress range than the case of uniaxial tests. This was also ob
served in the test results. It is a very encouraging fact that the 
hardening rate under these two limit conditions can be well 
represented with the same value of C* and C. 

Figure 8 also includes the results predicted by the model not 
considering the additional hardening due to nonproportional 
loading. These results were obtained by simply replacing Q 
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Fig. 6 Comparison of stabilized stress-strain relations in circular strain-
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Fig. 7 Comparison of cyclic hardening process in uniaxial cyclic load
ing condition 

(,o,0) and Q*(p,0) by Q(p,l) and <2*(p,l), respectively. These 
results considerably underestimated the stress range under cir
cular strain-path loadings. This again clearly shows us the 
importance of considering the additional hardening in non-
proportional cyclic loading. 

6 Conclusion 
In this study, a simple elastic-plastic constitutive model based 

on the two-surface theory was presented for description of the 
hardening behavior of austenitic stainless steels under non-
proportional cyclic loadings. Expressions which can be used 
for the precise determination of the material parameters were 
derived based on analysis of the intervariable relations existing 
at the stabilized cycle of circular strain-path loading. It was 
shown that excellent descriptions of cyclic deformation be
havior under uniaxial and circular strain-path conditions can 
be made using the material parameters determined by these 
expressions. The method of extension to general nonpropor-
tional loading—particularly the definition of q and the de-
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pendency of Q and Q* on q—is an important subject for 
completed development of this model. 
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Void Growth in Plastically 
Deformed Free-Cutting Brass 
The void growth occurring during tensile testing of uniaxial and notched specimens 
of free-cutting brass has been determined experimentally. This material contains a 
globular lead phase which tears or bursts to nucleate voids during deformation. 
Using quantitative metallographic data from specimens whose deformation was 
interrupted prior to failure, histories of void volume fraction and void aspect ratio 
were determined. The measured stress-strain response from the tensile tests was 
shown to be close to predictions from a finite element model incorporating Gurson 's 
constitutive model for a porous plastic solid. Predicted void growth rates agreed 
well with experiment for uniaxial specimens but were less than the measured growth 
rates in notched, high triaxiality specimens. 

1 Introduction 
Ductile fracture occurs in plastically deforming metals 

through the nucleation, growth, and coalescence of small in
ternal voids or cavities (Rogers, 1960), the most common sites 
for void nucleation being hard second-phase particles or in
clusions (Goods and Brown, 1979; Fisher and Gurland, 1981). 
The void growth stage of ductile fracture involves the stable 
expansion of voids within a material undergoing tensile plastic 
deformation. There are two aspects of this stage that must be 
considered: (i) the void expansion and change in shape during 
deformation; and (ii) the degradation in material load-carrying 
capacity due to the presence of the voids, referred to here as 
constitutive softening. 

Previous analytical models (McClintock, 1968; Rice and 
Tracey, 1969; Budiansky et al., 1982) have considered the 
growth of an isolated void within an infinite medium. Models 
considering void growth and constitutive softening have also 
been developed for the case of finite porosity using analytical 
(Gurson, 1975, 1977) and numerical approaches (Needleman, 
1972; Tvergaard, 1981; Koplik and Needleman, 1988; Wor
swick and Pick, 1989b). Experimental studies of void growth 
(Beremin, 1981; Marini et al., 1985; Bourcier et al., 1986; 
Becker et al., 1988; Spitzig et al., 1988) have shown qualitative 
agreement with these models. However, there appears to be 
quantitative differences between predicted and measured void 
growth rates, and between measured void growth rates from 
independent experimental studies. 

In the present paper, measurements of void growth in un-
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iaxial and notched tensile specimens of free-cutting brass (UNS 
C36OO0) are presented. This material contains a dispersion of 
globular lead particles (added to improve machinability) which 
burst or tear during plastic deformation to nucleate voids. 
Histories of damage versus applied deformation were con
structed from a series of interrupted tensile tests in which the 
specimens were loaded to predetermined strain levels and then 
sectioned for quantitative metallographic examination. 

The measured void growth rates were used to assess pre
dictions by Rice and Tracey (1969) and Budiansky et al. (1982) 
based on isolated voids. In addition, the measured stress-strain 
and porosity histories were compared to those from a finite 
element model incorporating Gurson's (1975, 1977) porous 
continuum constitutive model. 

In discussing the models considered in this paper, it is im
portant to make a distinction between macroscopic and mi
croscopic stresses and strains. Microscopic stresses and strains, 
ay and e,y, respectively, refer to the detailed distributions around 
individual voids whereas the macroscopic stresses and strains, 
Ly and e", are average values such as would be measured in 
a tensile test. 

2 Material 
The tensile specimens were fabricated from free-cutting brass 

rod (UNS C36000) which has a nominal composition 61.5 
percent Cu-35.5 percent Zn-3.0 percent Pb (weight percent). 
The material is three phase: alpha, beta, and lead. The lead 
phase, being essentially insoluble in Cu-Zn, forms small glob
ular particles that are elongated along the rod axis due to the 
continuous casting and drawing process used in fabricating the 
rod. 

The material was annealed at 800° C for two hours in order 
to promote spheroidization of the lead phase, as seen in Fig. 
1. Using standard metallographic techniques (Underwood, 
1970), the grain size after annealing was determined to be 55 
ftm. The volume fraction of lead was 0.025 and the mean lead 
particle aspect ratio in the plane of the section was close to 
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Flg.3 Notch detail of the D·notch specimen. Tensile straining direction
Is In the horizontal plane.

cock and MacKenzie (1976). Figure 3 shows the notch detail
of the D-notch specimen, for which the initial root rad ius, ,0,
and notch radius, R O

, were equal to 3.8 mm and 1.27 mm,
respectively. The initial root radius and notch radius of the
A-notch specimen were both 3.8 mm. The uniaxial tensile
specimen had an initial diameter and gauge length of 7.6 mm
and 50 mm, respectively.

Two uniaxial specimens and one of each notched specimen
were tested to failure in order to establish the failure strain
and stress-strain response for each specimen geometry. The
remaining tests were interrupted at predetermined strains prior
to fracture.

3.1 Metallography. After testing, the notch region of each
specimen was cut out and sectioned longitudinally. The spec
imen surface was carefully ground and polished to ensure that
the edges of the voids did not become rounded. The plane of
the final polished section always lay within 0.1 mm of the
specimen axis.

The polished specimens were examined under an optical
microscope to determine the void volume fraction, i, and the
average void aspect ratio , Q. Quantitative assessment of the
damage was performed using an on-line image processing sys
tem which measured the areal fraction of voids and the in
dividual void aspect rat ios, Q. The areal fraction of voids was
taken as being equal to the void volume fraction, a statistically
correct approach if a sufficient number of samples are taken
(Underwood, }970; VanderVoort, 1984). The average void
aspect ratio, Q, defined as the mean of the individual void
aspect ratios in the plane of the section, was assumed to be
representative of the aspect ratio of the embedded voids. Prob
abilistic approaches (DeHoff, 1964) for relating the mean as
pect ratio of the embedded voids to that in the section plane
were not considered.

Two approaches were used in sampling the sectioned spec
imens. In the first approach, micrographs were acquired at
points along the specimen axis and along the radial direction
across the minimum section . Three measurements were taken
at each point, one directly on the axis and one on either side
of the axis. The size of the sampled region in each micrograph
was 192 /lm x 144 /lm. For the remaining specimen s, the
measurements were taken from a small region at the specimen
center using a 9 x 12 grid pattern with 0.2 x_O.15 mm spacing.
This pattern was used to measure f and Q at the specimen
center and to ascertain the local statistical variation in these
measured quantities while the axial and radial patterns serve
to indicate the variation within the specimen.

•• 0

•
•t '

•

Flg. 2 Optica l micrograph showing central tear or burst of lead part ic les
after plastic defo rmation (polished only )

•
• •

•

unity. The in-plane mean "nearest-neighbor" lead particle
spacing was approximately 15 !-tm.

The presence of the globular lead phase was the primary
reason for selecting free-cutting brass for this investigation.
Pure lead has a tensile strength of approximately 20 MPa
compared to roughly 400 MPa for half-hard free-cutting brass.
Thus, the lead particles tear or burst during the early stages
of tensile plastic deformation and nucleate voids (Fig. 2). In
view of the disparity in strength between the lead particles and
the brass matrix, the initial void size was taken as the size of
the lead particle.

2.1 Material Properties. Values for Young's modulus
and Poisson's ratio, equal to 97 GPA and 0.3, respectively,
were adopted. The initial yield strength was 94.4 MPa and the
uniaxial stress versus plastic strain behavior is described using
a cubic polynomial of the form

0-=94.4 + 1594eP-1693(€ P)2+645 (e P)3, (1)

in which 0- is the material flow stress and eP is the equivalent
plastic strain. The constants in equation (1) were determined
from linear regression of result s from uniaxial tensile tests
(Worswick, 1988). Bridgman corrections were not used in de
termining this equation.

Fig. 1 Optical micrograph of UNS C36000 tree-cutttnq brass showing
sphero ldlzed lead phase af ter annealing at800·C for two hours (polished
onl y)

3 Experimental Procedures
Six uniaxial specimens and ten notched specimens were pulled

in displacement-controlled tests at speeds of 0.25 and 0.13 mml
min., respectively. Two notch profiles were used, correspond
ing to the A-notch and D-notch designations studied by Han-

4 Finite Element Model
The finite element meshes used to model the notched spec

imens were those used by Worswick (1988) and were similar
to meshes used in a number of previous studies (Needleman
and Tvergaard, 1984; Becker et aI., 1988). The model of the
uniaxial tensile specimen considered a "perfect" specimen, free
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Fig. 4 Comparison between measured and predicted axial stress (ffaxiai) 
versus logarithmic strain (el09) response. The letters U, A, and D indicate 
the predictions for the Uniaxial, A-notch, and D-notch specimens, re
spectively. Symbols indicate measured values. 

-hyd 

1.6 

1.2 

0.8 

U- UNIAXIAL TENSILE 
A-A-NOTCH 
D-D-NOTCH 

GURSON-BASED 
- - V O N MISES-BASED 

Fig. 5 Predicted stress triaxiality (Zhyd la) versus logarithmic strain («,«,) 
histories from the finite element models. The letters U, A, and D indicate 
the predictions for the Uniaxial, A-notch, and D-notch specimens, re
spectively. 

of imperfections, and therefore would not account for the 
effects of geometric instabilities leading to necking. This ap
proach provided predictions of void growth at constant stress 
triaxiality, E/y /̂ff = 1/3, Y,hyd being the hydrostatic stress. Note 
that in neglecting necking, errors in the predicted stress triax
iality and void growth rate result during the latter stages of 
deformation. The reader is referred to Tvergaard and Needle-
men (1984) and Aravas (1987) for analyses of necking insta
bility employing a Gurson constitutive model. 

The finite element calculations were performed using the 
general purpose nonlinear finite element code ABAQUS (Hib-
bitt et al., 1984). A nonlinear geometric formulation, based 
on the updated Lagrangian approach due to McMeeking and 
Rice (1975), was used. The material model adopted was coded 
in a user-subroutine linked with the ABAQUS library which 
is called to integrate the constitutive model and calculate the 
material "stiffness" modulii. 

The elastic response of the material was idealized as con
forming to Hooke's Law for a linear elastic isotropic solid. 

The macroscopic plastic response was modeled using the Gur
son (1975, 1977) constitutive model describing porous contin
uum plastic solids. Central to this model is the use of the 
Gurson yield function to determine conditions to initiate or 
sustain plastic flow within a plastically dilating porous solid: 

+ 2 / ( ? 1 c o s h L ^ n ' 4> = 
2b 

-l-q3f< = 0, (2) 

in which/is the void volume fraction and Ee? is the equivalent 
stress, defined as Ee? = 3/2EyE,y, E,y being the deviatoric com
ponents of £y. The coefficients qu q2, and q$ are "calibration" 
coefficients introduced by Tvergaard (1981, 1982) to better 
represent the effects of porosity in plastically deforming solids. 
The values adopted were q{ = 1.25, q2 = 0.95 and q3 = q\, given 
by Becker et al. (1988) and Worswick and Pick (1989a). 

The detailed form of the constitutive equations used is given 
by Gurson (1975, 1977). A forward difference scheme was 
used to integrate these equations which required small time 
steps in order to avoid numerical instability. Future work will 
consider use of a backwards difference operator to integrate 
the Gurson constitutive model, as described by Aravas (1987). 
The initial void volume fraction was taken as being equal to 
0.025, the volume fraction of the lead particles. Void growth 
was modeled as initiating immediately with the onset of tensile 
plastic deformation, a reasonable assumption if the void nu-
cleation strain is low. The validity of this assumption will be 
addressed later in this paper. 

5 Results 
The axial stress-strain results from the specimens tested to 

failure are plotted in Fig. 4 (symbols). The axial stress, ffaxiai. 
is the axial load on the specimen divided by the current cross-
sectional area while the measure of strain is the logarithmic 
strain, e]og = 21n (r°/r). The figure serves to demonstrate the 
increase in axial stress and decrease in ductility with notch 
severity. Also plotted are the predicted curves obtained from 
the Gurson-based finite calculations (solid curves) and cal
culations using a Von Mises, fully dense, material model 
(dashed curves). The predicted curves using the Gurson model 
lie closer to the experimental data than the Von Mises results. 
The Gurson-based predictions of axial stress for the D-notch 
specimen exceed the measured value by roughly 5 percent at 
eiog = 0.25. Beyond this strain level, the measured stress drops 
off suggesting that void coalescence processes, not considered 
by the model, were beginning to occur. Similar behavior was 
seen in the A-notch experimental results near the failure point. 

The increased constraint on plastic flow in the notched spec
imens led to the development of regions of high stress triaxiality 
at the center of the notch. The predicted histories of stress 
triaxiality from the finite element analyses are plotted in Fig. 
5 and are similar to those obtained by Hancock and Brown 
(1983). After the initial "spike" associated with the onset of 
yielding, the triaxiality levels within the A and D-notch spec
imens ranged between approximately 0.6-0.7 and 0.9-1.1, re
spectively. The calculations using the Von Mises constitutive 
model (dashed curves) yielded somewhat higher values. 

The predicted triaxiality within the uniaxial tensile specimen 
remained just below 1/3 for the duration of the analysis, since 
the model considered a "perfect" specimen without necking. 
Consequently, the finite element predictions of ffaxiai for this 
specimen generally lay below the measured values (Fig. 4). 

5.1 Initial Porosity and Void Aspect Ratio. The initial 
void volume fraction and void aspect ratio, summarized in 
Table 1, were measured using three undeformed samples taken 
from the same rod as the tensile specimens. Additional meas
urements were made on the threaded end of one tensile spec
imen. Note that the initial "voids" are actually the embedded 
lead particles which tear open during deformation. Shown in 
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Table 1 Initial void volume fraction and aspect ratio 
Table 1(a): Void Volume Fraction 

Specimen 

16 

17 

18 

11 

Mean 

N (micrographs) 

107 

105 

98 

88 ' 

f 

0.026 

0.021 

0.028 

0.025 

0.025 

Std. Dev. 

0.008 

0.007 

0.009 

0.008 

CL(95%) 

0.002 

0.001 

0.002 

0.002 

%RA 

6.2 

6.3 

6.3 

6.4 

Table 1(b): Void Aspect Ratio 

Specimen 

16 

17 

18 

11 

Mean 

N (voids) 

2222 

1786 

1603 

1468 

Q 

1.006 

1.037 

1.013 

0.985 

1.010 

Std. Dev. 

0.233 

0.279 

0.234 

0.229 

CL(95%) 

0.010 

0.013 

0.011 

0.012 

%RA 

1.0 

1.2 

1.1 

1.2 

* at end of tensile specimen 

Table 1 are the sample mean, standard deviation, 95 percent 
confidence interval, and percent relative accuracy. A total of 
108 micrographs were acquired on 9 x 12 grids for the un-
deformed specimens. The number (AT) reported was less than 
108 since a number of micrographs were rejected due to the 
presence of surface flaws, such as polishing scratches. 

The mean void areal fraction,/, varied between 0.021-0.028 
with a relatively large sample standard deviation in the range 
0.007-0.009. The mean void aspect ratio, Q, was very close to 
unity, ranging between 0.98 and 1.04. 

5.2 Porosity and Void Aspect Ratio Distributions. The 
measured radial distributions of void volume fraction (f) across 
the minimum sections of an A and D-notch specimen are plot
ted in Figs. 6(a) and (b). From examination of the figures, 
there is considerable scatter in/within the deformed specimens, 
attributed largely to the small sample size taken at each material 
point (3 micrographs) and the large variation in / between 
samples. No confidence intervals are shown in Fig. 6; however, 
an estimate of the 95 percent confidence interval on / , based 
on three micrographs, was obtained using the variance from 
the undeformed specimens to estimate the variance in the de
formed material. This calculation yielded an error band of 
±0.009 on the mean value of/which was considered large. 
This error could be reduced by decreasing the magnification 
and thereby sampling larger areas per image; however, inac
curate measurement of the individual particle aspect ratios 
would result due to the limited resolution of the image ac
quisition system. Alternatively, the use of larger specimens 
would permit acquisition of more micrographs at each material 
"point," thereby reducing the error in/ . 

Distributions of void aspect ratio (Q) across the minimum 
sections are plotted in Fig. 7. The estimated error in Q from 
three micrographs (approximately 60 voids) was ±0.06 and 
was considered acceptable. 

The finite element predictions of/, for the corresponding 

.06 
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EXPERIMENTAL MEAN 
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n i 
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r (mm) 
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D 

• D 
a a 

FINITE ELEMENT 
EXPERIMENTAL MEAN 

T I 
0 

r (mm) 

(b) A-NOTCH 
Fig. 6 Radial distributions of void volume fraction (/)across minimum 
section D and A-notch specimens strained to c,og = 0.2 and 0.38, respec
tively. Symbols indicate measured values. 

values of eiog, lie above the measured distributions suggesting 
that the predicted void growth rates exceed the measured rates. 
However, as will be discussed below, the lower measured in
crease in void volume fraction was due to a delay in the onset 
of void growth during the experiments. 

Examination of the predicted porosities in Fig. 6(b) for the 
A-notch specimen reveals higher porosity at the specimen cen
ter compared to the notch region. The increased porosity at 
the center of the specimen was due to the higher triaxiality in 
that region. The predicted distribution for the D-notch spec
imen shows the highest porosity at the notch. The D-notch is 
much sharper than the A-notch, causing a greater concentra
tion of strain at the D-notch surface which led to higher po
rosities. 

While the authors are unaware of a simple closed-form so
lution for the rate of void shape change (e.g., Q/Q), results 
from Budiansky et al. (1982) and Worswick and Pick (1989b) 
have shown that Q/Q will decrease as triaxiality increases. As 
a result, larger void aspect ratios developed at the notch where 
the plastic strains were highest and the triaxiality was lowest 
(Fig. 7). 

Axial distributions of void volume fraction and void aspect 
ratio along /• = 0 are shown in Fig. 8 for the D-notch specimen 
tested to failure. The z = 0 coordinate in the figure corresponds 
to the fracture surface position. As with the radial distribu
tions, there is a great deal of scatter in the distribution of / 
whereas the aspect ratio distribution is reasonably well defined. 
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Fig. 7 Radial distributions of void aspect ratio (Q) across minimum 
section of D and A-notch specimens strained to elog = 0.2 and 0.38, re
spectively 
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Fig. 8 Axial distributions of void volume fraction (f) and void aspect 
ratio (Q) along axis of the D-notch specimen tested to failure (f,og = 0.3) 

Only qualitative agreement with the finite element prediction 
can be suggested due to the scatter in the experimental results. 
Similar scatter was seen in the A-notch and uniaxial specimen 
distributions (not shown). 

The sharp increase in / and Q, in Fig. 8, across the z = 0 
plane of symmetry prompts concern over the size of the D-
notch region sampled using the grid pattern. The initial gauge 
length of the notch was 2.54 mm, while the grid pattern extends . 
1.8 mm along the axis; thus the actual values of /and Q at 
the specimen centre may exceed the reported mean values. This 
measurement inaccuracy could be reduced by using larger spec
imens. 

5.3 Void Growth Rates. The measured void volume frac
tion and void aspect ratio at the specimen centers are plotted 
as functions of logarithmic strain in Figs. 9 and 10. The scatter 

<=log 

Fig. 9 Void volume fraction (f) versus logarithmic strain (clog) histories. 
Symbols indicate measured values while the solid lines correspond to 
the finite element predictions. The vertical bars indicate the 95 percent 
confidence intervals on the measured values. The letters U, A, and D 
indicate the results for the Uniaxial, A-notch, and D-notch specimens, 
respectively. 

4 -

111 

° INITIAL 
a UNIAXIAL TENSILE 
a A-NOTCH 
© D-NOTCH 

FRACTURED 

FRACTURED 

-| 
.4 

Fig. 10 Void aspect ratio (Q) versus logarithmic strain (clog) histories. 
Symbols indicate measured values while the solid lines correspond to 
the finite element predictions. The vertical bars indicate the 95 percent 
confidence intervals on the measured values. The letters U, A and D 
indicate the results for the Uniaxial, A-notch and D-notch specimens, 
respectively. 

bands indicate the 95 percent confidence intervals. The void 
volume fraction results from the fractured specimens have a 
high degree of uncertainty due to the scatter in the void volume 
fraction distributions as seen in Fig. 8 for the D-notch spec
imen. 

The predicted void volume fraction histories from the finite 
element model are plotted in Fig. 9. The predicted curves echo 
the trends seen in the experimental data of increasing dilata-
tional growth rate (the rate of void expansion) with triaxiality 
(notch severity). In Fig. 10, the extensional growth rate (the 
rate of void shape change) is highest for the low triaxiality 
uniaxial specimen. 
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Table 2 Summary of least squares fits to dllational growth data 

.6 

Fig. 11 Dilatational growth histories from the Interrupted tensile spec
imens. Solid lines are the curve fits obtained using equation (5) while 
the dashed lines show the finite element predictions. The letters U, A, 
and D indicate the results for the Uniaxial, A-notch, and D-notch spec
imens, respectively. 

Rice and Tracey (1969) introduced dilatational and exten
sional growth factors D and 1 + E, respectively, to characterize 
the rate of growth of an isolated void within an infinite media. 
For the case of finite porosity, assuming the voids are spherical 
and do not interact, the rate of dilatational growth can be 
characterized using 

/ -iD%' (3) 
/ ( I - / ) 

in which D relates / to the effective plastic strain rate in the 
matrix, e"m. Following Gurson (1975), the effective plastic strain 
rate within a porous material can be calculated using 
€m = Syeg°°/(l - / )&, eff° being the plastic strain rate tensor. 
The rate of void shape change can be characterized using 

= (1+£)(€$•-iff), (4) 

in which 1 + E relates Q to the shape change inherent in the 
applied plastic strain field (e f ™ - e f") • In the tensile specimens, 
e?" and ef" correspond to the macroscopic plastic strain rates 
along the axial and radial directions, respectively. 

By assuming constant values for D and 1 + E, equations 
(3) and (4) can be integrated to obtain 

7\ A-/' In 
1 - / 

= 3D(ip
m-{lp

m)0) (5) 

and 

In (Q/Q°) = (1 + E)M? - efT) - (ef3°° - <$°)0] • (6) 
The terms {e"m)0 and (eff - ef Do are the plastic strains at which 
dilatational and extensional void growth common, respec
tively. Note that the integration of equations (5) and (6) in this 
manner implies that equations (3) and (4) can be extended to 
finite strains. Rice and Tracey (1969) make no provision for 
finite strains and equations (5) and (6) merely provide a means 
of estimating the effective void growth rates during the ex
periments. 

5.3.1 Dilatational Growth Rate. Values of ln[(/7 
/°)(I _ / ° ) / ( l - / ) ] versus \"m at the center of the tensile spec
imens are plotted in Fig. 11 for the tensile tests interrupted 
prior to fracture. Note that while / is a measured quantity, 

Specimen 

Uniaxial 

A-notch 

D-notch 

N 

4 

4 

3 

D 

0.397 

0.843 

3.224 

( ^ ) 0 

0.142 

0.131 

0.072 

corr.2 

0.971 

0.944 

0.991 

Fig. 12 Dilatational growth factor (D) from tensile test (crosses) as a 
function of stress triaxiality (Ehyd lb). The vertical span corresponds to 
the uncertainty in D while the horizontal span corresponds to the range 
In predicted stress triaxiality during the test. 

i"m was determined from the finite element calculations. The 
linear trends seen in the data in Fig. 11 support the assumption 
of a constant value of D in integrating equation (3). There was 
also a noticeable delay in the onset of dilatational void growth 
as reflected by the finite e£,-intercept. The dilatational growth 
factor, D and nucleation strain, (€„)0, were estimated using 
least squares fits of equation (5) to the data in Fig. 11. The 
resulting values for D and (hp

m)0 are summarized in Table 2 
and the corresponding fits are plotted in Fig. 11. The corre
lation coefficients in the last column of Table 2 and the ob
served fit in Fig. 11 indicate that equation (5) provides a 
reasonable description of the experimental void growth be
havior. 

The finite element predictions of ln[f///°))(l - / ° ) / ( l - / ) ] 
versus l"m are also plotted in Fig. 11. These curves pass through 
the origin due to the assumption of a zero void nucleation 
strain and, as a result, lie above the corresponding experimental 
data. The measured rates of void growth, however, were higher 
than the predicted rates as seen in the steeper slopes of the fits 
to the experimental data compared to the predicted curves. In 
spite of the lower predicted growth rates, the Gurson-based 
finite element model captured the trend of increased dilata
tional growth rate with triaxiality quite well. 

5.3.2 Effect of Stress Triaxiality on D. The dependence 
of the measured dilatational void growth rate on stress triax
iality is examined in Fig. 12 (crosses). The natural logarithm 
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Fig. 13 Extensional growth histories from the interrupted tensile spec
imens. Solid lines are the curve fits obtained using equation (6). 

of D was plotted in view of the exponential dependence of 
dilatational growth rate on triaxiality predicted by Rice and 
Tracey (1969). The vertical span of each cross indicates the 
uncertainty in D, calculated by Worswick (1988), whereas the 
horizontal span corresponds to the predicted range of Hhyd/ 
a during the test (Fig. 5). The figure shows the strong de
pendence of D on Lhyd/a. 

The relatively large uncertainty in D, particularly at high 
triaxiality, was due to the limited number of specimens tested 
and the small plastic strains attained in the notched specimens. 
In spite of this uncertainty, the agreement between the present 
low triaxiality uniaxial results and those of Barnby et al. (1984), 
Bourcier et al. (1986) and Spitzig et al. (1988) was quite good, 
as seen in Fig. 12. At high triaxiality, the straight line fits to 
measurements by Beremin (1981) and Marini et al. (1985) ex
ceeded the notched specimen growth rates in the current work. 
In contrast, the analytical predictions for D by Rice and Tracey 
(1969) and Budiansky et al. (1982) are less than the experi
mental values, particularly at high triaxiality levels. 

5.3.3 Extensional Growth Rate. The relationship be
tween the void aspect ratio and applied plastic strain suggested 
by equation (6) is examined in Fig. 13 using the measured 
values of Q and the predicted plastic strains at the specimen 
center from the finite element calculations. Examination of 
the figure reveals that the extensional growth rate, 1 + E, is 
not a constant but decreases during deformation, as indicated 
by a decrease in the slope of the data at higher plastic strains. 
The figure also shows that extensional growth of the voids 
commenced immediately with the onset of plastic deformation. 
The early extensional growth occurs through elongation of the 
soft lead particles prior to their rupturing or tearing; thus the 
nucleation strain term, (ef3°°-efr)0 in equation (6), would be 
zero. 

The variation in 1 + E during the deformation history was 
estimated by fitting a bilinear form of equation (6) to the 
extensional growth histories shown in Fig. 13. The resulting 
slopes, shown in the figure, indicate an initial value of 1 + E 
in the range 1.45-1.5 for both the uniaxial and notched spec
imens, decreasing during the later stages of deformation to 
roughly 0.7 for the uniaxial and 1.0 for the notched specimens. 
These values compare well to uniaxial measurements for 1 + 
E in the range 1.3-1.6 by Leroy et al. (1981) and 0.8-1.1 
determined using data published by Spitzig et al. (1988). 

6 Discussion and Conclusion 
No direct experimental evaluation of the degree of consti

tutive softening was possible since the stresses and stress triax
iality at the specimen center could not be measured. Instead, 
the measured axial stress-strain response of the test specimens 
was used to assess the performance of the Gurson and Von 
Mises constitutive models. The predicted stress-strain response 
using the Gurson-based model was in closer agreement with 
experiment than predictions using the Von Mises constitutive 
model for the stress triaxiality range l /3<E^d /a < 1.1. 

A question, arises concerning the dependence of void nu
cleation within soft second-phase particles on the particle 
strength. The experimental results indicated a delay in the onset 
of dilatational void growth that was unexpected since the 
strength of the lead particles was low compared to the strength 
of the brass matrix. The majority of void nucleation studies 
have examined hard second-phase particles or inclusions which 
are brittle and nucleate voids once the local stresses acting on 
the particle exceed the particle strength or the strength of the 
particle-matrix interface (Goods and Brown, 1979; Fisher and 
Gurland; 1981). In the current study, the local shear stresses 
acting on the particles can be relieved by plastic flow of the 
ductile lead phase; thus plastic strains well in excess of the 
particle and matrix yield strains are attained prior to rupture 
of the particles. Void nucleation within the particles becomes 
highly dependent on the hydrostatic component of stress, as 
reflected in the decreased nucleation strain for the higher triax
iality notched specimens (Table 2). Direct verification of the 
reported void nucleation strains was not obtained since the 
lead phase smears during polishing, covering over cracks in 
the lead particles at small strains. However, experiments per
formed subsequent to those reported here2 show no significant 
change in porosity within uniaxial specimens prior to strains 
of 20 percent, while the void aspect ratios increase steadily 
with applied plastic strain. 

Once void expansion had begun, the dilatational void growth 
rates exceeded the predicted levels, in agreement with trends 
seen by Beremin (1981) and Marini et al. (1985). The decrease 
in the estimated extensional growth rate with stress triaxiality 
was in agreement with predictions by Budiansky et al. (1982) 
and Worswick and Pick (1989b) but was opposite to the trends 
predicted by Rice and Tracey (1969). Note that Rice and Tracey 
(1969) did obtain solutions in which 1 + E decreased with 
stress triaxiality; however, these solutions were discarded as 
being "nonintuitive." 

In summary, quantitative comparisons between the Gurson-
based finite element predictions and the measured void growth 
were hindered by the assumption of a zero void nucleation 
strain and by the variation in the measured void volume frac
tion within the specimens. In spite of these difficulties, the 
Gurson (1975, 1977) model was found to capture the specimen 
stress-strain response and void growth behavior reasonably 
well. The Gurson constitutive model represents a useful tool 
for describing the void growth stage of ductile fracture that 
can be readily incorporated into existing finite element pro
grams. 
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Dynamic Damage in Certain 
Monolithic Ceramic Materials 
In the present work, the propagation of elasto-damage longitudinal stress waves in 
thin rods is investigated. The material behavior is characteristic to that of certain 
monolithic ceramics. The damage constitutive relation that characterizes this type 
of materials gives rise to certain dynamic behavior which is somewhat different from 
dynamic plastic behavior. Plastic and damage dynamic response are compared 
through an example. 

1 Introduction 
Ceramic materials at low temperatures, while not undergoing 

plastic deformations, can behave inelastically as a result of 
microcrack nucleation. In certain types of monolithic ceramic 
materials, such as polycrystalline and multiphase ceramics, 
microcracks develop mainly at grain facets as a result of re
sidual stresses generated during cooling and of applied tensile 
stress (Fu, 1983). Microcracks tend to develop normal to the 
direction of maximum tension (normal microcracking). This 
gives rise to degradation of the elastic properties of the ma
terial. As the number of microcrack nucleation sites is ex
hausted a saturation stage ensues, during which the material 
sustains no further damage (Ortiz, 1987). We will refer to this 
type of materials as of damage type in order to distinguish 
them from those of plastic type. 

Some important reasons to study the influence of dynamics 
in the mechanical behavior of ceramics are the tensile testings, 
measuring inelastic properties, and the loading resulting from 
compressive waves reflected on free surfaces of such materials. 
Although a lot has been done in the dynamic behavior of 
metals, very little has been done for ceramics. There is some 
analogy between ceramic and metallic materials. However, the 
treatment of the ceramics as classical plastic materials is not 
appropriate. As we will show in the following, the dynamic 
loading of ceramics exhibits some peculiarities due to the stress-
strain concavity, whereas the case of dynamic unloading has 
a completely different mathematical modeling. In the present 
work we use a constitutive law suitable to describe micro
cracking. The equilibrium equations are then formulated and 
solved with the method of characteristics. A modified grapho-
analytical method is then introduced, suitable for solving par
ticular problems. 

2 Dynamic Loading and Unloading of Ceramics 
Figure 1(a) shows a typical stress-strain behavior of this type 

of ceramic, whereas Fig. 1(b) shows a trilinear idealization for 
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this material behavior. In the tensile region of the stress-strain 
curve that will be investigated in the present work, we can 
distinguish three regions: (a) an elastic region with elastic mod
ulus £"()» (b) a transition region with elastic tangent modulus 
ET, and (c) a saturation region with elastic modulus Es. Note 
that E0>ES>ET and all the elastic moduli are positive. 

We will consider waves propagating in a thin semi-infinite 
prismatic rod, whose axis coincides with the positive x-axis of 
space. We will assume the following kinematic conditions: 

1 The cross-section of the rod remains plane and normal 
to the x-axis during deformation. 

2 The deformations are small (small strains). 
3 There is no influence from strain rates. 
Furthermore, we will assume that the rod is initially at rest 

and at the end of the rod we impose some tensile stress history. 
Therefore, the initial conditions for the strain e(x, t) and the 
velocity v(x, t) will be 

e(x>o, t = Qi) = Q 

v(x>0, ? = 0) = 0 
and the boundary conditions for the stress a(x, t) 

a(x=0, t>0) = a(0, r)>0 
The equation of motion for the rod is 

do 
dx'~ 

dlu 

(la) 
(lb) 

(2) 

(3) 

0 

Os 

Oo 

0 

f\ 
1 / ' 

Eo Es 

(b) 

^ E s 

E 

Fig. 1 (a) Stress-strain behavior of monolithic ceramics; (b) trilinear 
idealization 
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Fig. 2 Characteristic fields for successive impact loading and shock 
formation 

and the compatibility equation for this one-dimensional prob
lem is 

3u 

~'dx 
(4) 

where p is the density of the rod (assumed constant) and u(x, 
t) is the displacement. We will try to find solutions for the 
strains and the displacements for positive space and time (x, 
/>0) . 

We will assume that the loading function <J(0, /) is an in
creasing function of time. Then, the finite constitutive equation 
for loading can be written as 

e = e(a) = ee + ed (5) 

where the elastic part of the strain is 

ee=cr/Ea (6a) 

and the damage part of the strain is 

0 ; (T<ffo 

« < / = (cr-ffo) 
1 1 

; ff0<<7<(Ts (6b) 

\Es E0)
1 os<o _L_J_ 

\ES E0j 

Denote by c(e) the local velocity of propagation of disturb
ances, which is given by 

c(e) = (l/P)[/2(da(e)/de)ln. (7) 

In this case c(e) is 

c0=(E0/Py' 

cT=(ET/p)1 

cs=(Es/p)h 

; a<a0 

; a0<a<as 

; <Js<o- (8) 

Note that c(e)>0 and c0>cs>cT always. 
The solution to equations (3), (4) can be stated in charac

teristic form as 

dv= ±c(e)de (9) 

along the characteristic lines 

dx= ±c(e)dt. (10) 

In equations (9) and (10), the plus sign indicates a forward 
wave and the minus sign indicates a backward wave. 

The solution given by equations (9) and (10) is the same as 
for the plastic loading behavior (Cristescu, 1967) for <r(0, t) < as. 
Upon further increase of load we encounter a region where 
the stress-strain curve is concave toward the direction of in
creasing stress. Then the characteristic lines show a convergent 
bundle that will form a stress shock. This damage shock wave 
is formed because, due to the specific constitutive behavior of 
the material, the distance between the smooth wave fronts 
propagating in the rod decreases during propagation. Then, 
the waves carrying the largest strains tend to overtake all the 
others. 

Suppose that at time t a given section x of the rod is reached 
by a shock front which moves with velocity cD in the positive 
direction of the x-axis. The jump conditions across the shock 
front are the well-known Hugoniot relations, and relate the 
jumps in velocity [v], strain [e], and-stress [<J]. These relations 
are 

lv]=-cD[e] 

cDp[v)= - M -

(11a) 

(lib) 

Combining them, we obtain the velocity of propagation of the 
shock 

cD = (l°V([e]p))in. (12) 

A particular type of loading history is shown in Fig. 2. In 
this particular example the shock line in the .tf-plane is linear 
with constant velocity for the propagation of the shock front. 
In Fig. 2 the strains for different time levels tA, tB, and tc are 
also shown. It should be noted here that this shock is due to 
the particular constitutive behavior, and if the material were 
simply plastic, the shock line would have been a characteristic 
line with cD = cT. The stresses can be easily computed from 
equation (6) and the displacements can be computed by in
tegrating the strains along Ox-axis. The characteristic lines are 
also shown in Fig. 2. We can distinguish four regions and four 
lines that separate them (see Fig. 2): 
In region 1: dx/dt = c0 

In region 2: dx/dt = x/t 
In region 3: dx/dt = cT 

In region 4: dx/dt = cs 

Along line OF: x=c0 t 
Along line OS ' : x = cT t 

Along line SS ' : dx/dt = cD= {(ff2-<ri)/((e2-€i)p))1/2 

Along line S'S": dx/dt = cs 

At point S':xs,=cDcT ts/(cD + cT), ts,=cD ts/(cD + cT) 
We may define the measure of cumulative damage by a scalar 
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Fig. 3 Evolution of damage distribution due to a tensile impulse 

X, so that X' = {e/a)' be the rate of change of the compliance 
of the material due to microcrack formation. The microcracks 
are formed parallel to the cross-section of the rod. Therefore, 
X gives a measure of the microcrack density. The tensile stress 
is itself a function of the state of damage through the cu
mulative damage parameter X. In the present model, in case 
of loading, X can be given analytically by integrating X' = (e/ 
a)' with initial condition X(oo) = 0. (Ortiz and Giannakopoulos, 
submitted for publication): 

Xf» = 1 
1 1 

p T - T T l J O0<°<°S- (13) 

Upon unloading, the damage coefficient X attains pointwise 
the maximum value suffered during the loading. Since the stress 
CT is a function of the position x along the rod at every instant 
/, then equation (13) can predict the damage distribution in 
the rod at every time t. Therefore, by solving for the stress in 
the loading region of the rod, we can compute the extent of 
damage in an initially undamaged rod. The damage evolution 
is described with the help of the following example. A tensile 
stress pulse of amplitude <jmax (a0 < <rmax < ^s) and of duration 
t* is imposed at the end of the rod (see Fig. 3). The rod is 
assumed to be initially at rest, unconstrained and intact. When 
the stress pulse starts propagating in the rod, microcracks are 
created at the wake of its front. The solution in characteristic 
form is shown in Fig. 3. In the same figure, the damage dis
tribution \(x, t) is shown fort=tA,(0<tA<t*) and for t>c0t*/ 
(co-cT). Therefore, the stress pulse creates a microcrack dis
tribution which would have a density given by X(JC, t>c0t*/ 
(c0-C7-)), shown in Fig. 3. 

The unloading (d<r(0, t)/dt<Q) of the elasto-damage type of 
materials can be very different from the unloading of the elasto-
plastic type of materials, as we may see from the following 
analysis. We will assume a perfectly damaged type of material 
where the unloading lines pass through the origin of the stress-
strain curve (Fig. 4). For each section x of the bar, let am{x) 
and em(x) be the maximum stress and maximum strain, cor-

(a) (b) 

Fig. 4 (a) Perfect elasto-damage unloading; (b) Perfect elasto-plastic 
unloading 

respondingly. Then, the constitutive equation for unloading 
becomes 

o-=e — — ;0<am<as. uxy - <14> 
In the characteristic plane xOt, there will be two domains: a 

loading and an unloading one. The two domains are separated 
by a loading/unloading boundary t=f(x). It is necessary to 
determine the solution in the unloading domain simultaneously 
with the solution in the loading domain (in order to find om(x) 
and em(*)). 

The equations of motion for the unloading domain can be 
computed from equations (3) and (14), and can be written as 
a second-order partial differential equations in terms of the 
displacements u 

fom(.x)\ d (am(x)\ 
P u,t- \——-\uxx-— I — — |w* = 0. dx \em(x) 

(15) 

Since am/em>0 and p > 0 , equation (15) is of hyperbolic type. 
The characteristic lines for this equation are: 

dx=± I am(x) 
dt "\pejx)' 

(16) 

Equation (15) can be written in canonical form by using new 
variables £ and ij, which are connected to x and / by 

^t-pxn\^Jom)xndx 

t] = t + p 1/2 
J (tm/°n, )

ludx. 

(17a) 

(lib) 

The canonical form of equation (15) is a wave equation of 
the form 

Ut,tt , i0 = O. (18) 

The general solution of (15) is then given by 

u(x, t) = FAt-pU2\j(em/am)U2dx 

+ F2h + p[/2^(em/am)W2dxl (19) 

where F t and F2 are twice differentiable arbitrary functions to 
be determined by the boundary conditions at the end of the 
bar and the loading/unloading boundary t=f{x). The differ
ential relations to be satisfied along the characteristic lines are 

dv=±(^>-) do. (20) 
\p <ym(x)J 

On the other hand, in plastic-type unloading, the constitutive 
relation is 

<j=am(x) + E0[e-em(x)}. (21) 

The dynamic equation for plastic unloading will then be 

U,t = CQUxx + 
d_ \am{x) 

dx 
c0 em(x) . (22) 
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Hodographic plane vOa associated with the characteristic field 

The characteristic lines for equation (22) are given by 

dx 

dt = ±c0. (23) 

The general solution of equation (22) is then of the form 

u{x, t) = G,(x+ c0 /) + G2(x-c0 t) 

- T T \{om(x)-E0em(x)}dx, (24) 
E0 J 

and the differential relations along the characteristic lines 
should be 

dv=±—do. (25) 
P c0 

Obviously, there is a different dynamic behavior between 
damage and plastic type of unloading. In the plastic type of 
behavior, the characteristic lines in the unloading region are 
straight, whereas in the damage type of behavior, the char
acteristic lines are still parallel, but curved. The differences 
will become clearer when we will examine the loading/un
loading boundary. 

The shape of the loading/unloading boundary t=f(x), can 
be determined by a grapho-analytical method similar to the 
one developed by Shapiro and Biderman (Cristescu, 1967). 
The method can be applied to long bars initially at rest and 
undeformed, and is described in the Appendix. It will be as
sumed that the stress at the end of the bar increases up to a 
maximum value <rmax and then decreases to zero (<J0 < ffmax < °s)-
The loading/unloading boundary emerges at the end of the 
bar, at the instant t0, when the stress reaches its maximum. 
At this point (x = 0, t = t0), by locally expanding the stress and 
velocity, we can compute the initial velocity of propagation 
of the loading/unloading boundary. The result is 

1/2 

J (26) 
«/W x=0 \ C a K l - C r / t 2 / 

where 

dx 
df{x) 

* i = 

(c2
Tcl{kx-k2)\ 

x=0 [clki-rth) 

-£(x = 0,t = t0-)>0 
at 

and 

k2 = -^(x=0, t = t0 + )<0 

, 1 Oir,„, . ^ 

c„= <c0 
\P € m a x / 

flmax ^max ^ 0 
e max— j - , + j? 

(27) 

(28a) 

(286) 

In cases where k\ = k2 = 0 and d2a(0, t)/dt2 is continuous at 
t = t0, we have 

dx 
= c,A l^r + 3 I - , 

cT df(x) 
(29) 

ELASTODAMAGE, 

UNLOADING 
REGION 

'ELASTOPLASTIC 

LOADING 
REGION 

1.5 2.0 2.5 c,t0 

Fig. 6 The loading/unloading boundary for the plastically unloading 
and for the damage type of unloading materials 

In plasticity, equations (26) and (29) also hold (Biderman's 
forms), but with c0 in place of cu. Since cu < c0, it can be easily 
shown that the initial velocity of propagation of the loading/ 
unloading boundary is smaller for the damage type of behavior 
than that of the plastic type. 

In order to construct the loading/unloading boundary, it is 
useful to have its image in the hodographic plane vOa. In the 
hodographic plane, the loading constitutive equation can be 
stated as: 

da 

pc(o) 

In our present model 

ff0 , O-Oo 
•v = H 

p Co p cT 

(30) 

(31) 

Therefore, the image of t=f(x) in the ya-plane is a straight 
line, shown in Fig. 5. 

3 Example 
In order to show the difference between the damage type 

and the plastic type of unloading, we will assume the same 
boundary and initial conditions and the same loading stress-
strain behavior to apply in both cases. The only difference will 
be in the way the two types of material unload (Fig. 4). 

The initial conditions will be e = 0, a = 0. The boundary con
dition is a triangular pulse with amax/a0=8, and is shown in 
Fig. 6. The material parameters used wereET/E0 = 0.25, p= 1, 
<70=1, E0/<J0 = 4. For the elastoplastic unloading we can use 
the grapho-analytical method proposed by Shapiro and Bid
erman (Cristescu, 1967). Note that the initial slope for the 
loading/unloading curve is dx/dt = 0.6325 c0. The loading/ 
unloading curve for the elastoplastic response is shown in Fig. 
6. 

For determining the loading/unloading curve of the damage 
type of behavior, the aforementioned method can be used with 
the following modification: A net of characteristic curves 
given by equation (16) must also be constructed, emanating 
from the unloading part of the stress history boundary con
dition (see Appendix for details). The loading/unloading curve 
for the elastodamage response is shown in Fig. 6. The initial 
slope is dx/dt = 0.5l26 c0. This indicates that the loading/ 
unloading front propagates slower for the damage type of 
unloading than for the plastic type, as predicted from the 
previous analysis (equation (29)). 

4 Conclusions 
In case of dynamic loading up to the saturation level, we 

point out again the analogies between ceramic and metallic 
materials. These are expressed from equations (7), (8), (9), and 
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Fig. 7 The modified grapho-analytical method of Shapiro-Biderman used 
for the elasto-damage dynamic unloading 

(10). The governing equation and its solution are similar to 
that of the elastoplastic materials and the characteristics are 
straight lines. 

This is not true in case of unloading. The loading/unloading 
front propagates slower in the damage than in the plastic type 
of materials. For this reason the extent of the microcracked 
region is smaller than if it had to be computed from standard 
elastoplastic results. The governing equation (15) and its gen
eral solution (19) are very different from the ones that hold 
for the plastic type of materials (equations (22) and (24)). The 
characteristic lines in the unloading region are curved and are 
given by equations (17). The proposed grapho-analytical 
method described in Appendix is actually constructing these 
characteristics which depend on the specific dynamic boundary 
conditions. The method can be implemented numerically as 
well. 

Pulse waves that do not exceed the saturation level, as, can 
be used in dynamic tests to predict inelastic properties of ce
ramics. Loading beyond the saturation level requires confine
ment of microcracking. Shock conditions may then take place 
(as shown in Fig. 2) where the information from the saturation 
state travels faster and finally dominates over the transition 
region. Therefore, the extent of damage, as expressed by equa
tion (13), is substantial when the duration of the pulse is suf
ficient. For this reason, we believe that uniaxial dynamic tests 
of ceramics must be performed at low stresses in cases where 
confinement of damage cannot be secured. 
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A P P E N D I X 
The grapho-analytical method used in the construction of 

the elasto-damage loading/unloading curve can be summarized 
as follows (see Fig. 7). First, we draw the initial slope of the 
loading/unloading boundary, given by equation (26) or equa
tion (29). In this direction we choose a point M2 close to the 
point MQ(x=0, t = t0). At point M2, we can find the stress by 
drawing the characteristic line in the loading region (dx/dt = cT). 
Then, a2 = a\,, where ov is the stress from the loading part 
of the curve <r(0, t). Since we know a2, we can locate the point 
m2 in the hodographic plane vOa. The point m2 must lie on 
the curve given by equation (31), since it belongs to the loading/ 
unloading curve. Therefore, the slope of the characteristic lines 
in the unloading region for all x= 0, will be given by equation 
(26) or equation (29). 

We then draw the characteristic line m2m}, since we know 
the slope at the point M0. From the point M2 we draw the line 
M2M-$ which corresponds to m2ms. The point m3 can be located, 
since we know the stress o-3 from the unloading branch of the 
curve cr(0, /). Then, from point M3, we draw a line M3M4 with 
the same slope as of MQM3. The point M4 is located at the 
x = ̂ -coordinate. The stress at the point M4 can be found from 
the boundary conditions by writing equation (20) in a different 
form. Clearly, am(x2) = a2, and from the constitutive behavior 
we can find em(x2) = e2. Therefore, the slope of the characteristic 
lines for all points with x=x2 in the unloading region would 
be given by dx/dt = (a2/(p e2))

in. In the plane vOa we draw 
the line /w3/w4, which is the image of the line M3M4. The point 
/n4 can again be found, since we know <r4. From the point Af4, 
we draw the line M4M5 which has a slope (a2/(p e2))

[/2. We 
then draw the line /n4/w5 (which is the image of M4M5) until it 
intersects the line msm0 in the ya-plane. From the point m5, 
we can find the stress CT5 and then find the point M5, for which 
0-5, = 0-5. From the point M5, we draw the loading characteristic 
line (dx/dt = cT). 

The lines M4M5 and M5 ,M5 intersect at the point M5, which 
belongs to the loading/unloading curve. The method continues 
as before for the point M10, etc., and is shown schematically 
in Fig. 7. 
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Viscoplastic Deformation Analysis 
and Extrusion Die Design by FEM 
A viscoplastic model for extrusion is discussed which simultaneously predicts the 
deformation field, optimal die geometry, and plastic boundaries. The die geometry 
and plastic boundaries are expressed in terms of chosen trial functions that satisfy 
certain geometrical and physical constraints. The variational power integral is min
imized in the trial plastic domain using FEM technique to determine the deformation 
field and shape coefficients for the die contour and plastic boundaries. The proposed 
method is implemented for the optimal design of an axisymmetric streamlined die. 
The predicted values are in reasonable agreement with the experimental observations 
and are in conformity with the results published earlier. 

Introduction 
In forming processes such as extrusion, the geometry of the 

die constitutes an important aspect of die design. The die 
profile determines the extent of redundant work done during 
deformation. An optimum die profile minimizes the redundant 
work, thereby minimizing the extrusion power. In the past, 
several attempts have been made to obtain approximate so
lutions for the optimal shapes of straight or curved dies using 
the upper bound technique (Chen and Ling, 1968; Zeev Zi-
merman and Avitzur, 1970; Gunasekara and Hoshino, 1985; 
and Yang et al., 1985). These solutions have been derived by 
assuming kinematically admissible velocity fields which merely 
satisfy the incompressibility and velocity boundary conditions. 
A major drawback of the upper bound technique is that the 
velocity field does not satisfy stress equilibrium everywhere in 
the deformation zone. For this reason, the predicted optimal 
shape tends to be overly conservative (Aravamadhu Balaji, 
Sundararajan, and Lai, 1989). Another traditional approach 
used for the evaluation of optimal die shapes is the slip-line 
field technique (Sortais and Kobayashi, 1968; and Sowerby et 
al., 1968). However, this also provides an approximate solution 
only. 

An extensively used tool to model metal-forming processes 
is the finite element method (FEM). Zienkiewicz et al. (1974, 
1981) predicted the deformation field for extrusion by FEM, 
characterizing the material deformation as the flow of an in
compressible viscoplastic material. A similar analysis was pre
sented by Tayal and Natarajan (1981) for axisymmetric 
extrusion through conical dies. Altan and co-workers (1982) 
modeled the extrusion process using the rigid-viscoplastic finite 
element method. Although FEM provides an accurate descrip
tion of the stresses in the deformation zone, no methodology 
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appears to have been developed for utilizing the results so 
obtained for optimal die design. 

In the present work, an attempt has been made to develop 
a generalized methodology for optimal die design using the 
viscoplastic formulation coupled with the finite element tech
nique. The proposed method considers the plastic zone bound
aries and the die geometry as additional variables to be 
determined apart from the deformation field. The shapes of 
the die profile and the plastic boundaries are expressed in terms 
of chosen trial functions along with some undetermined coef
ficients. The total power is then minimized with respect to all 
the undetermined coefficients and the deformation field, thus 
predicting the optimal die shape within the trial function space. 
This solution methodology has been illustrated for the optimal 
design of a streamlined extrusion die. 

Viscoplastic Finite Element Formulation 
In metal-forming operations such as extrusion, large pro

gressive plastic deformation occurs. The elastic strains can 
therefore be neglected for the sake of simplicity in the analysis. 
Under such conditions, the deformation of a viscoplastic solid 
is analogous to the flow of an incompressible, non-Newtonian 
fluid (Zienkiewicz and Godbole, 1974). The constitutive law 
linking the stresses <jy and the current deformation rates e,y, 
can be expressed in the Eulerian frame as 

aij=ai'j+^akkSij, (1) 

where akk is the hydrostatic stress and 5 is the kronecker delta. 
The deviatoric stresses ojj are given by the viscous flow 

relation 
a'ij = 2fxe ij. (2) 

For a viscoplastic material (Zienkiewicz and Godbole, 1974; 
Altan et al., 1982; and Oh, 1982), the viscosity JX can be ex
pressed as 

37 
(3) 
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Fig. 1 Deforming zone in extrusion 

where the generalized yield stress a for a von Mises material 
is given by 

o= \-o!jo!j=f(e, e, T), 

and the generalized strain rate e is defined as 

(4) 

(5) 

The form of function / in equation (4) will depend upon the 
deformation characteristics exhibited by the material such as 
ideal plastic behavior, strain rate sensitivity, work-hardening, 
and temperature dependence of properties. 

Neglecting body and inertia forces, the stress equilibrium 
equation in the deformation zone 0 (Fig. 1) can be written 
using cartesian tensor notation, as 

% ; = 0. (6) 

From compatibility condition, the strain rate and velocity fields 
are related by 

'•U=\<YIJ+VJ,I). (7) 

The velocity field is required to satisfy the incompressibility 
condition 

Vu = 0. (8) 

Denoting the plastic boundaries and the die profile by sur
faces Si, S2, and S3 (Fig. 1) whose shapes are yet to be deter
mined, the typical boundary conditions for the problem can 
be written as follows: 

(i) On the die surface S3, the normal component of velocity 
vanishes and the frictional shear stress is prescribed. These 
conditions can be written as 

J^ , = 0 (9a) 

and 

njOijtj=Ts (the prescribed frictional shear stress), (9b) 

where n and t are the local unit vectors in the normal and 
tangential directions at the die surface. 

(ii) On the plastic boundaries Sj and S2, either the com
ponents of the velocity vector or the boundary traction may 
be specified. Thus, 

(Jijn^Fj (10a) 

and 

V;= U„ (Wb) 

where Fj and Ui are the prescribed tractions and velocity com
ponents and n is the local unit normal vector on the plastic 
boundaries. 

Equations (1 to 10) can be recast in an equivalent variational 
form for convenient treatment in the finite element solution 
approach. It can be shown that the functional <t> corresponding 
to these equations is given by 

0 = \a*E(e*)dv+ \Q*^\(k*kk)
2dv- \s'rAV,ds 

+ j ,-?= \AV,\Slds + J ,-j= \AV,\S2ds- j JjVfds, (11) 
J s jV3 ^s*2\Fi •'si 

where the work function E is of the form 

E(e)-. Ojjdki 

The sign of the frictional shear stress TS is opposite to that of 
the slip velocity AVS on the die surface S3. The tangential 
velocity discontinuities at S] and S2 are denoted by lAF,lSl 

and \AVi\S2, respectively. Fj is the prescribed tension at the 
exit end of the billet. 

The incompressibility constraint on deformation field has 
been satisfied by penalizing it with a large positive penalty 
parameter X in equation (11). The functional cj> defined above 
represents the total extrusion power which is the sum of various 
power contributions. The terms in equation (11) in their order 
of occurrence represent the following: 

(i) and (ii) the internal power required for deformation in 
fl. 

(iii) the power loss due to friction on S3. 
(iv) the shear losses due to tangential velocity discontinuities 

at Si and S2. 
(v) the power contribution when front tension is applied on 

S2 . 

In equation (11), the asterisk indicates that the concerned 
variables are restricted in their respective trial spaces. The 
restrictions placed on the deformation field are that it must 
satisfy the prescribed velocity conditions on Si, S2, and S3 and 
in addition, it must satisfy incompressibility everywhere in Q. 
The die profile S3 is constrained by inlet and exit cross-sections. 
Also, the slopes or curvatures of the profile may be prescribed 
at the end sections. In specific situations, the choice of S3 may 
further be limited to a selected function space. For instance, 
in an axisymmetric extrusion problem the trial space for S3 

can be chosen as the set of all surfaces of revolution generated 
by third-order polynomials. The restrictions which apply for 
the shapes of the plastic boundaries Si and S2 are that the 
normal velocity should be continuous across these surfaces 
while tangential velocity discontinuities may be permissible. 
As in the case of S3, the surfaces S( and S2 may also belong 
to some chosen function spaces. The shape of the deformation 
zone Q is thus restricted by the individual restrictions placed 
on Si, S2, and S3. 

In the upper bound approach the velocity field, which sat
isfies only incompressibility, is substituted in the expression 
for <j>. The shapes of Su S2, and S3 are then determined by 
minimizing 4> (Chen and Ling, 1968; and Yang et al., 1985). 
Since the velocity fields do not satisfy the stress balance at all 
locations in fi, the predicted optimal shapes are not accurate. 
On the other hand, viscoplastic models using FEM (Zien-
kiewicz and Godbole, 1974; and Tayal and Natarajan, 1981) 
have so far attempted to solve for the velocity field only for 
given shapes of Si, S2, and S3. In most of the FEM analyses, 
the deforming zone is defined as the region bounded by the 
die profile and straight plastic boundaries at the inlet and exit 
sections. Discretizing the deformation zone into many ele
ments, each having a prescribed number of nodes, the nodal 
velocities are calculated from the variational principle for 4>. 

In the present formulation the nodal velocities, as well as 
the solution domain 0 and its boundaries Si, S2, and S3, are 
considered to be variables which determine the value of $. 
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RAM 

BILLET 

CONTAINER-

Fig. 2 A sectional view of an extruded cylindrical bar 

Fig. 3 Geometry of a streamlined die 

With an appropriate choice of trial function spaces for Slt S2, 
and S3, the shapes of these surfaces are obtained by minimizing 
4>. If Vj are the velocity unknowns and a,-, ft, and 7,- are the 
undetermined coefficients which define the shapes of Slt S2, 
and S3 in their respective trial spaces, the functional 4> is min
imized by setting 

3£ 
dV, 

da, 

dp-

= 0for i = l , 2, 

= 0for i = l , 2, 

N, 

Mu 

Ofor / = 1 , 2, M2, 

Ofor Z=l, 2 M3, 

(12a) 

(126) 

(12c) 

(12rf) 

where Af is the total number of velocity vector unknowns and 
Mi, M2, M3 are, respectively, the number of undetermined 
coefficients in the definitions of Si, S2, and S3. Thus, the 
analysis simultaneously performs domain optimization for the 
plastic region along with the calculation of the deformation 
field solution. 

Streamlined Die Design 
In the present section, the method proposed above is illus

trated for the optimal design of a derivative of sigmoidal die 
known as the streamlined die (Devenpeck and Richmond, 1965). 
The streamlined die possesses advantages such as uniform and 
homogeneous deformation characteristics, absence of an in
tense shear band, and low energy consumption (Sortais and 
Kobayashi, 1968; and Yang et al., 1985). Several researchers 
(Chang and Choi, 1971; Gunasekara and Hoshino, 1985; Yang 
et al., 1985) have obtained approximate upper-bound solutions 
for extrusion through streamlined dies. However, an accurate 
FEM-based determination of the optimal streamlined die shape 
as presented here has not so far been attempted. 

The axisymmetric extrusion of an ideal plastic material for 
reducing the diameter of a cylindrical bar (Fig. 2) is considered. 
The extrusion process is assumed to take place at low ram 
speeds so that the process is free of rate effects. A constant 
shear friction condition is considered at the die-billet interface. 

Since a streamlined die does not produce shear bands at the 
inlet and exit sections, it is reasonable to relax the constraints 
placed by the plastic boundaries on metal flow. Therefore, a 

Fig. 4 Boundary conditions for extrusion 

deformation zone bounded by straight rigid plastic boundaries 
at die entry and exit can be assumed for analytical convenience. 
The upper-bound solutions obtained by earlier researchers 
(Chang and Choi, 1971; and Yang et al., 1985) using straight 
and arbitrarily shaped plastic boundaries indicate that there is 
little effect of the shapes of S\ and S2 on the overall solution. 
An additional advantage of using straight plastic boundaries 
is that this lays more emphasis on the optimization of the die 
shape. 

For a streamlined die profile, the slopes at the inlet and exit 
sections are prescribed as zero, in addition to the size reduction 
requirements. These geometrical constraints can be met by a 
third-order polynomial of the form 

R(z)=a0 + aiz + a2z
2 + a3z\ (13) 

Equation (13) defines the radius of a cross-section in terms of 
the axial distance, on surface S3. Applying the conditions (Fig. 
3) 

'R = Ra at z = 0> 

R = Rb at z = L 

dR 

dz 

dR 

,dz~' 

= 0 a t z = 0 
(14a-d) 

= 0 at z = L 

it can be shown that the final form of equation (13) simplifies 
as 

where 

R(z)=^-^{2j-3zlL)+Ra, 

Rb = Rasl\-An 

(15a) 

(156) 

with Ar denoting the area reduction ratio. 
The streamlined die profile defined by equation (15a) rep

resents a one-parameter family of surfaces for different values 
of the projected die length L. In the trial space of third-order 
polynomial die shapes, the optimum profile is found by min
imizing <j) with respect to L, by setting 

fL = ° 
and 

d2<t> 
dL2 >0. 

(16«) 

(166) 

For calculating the velocity field, the following boundary 
conditions (Fig. 4) are applied: 

(a) At inlet the undeformed billet material approaches the 
die with a uniform velocity equal to that of the ram. Thus, 

K=V0 (17a) 

and 

Kr = 0 (176) 

a t z = 0. 
The boundary condition (176) is a consequence of the zero 
slope of streamlined die at the entry section. 

(b) On the die surface S3, the conditions are: 
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(i) The normal component of velocity vanishes at the die 
surface due to impenetrability. This leads to 

Vini = 0a.tr = R(z). (18a) 

(ii) A constant shear stress is assumed as the frictional 
condition at the die-billet interface (Zeev Zimerman 
and Avitzur, 1970). Thus, 

V3 
(18ft) 

where m is the friction factor and oy the yield stress 
of the material. 

(c) At the exit section of the die: 
(i) Vr = 0 (due to zero slope) at z = L. (19a) 

(ii) In the absence of front tension, the exit condition for 
extrusion can be modeled as 

oz = 0 at z = L. (19Z>) 

(d) Along the axis, there is no motion normal to the axis 
and shear stress is zero due to axisymmetry. These conditions 
can be expressed mathematically as 

K = 0 

and 

T = 0 

(20a) 

(206) 

at r = 0. 
Since the entry and exit of the billet at the end sections are 
smooth, the shear losses can be taken to be zero. The simplified 
expression for </> for a streamlined die is therefore of the form 

E(k*)*2*rdrdz + u« 'efaflTtrdrdz 

Fig. 5 A 25-element mesh with 8-noded isoparametric elements 

where Nm are the quadratic shape functions for the eight-noded 
elements (Reddy, 1985) and Vzm and Vrm are the nodal velocity 
values. After substituting the compatibility relations for the 
strain rate components in equation (21), the minimization of 
</> with respect to the nodal velocity unknowns yields, 

[^\AVsl2,R{z)Jl + 
dR(z) 

dz 
dz. (21) \atiNmik(Vkj+Viik)2irrdrdz 

Expressing the total extrusion power </> as a function of velocity 
field and die length L, </> can be minimized with respect to 
these variables. The average extrusion pressure P can then be 
determined as 

]a -1 
</> 

rJRiV' 
(22) 

FEM Solution Procedure 
The application of FEM to plastic deformation in metal 

forming processes has been described earlier by Zienkiewicz 
and co-workers (1974) and Tayal and Natarajan (1981). A 
similar procedure has been adopted in the present work for 
the velocity field solution with modifications incorporated into 
numerical scheme for evaluating the optimum die geometry. 
Eight-noded isoparametric elements have been employed whose 
boundaries, in general, are quadratic curves (Fig. 5). This gives 
quite an accurate representation of the curved die boundary. 
Starting with an initial guess for the die profile by choosing a 
value for L, an automatic mesh generation scheme is used to 
generate the FEM mesh of quadratic elements in the defor
mation zone. The value of L is updated iteratively by applying 
the minimum </> criterion in equation (21). 

The axial and radial velocities in each element are expressed 
in terms of their nodal values using the interpolation expres
sions: 

+ )aW„.,( Vkjk)2irrdrdz = ^N^^rds, (25) 

where i and k are the directional subscripts, m is the subscript 
for the nodal number and IT is the prescribed boundary traction 
and s is the arc length measured along S3. 

The value of the penalty parameter X is obtained by trial 
and error, after varying it over a wide range of values until 
the velocity field solution becomes invariant with X. An ap
proximate value of X can be found by taking X( V .V)« 0y and 
estimating the smallest value of (V.V) from the word length 
of the computer used. In the present work, X of the order of 
106 was found to be suitable. Equation (25) can be written in 
the matrix form (after incorporating the boundary conditions) 

(26) [K(ix)}\ \ = [F), 

and 
8 

Vr= %N„Vm, 

(23) 

(24) 

where K is the stiffness matrix which depends on the nonlinear 

viscosity function, J f"j is the vector of the nodal velocity 

components and [F] is the vector consisting of known velocity 
values or the contributions from known surface tractions. At 
nodes where the normal velocity is zero, the matrix K has been 
modified by substituting equation (18a) in place of the nodal 
equation for the radial direction. 

The frontal solution technique has been used to solve the 
matrix equation (26) in order to reduce the core memory re
quirements. The stiffness matrix K is highly nonlinear, and 
hence an iterative solution procedure has been employed. For 
the first iteration, an initial guess for velocity field from the 
upper-bound solution (Aravamadhu Balaji, Sundararajan, and 
Lai, 1989) has been provided for evaluating fi. During the 
subsequent iterations, the value of /J. is updated by using the 
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previous iteration values of the velocity solution. In the course 
of numerical computations, the value of fi tends to become 
very large near the end sections of the die as T—0 at these 
locations. This difficulty is overcome by prescribing a suitable 
cutoff for T. To ensure stability, the velocity values are un-
derrelaxed between iterations. The elemental integrals have 
been evaluated using 3x3 Gaussian quadrature, except for the 
incompressibility constraint for which a 2 x 2 Gaussian quad
rature has been used. The frictional boundary integral at the 
die surface is computed by 3-point Gaussian quadrature con
sidering the element surface as a one-dimensional isopara
metric element (Oh, 1982). The iterations have been continued 

vr = o v r =o 

Fig. 8 Radial velocity distribution in the deforming zone 

(a) 

(b) 

Fig. 9 Deformation patterns (a) m = 0.1, A, = 0.5 and (b) m = 0.5, ,4, = 0.5 

until the nodal velocity values converged within 0.1 percent 
between two successive iterations. 

After converging the velocity unknowns for a given die shape, 
the optimal value of L has been obtained by the Newton-
Raphson iterative procedure. It is possible to extend the present 
scheme to problems where the deformation zone Q is bounded 
by multiparameter family of surfaces. Assuming initial guess 
shapes for Si, S2, and S3 the velocity field solution can be 
obtained using a conventional FEM procedure and then the 
shape coefficients can be optimized using the Newton-Raphson 
procedure. 

Results and Discussions 
The die design procedure described above has been imple

mented for the evaluation of the optimum geometry of an 
axisymmetric streamlined die with a third-order polynomial 
profile. The billet material chosen for the present study is a 
soft low carbon steel with a typical composition of 0.09 percent 
C, 0.4 percent Mn, 0.015 percent P and 0.038 percent S whose 
yield stress value is equal to 21.1 kgf/mm2 (Miner and Seastone, 
1958). The material has been assumed to exhibit ideal plastic 
behavior obeying von Mises yield criterion. The following pro
cess parameters have been considered to be fixed for all the 
calculations made in the present study: 

billet diameter - 25 mm 
velocity of the ram-0.1 mm/minute. 

In order to estimate the accuracy of the predicted FEM 
results, the deformation field has been obtained using two 
different FEM meshes for a fixed value of the die length and 
die friction factor. A coarse 5x5 element mesh and a fine 
10 x 10 element mesh have been employed and the sensitivity 
of the FEM results to the change in the element size has been 
shown in Fig. 6. The results of both the meshes compare very 
closely, implying that no further mesh refinement is necessary. 
Hence, for all the results presented here, calculations have 
been performed using a 10 x 10 element mesh. 

In Fig. 7 (a to d), the axial velocity profiles in the defor
mation zone have been shown for different friction and re
duction parameters. At every cross-section the axial velocity 
decreases in the radial direction due to the frictional retardation 
at the die surface. In the axial direction, however, die compres-
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sion leads to an increase in the velocity. The velocity profile 
tends to be more uniform at low friction factor because of less 
retardation at the die surface. The nonuniformity in the ve
locity profile increases with reduction ratio. Higher reduction 
causes the radial velocity to increase which in turn leads to the 
lowering of the axial velocity on account of material incom-
pressibility. Such a nonuniform velocity profile is expected to 
produce greater grid distortion. 

The radial velocity profile variation in the axial direction 
(Fig. 8) corroborates the inference drawn in the discussion of 
Fig. 7 that the radial velocity increases with die compression. 
Indeed the maximum valiies are seen to occur in the location 
of large die curvature. A slight decrease in the value of radial 
velocity occurs at the die surface as compared to the interior, 
due to frictional retardation. 
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Fig. 10 Variation of extrusion pressure with reduction ratio (a) m = 0.1, 
(b) m = 0.2, (c) m = 0.3, (d) m = 0.4, and (e) m = 0.5 

Grid-deformation patterns for two different friction con
ditions are presented in Fig. 9. Distortion of the grid is larger 
at higher friction factor which is in agreement with the ex
perimental results of Sortais and Kobayashi (1968). However, 
grid distortions predicted in the present study are not so severe 
as those obtained earlier (Sortais and Kobayashi, 1968; and 
Yang et al., 1985) because the billet material considered here 
is comparatively a very soft and nonwork-hardening material. 

The extrusion pressure increases with reduction and friction 
factors, as presented in Fig. 10. This trend can be explained 
by equations (21) and (22) as a consequence of the increase in 
internal power of deformation and frictional dissipation at the 
die surface. 

The plots of extrusion pressure variation with die length 
shown in Fig. 11 (a to d) indicate that a minimum value of 
extrusion pressure is reached at some die length. This value 
may be defined as the optimal die length. The optimality arises 
as a consequence of the opposing trends that the internal power 
of deformation decreases with the die length while the frictional 
power increases. The optimal die length reduces at higher fric
tion factors in order to offset the tendency for increase in the 
frictional power with m. For a similar reason, the optimal 
length increases with reduction ratio by offsetting the increase 
in internal power of deformation. The value of the extrusion 
power, however, increases with both friction and reduction 
parameters. These trends are in agreement with those observed 
by Gunasekara and Hoshino (1985) and Yang, Han, and Lee 
(1985). However, the predicted optimal length values of the 
present study are smaller since a very soft nonwork-hardening 
billet material has been considered. 

The shear stress arz, the axial stress azz, and the die pressure 
(normal stress exerted by the die) at the die-billet interface have 
been plotted against axial length in Fig. 12 (a, b, and c) for 
the optimal die geometry corresponding to m = 0.5 and Ar = 0.1. 
The shear stress is negative and increases in magnitude with z 
near the entry section. This implies that the retardation effect 
increases progressively and the die compression has not yet 
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Fig. 11 Variation of extrusion pressure with die length (a) m = 0.1, 
A.= 0.1, (ft) m = 0.1, A=0 .5 , (c) m = 0.5, A r=0.1 and (d) m = 0.5, A.= 0.5 
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Fig. 12 Stress distribution on the die surface (a) shear stress, (b) axial 
stress, and (c) die pressure 

begun. However, beyond a certain value of z, the compression 
effects come into picture and increase the value of the billet 
slip velocity at the die surface. This, in turn, decreases the 
magnitude of the shear stress. Around the mid-section where 
the die curvature is high, the shear stress becomes positive due 
to further increase in slip velocity. Near the die-exit as the die 
profile becomes flat and the compression effects vanish, the 
shear stress variation with z becomes negligible. Similar trends 
were observed by Lee Mallet and Yang (1977). 

The axial and die pressure variations indicate a zone of tensile 
stress near the die-entry. Lee et al. (1977) also observed a similar 
zone in their study and suggested that this is because of the 
separation effects occurring at the die-billet interface. The billet 
contact with the die is reestablished at the zone where the tensile 
tractions are reduced to zero. The axial stress and die pressure 
clearly manifest the trend of increasing compression up to the 

length where die curvature is maximum and then a decrease 
in compression towards the die exit. The change in the sign of 
shear stress from negative to positive values appears to occur 
around the location of maximum compressive stresses. 

In order to critically examine the accuracy of the FEM results 
the quadratic stress invariant a was computed at all the nodes 
in the deformation zone, and was found to be equal to the 
material yield stress to a high degree of precision. 

Conclusions 
The viscoplastic deformation analysis by FEM has been suc

cessfully applied to predict the deformation field, die geometry, 
and plastic boundaries during metal extrusion. The predicted 
values and trends are in reasonable agreement with the ex
perimental observations and are in conformity with the results 
published earlier. 

The methodology proposed can be extended to analyze other 
metal-working operations where the domain of plastic defor
mation is to be predicted. 

References 
Altan, T., Gunasekara, J. S., Gegel, H. L., Malas, J. C , and Morgan, J. 

T., 1982, "Computer Aided Process Modelling of Hot Forging and Extrusion 
of Aluminum Alloys," Annals ofCIRP, Vol. 31, pp. 131-135. 

Aravamadhu Balaji, P., Sundararajan, T., and Lai, G. K., 1989, "Optimal 
Design of Curved Dies for Extrusion of Strain Hardening Materials," submitted 
for publication. 

Chang, K. T., and Choi, J. C , 1971, "Upper Bound Solutions to Extrusion 
Problems through Curved Dies,'' Proceedings of the 12th Midwestern Mechanics 
Conference, University of Norte Dame, Ind., pp. 383-396. 

Chen, C. T., and Ling, F. E., 1968, "Upper Bound Solutions to Axi-symmetric 
Extrusion Problems," International Journal of Mechanical Sciences, Vol. 10, 
pp. 863-879. 

Devenpeck, M. L. and Richmond, O., 1965, "Strip-Drawing Experiments 
with a Sigmoidal Die Profile," ASME Journal of Engineering for Industry, Vol. 
87, pp. 425-428. 

Miner, D. I., and Seastone, J. B., 1958, Handbook of Engineering Materials, 
John Wiley and Sons, New York, pp. 3-146. 

Gunasekara, J. S., and Hoshino, S., 1985, "Analysis of Extrusion of Po
lygonal Sections through Streamlined Dies," ASME Journal of Engineering for 
Industry, Vol. 107, pp. 229-233. 

Lee, E. H., Mallet, R. L., and Yang, W. H., 1977, "Stress and Deformation 
Analysis of the Metal Extrusion Process," Computer Methods in Applied Me
chanics and Engineering, pp. 339-353. 

Oh, S. I., 1982, "Finite Element Analysis of Metal Forming Processes with 
Arbitrarily Shaped Dies," International Journal of Mechanical Sciences, Vol. 
24, pp. 479-493. 

Reddy, J. N., 1985, An Introduction to the Finite Element Method, McGraw-
Hill, New York, pp. 242-254. 

Sortais, H. C , and Kobayashi, S., 1968, "An Optimum Die Profile for 
Axisymmetric Extrusion," International Journal of Machine Tool Design and 
Research, Vol. 8, pp. 61-72. 

Sowerby, R., Johnson, W., and Samantha, S. K., 1968, "Plane Strain Drawing 
and Extrusion of a Rigid-Perfectly Plastic Material through Concave Dies," 
International Journal of Mechanical Sciences, Vol. 10, pp. 231-238. 

Tayal, A. K., and Natarajan, R., 1981, "Extrusion of Rate-Sensitive Materials 
using a Viscoplastic Constitutive Equation and the Finite Element Method," 
International Journal of Mechanical Sciences, Vol. 23, pp. 89-98. 

Yang, D. Y., Han, C. H., and Lee, B. C , 1985, "The Use of Generalized 
Deformation Boundaries for the Analysis of Axisymmetric Extrusion through 
Curved Dies," International Journal of Mechanical Sciences, Vol. 27, pp. 653-
663. 

Zimerman, Z., and Avitzur, B., 1970, "Metal Flow through Conical Con
verging Dies—A Lower Upper Bound Approach using Generalized Boundaries 
of the Plastic Zone," ASME Journal of Engineering for Industry, Vol. 92, pp. 
119-129. 

Zienkiewicz, O. C , and Godbole, P. N., 1974, "Flow of Plastic and Visco 
Plastic Solids with Special Reference to Extrusion and Forming Processes," 
International Journal for Numerical Methods in Engineering, Vol. 8, pp. 3-16. 

Zienkiewicz, O. C , Onate, E., and Heinrich, I. C , 1981, "A General For
mulation for Coupled Thermal Flow of Metals using Finite Elements," Inter
national Journal for Numerical Methods in Engineering, Vol. 17, pp. 1497-
1514. 

650 / Vol. 58, SEPTEMBER 1991 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



J. P. Bardet 
Civil Engineering Department, 

University of Southern California, 
Los Angeles, CA 90089-0242 

Analytical Solutions for the Plane-
Strain Bifurcation of Compressible 
Solids 
Analytical solutions are presented for the diffuse and localized bifurcations of 
compressible solids subjected to plane-strain loadings. The solutions generalize the 
works for incompressible solids of Biot (1965) and Hill and Hutchinson (1975). 
They are verified by comparing them to results previously established for incom
pressible solids and elastoplastic Mohr-Coulomb materials. 

1 Introduction 
Biot (1965) and Hill and Hutchinson (1975) analyzed the 

bifurcation of incompressible solids in plane-strain tension. 
Young (1976) applied their method to plane-strain compression 
and Needleman (1979) adapted it for elastoplastic solids with 
nonassociative flow rule. Vardoulakis (1981) introduced the 
effect of compressibility by treating it as an internal constraint 
for a particular elastoplastic Mohr-Coulomb materials. Chau 
and Rudnicki (1989) generalized the analysis of Needleman 
and Vardoulakis by considering a class of compressible solids 
with five parameters. Bazant (1971) reviewed several incre
mental formulations for stability and compared their results 
in the case of buckling of free surfaces and columns. 

The bifurcation analyses of solid mechanics have migrated 
to the field of finite element methods in order to be generalized 
to realistic but complicated boundary value problems (Bardet, 
1990; deBorst, 1987; Needleman and Tvergaard, 1984). How
ever, the rational and methodic development of numerical 
techniques for bifurcation is still impeded by the scarcity of 
the analytical solutions that are available to calibrate numerical 
results. The analysis of Chau and Rudnicki (1989) is restrained 
to a class of compressible solids, the incremental response of 
which is identified by five parameters. 

This paper presents general analytical solutions that are use
ful to assess the role of material compressibility on plane-strain 
bifurcations and to calibrate the finite element analysis of 
bifurcations within compressible solids. A similar approach 
was adopted by Bardet (1990) to support numerical results on 
surface instability. 

Following the Introduction, the second section reviews the 
concepts of continuum mechanics relevant to material insta
bility, which include stress rates and constitutive models. The 
third section poses and analytically solves the plane-strain 
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problem of diffuse bifurcations and relates it to localized bi
furcations. The fourth section attempts to validate the ana
lytical solutions by comparing them with existing results on 
incompressible solids and elastoplastic Mohr-Coulomb ma
terials. 

2 Definition of Stress Rates and Constitutive Models 
2.1 Stress Tensors and Rates. By definition, the contact 

force vector t acting on the deformed surface, with area dS, 
and unit normal vector n, is related to the Cauchy stress tensor 
a and the nominal (Piola-Kirchhoff) stress tensor S through: 

t = n-<rdS, = N-'EdS0 (1) 

where N and dS0 are the unit normal vector and area, respec
tively, of the undeformed surface. Nominal and Cauchy stresses 
are related through: 

E = det(F)F_1T (2) 
where F _ 1 is the inverse transformation of the deformation 
gradient F. By definition, the Kirchhoff stress tensor T is related 
to the Cauchy stress tensor a: 

T = det(F)a. (3) 
Hereafter, the derivative with respect to time are designated 
by the superscript " ° , " and the partial differentiation with 
respect to the coordinate Xj, are denoted by "J." The rate of 
t is: 

t=N-tdS0 (4) 
and the rate of E is: 

£ = det(F)F ' ' • (a - L • a + a trace(L)) (5) 
where L is the gradient of the velocity v with respect to the 
deformed position x: 

dv, 
(6) 

2.2 Rate-Type Constitutive Models. In the present anal
ysis, the material behavior is modeled with rate-type equations 
(Truesdell and Noll, 1965) 
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tu - CijkiDki (7) 

where T is the Jaumann rate of Kirchhoff stress T, and D the 
rate of deformation. In general, C^/is homogeneous of degree 
zero in D and depends on the states of stress and strain. The 
Jaumann rate of Kirchhoff stress is: 

T = T-W-T+T-W'. (8) 

The rate of deformation D and spin tensor W are 

Du-^frv + Lj,) Wu^&q-Lj,). (9) 

2.3 Relations Between Material and Objective Stress 
Rates. The Jaumann rate of Cauchy stress a is defined as 
T by using Eq. (8). It is related to f through 

f = det(F)(&+roM). (10) 

If the present configuration at time / is chosen as reference 
and the configuration at a later time t + dt as the deformed 
configuration, then the deformation gradient is approximately 
equal to the unity transformation 1: 

F = F~1 = 1 and det (F)«l . (11) 

In this condition, the Piola-Kirchhoff, Cauchy, and Kirchhoff 
stress tensors are identical: 

2 = a=T, (12) 

and their rates are related through 

T = b+oDkk (13) 

S = f-ff-W-D-ff. (14) 

By using equation (14), equation (7) becomes: 
o _ 

£y = (Qjkl + Qjkl )Vkj, (15) 

where the additional terms Cijki are only stress dependent 

Qjkl ~ 2 ("ifijk - Ojfiik ~ Ojk&il - Oik5ji). 

8jj is the Kroneker symbol: 

' l if i=j 
Oif i*j 

U= 1,2,3. 

(16) 

(17) 

The choice of the Jaumann rate of Kirchhoff stress does not 
affect the generality of the present analysis. Equation (7) is 
simply related to the constitutive equations that are formulated 
in terms of other types of objective stress rates. For instance, 
when the constitutive equation is formulated in terms of the 
Jaumann rate of Cauchy stress 

a,j=C1jklDkl, (18) 

the constitutive matrix of equation (7) is: 

Qjkl =CfJki+ OjjOki. (19) 

3 Analytical Solutions for Plane-Strain Bifurcation 

3.1 Formulation of Problem for Diffuse Bifurcations. In 
the case of plain-strain loadings (Hill, 1959), the stress-rate 
equilibrium equations are: 

2-ii,i + 22i,2 — 0 
o o 

£"12,1 + 222,2 = 0. 
(20) 

Equation (20) is solved for the boundary value problem of 
Fig. 1. On the top and bottom edges where x2 = ±H, the 
velocity is prescribed in the ^-direction without causing shear 
traction. A constant stress au is applied on the lateral surfaces 
at Xi = ±L. The boundary conditions are: 

E21 = 0 
v2 = 0 

for x2= ±Hand x^[-L,+L\(Nx = 0 and JV2= ± 1) (21) 

En = 0 
£,2=0 

for Xi=±L and x2e[ - H , + H](Ni = ± 1 and N2 = 0). (22) 

Assuming that equation (7) retains an orthotropic symmetry 
at any stage.of straining up to bifurcation, it is appropriate 
to introduce the following coefficients: 

d\ = Cnn — ffn 

d2 = C2222 — (722 

di — C\2\2— . an 

d$ = C\2\2 — - o\\ 

, _ 1 
" 5 = Cl212 + Z Cll 

1 
+ 2 f f 2 2 

1 

1 
—2o22 

d6=C12\2 + -z ffn + 2 ff22 

d-j = C n 2 2 

dg = C22n-

Equation (20) becomes: 

(divlin + d3vl,22+(d4 + d1)v2A2 = 0 
[d5v2iu+d2v2}22+ (d4 + d8)vul2 = 0 

while equations (21) and (22) become: 

(23) 

(24) 

£21 = ^ 1 , 2 + ^4^2,1 = 0 for x2= ± i / a n d x^[-L,+L] (25) 
o 

^u = divhi + d1v2a = 0 
2l2=C?4^1,2 + d5V2,l=Q 

for Xi= ±L and x26[-H,+H]. 

(26) 

The trivial solution of the boundary value problem posed 
in equations (24), (25), and (26) is a homogeneous stress and 
displacement field. Following the method of Hill and Hutch
inson (1975), the existence of a bifurcated velocity field is 
investigated. This velocity field is either jc2-symmetric: 

> • 

+L 

Z u = o 

E 1 2 = o 

Fig. 1 Geometry and boundary conditions of block subjected to plane-
strain compression 
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U>l(Xl,X2)=Kl(X1)COS0X2 

ly2(xi,X2) = V2(xi)sinl3x2 

or x2-antisymmetric: 
(vx(xux2) = V{(xl)smPx2 

\v2(xi,x2) = V2(Xi)cosPx2' 

(27) 

(28) 

The coefficient /? is selected to satisfy equation (21) for x2 

= ±H and xi € [-L, + L]: 

fiH=m - , m = l,2,3,etc. (29) 

The velocity field is x2-symmetric for even values of m and 
x2-antisymmetric for odd values of m. By substituting equation 
(27) into equation (24), the following system of ordinary dif
ferential equations is obtained: 

d2Vx dV2 
^ - ^ K 1 + ( * + * ) ^ = 0 

d2V2 

dx\ ' 
d2(3

2V2-(d4 + ds)p 
dVj 

dx\ 

(30) 

= 0. 

The solutions of equation (30) must obey the following 
boundary conditions, which are obtained by substituting equa
tion (27) into equation (26): 

\d1~(±L)+d1(3V2(±L)=0 
dxi 

-d4(3V1{±L)+d5^(±L)=0. 
dx\ 

(31) 

(32) 

Equations (30) and (31) apply to x2-symmetric solutions. For 
x2-antisymmetric solutions, /3 is replaced by -/3 in equations 
(30) and (31). The velocity solutions have the following type: 

'vx{x\)=Aeiax^ 
V2(x1)=Beicai 

where 

1 = ^/^1. (33) 

After introducing the variable Z = a//3, equation (30) be
comes: 

(dxZ
 2-di)A + (dt + d1)iZB = G 

- (d4 + ds)iZA+ (d5Z
2-d2)B = 0. 

(34) 

In order to obtain nontrivial solutions for A and B, the 
determinant of equation (34) is equal to zero, which gives the 
following characteristic equation: 

aZ4 + bZ2 + c = 0 (35) 

where the coefficients a, b, and c are: 

[ a = dids 

b = d{d2 + d3d5 -(d4 + d7)(d4 + ds) (36) 

c = d2d3. 
Depending on the values of a, b, and c, equation (35) has 

four different types of solution in Z: 
(EI) elliptic imaginary when it has four imaginary roots, 
(EC) elliptic complex when it has four complex roots, 
(P) parabolic when it has two real and two purely ima

ginary roots, and 
(H) hyperbolic when it has four real roots. 
Most of the mathematical derivations are omitted hereafter. 

The following section presents each type of solution and divides 
them into xrsymmetric and Xi-antisymmetric solutions as in 
Hill and Hutchinson (1975). 

3.2 Elliptic Imaginary Solutions. Elliptic imaginary so
lutions are found when 

& = b2-4ac>0, < 0 a n d - > 0 . 
a a 

After defining the following real quantities 

Zi= t-^H Z2= lb+^ 

(37) 

(38) 
2a \ 2a 

the general form of the X]-symmetric bifurcating velocity field 
is 

K, (xO =^isinh(/3Z1Xi) +fiisinh(/3Z2Xi) 
V2(xi) =A2cosh((3Zlxl) + fl2cosh(/3Z2Xi). 

(39) 

By substituting the velocity field of equation (39) into equa
tion (30) and enforcing the boundary conditions of equation 
(31), it can be shown that the velocity field of equation (39) 
emerges from the homogeneous velocity field when the fol
lowing bifurcation condition is met 

— p £ Zi tanhO^L) - ^ - f = £ Z2tanh(0Z2Z,) = 0 (40) 
gz i - n gz2-n 

where the coefficients / , g, and h are 

(f=did5-dA(dA + d1) 
\g=-dld4 (41) 

The j^-antisymmetric solution has the following general 
form: 

Vi (x,) =^iCosh((3Z!x1) + ^coshGSZz*,) 
K2(x,) =^2sinh(/3Z1x1) +52sinh(/3Z2A:1). 

(42) 

By using the same approach as for symmetric modes, the 
condition for the emergence of an Xi-antisymmetric velocity 
field is 

aZJ-f aZl-f, 
2 , ZiC0tanh(/3ZiJL) — - f - r Z2cotanh(j3Z2Z,) =0 . 

gZ\-n gZ2—h 

(43) 

3.3 Elliptic Complex Solutions. Elliptic complex solu
tions emerge when 

5<0. (44) 

By defining the following real quantities p and q such as: 

P = 3 
•ft+Vs 

2a 
i=m 

-b + y/8] 

2a 
(45) 

(46) 

the general form of the Xj-symmetric velocity field is: 

V\ =y4isinh(|8/7x1)cos(i39Xi) +51cosh(/3/?x1)sin(/3^x1) 

V2 = A2cosh(Ppxl)cos(l3qxl) + 52sinh(/3pxi) sin08#Xi). 

It can be shown that the X\ -symmetric velocity field emerges 
when: 

[qsmh(2$pH) + psm(2fiqH) ]{ag(p2 + q2)2 

- lah (p2 -q2)+hf) + [qsmh(2fipH) 

-psm(2pqH)](p2 + q2)(gf-ah)=0 (47) 

where the coefficients/, g, and h are given in equation (41). 
The X\ -antisymmetric velocity field 

Vi =Alcosh((3pxl)cos(Pqxi)+Blsinh(@pxl)sm(flqx1) 
V2 = ̂ 42sinh(/3/7Xi )cos(/3^Xi) + ^coshdSpx! )sm((lqxl) 

emerges when 

[qsinhQppH) -psmQPqH)] (ag(p2 + q2)2-2ah(p2-q2) 

+ hf) + [qsmh(2fipH) +psm(2(3qH)] (p2 + q2) (gf- ah)=0. 

(49) 

(48) 
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3.4 Parabolic Solutions. Parabolic solutions are found 
when 

- < 0 . 
a 

By defining the following real quantities 

Z\= - min 

(50) 

-b-y/Z -b + ^fd 

la la 

-b-sTh -b + -sf8 

la la 

the general form of the j^-symmetric velocity field is 

> i =Alsinh((3ZiXl) +Blsin(l3Z2x,) 
V2 = ̂ 42cosh(^Z1x1) + B2cos(PZ2X[ ). 

It emerges when 

(51) 

(52) 

aZ\-f aZl+f Z2tan((3Z2L)=0. (53) 2 • ̂ tanhOSZ,!,) + , 
gZi-h gZ2 + h 

The Xi-antisymmetric velocity field 

Vi =J41cosh(/3Z1^i) + Blcos(PZ2xl) 
V2 = A2smh^ZiXi) + B2sin()3Z2Xi) 

emerges when 

aZl ~f ZlCotanh(/3ZiZ,) + gf2 , Z2cotan(/3Z2L) =0 . 
gzi-h gzi+h 

3.5 Hyperbolic Solutions. Hyperbolic solutions are 
when 

<5>0, 
b c 
- > 0 a n d - > 0 . 
a a 

By defining the solutions as 

Z,= 
•b—f& 

z2 = 
-b + sfb 

la A/ la 

the general form of the Xi-symmetric velocity field is 

>i=,4isin(|8Zi*i) +Blsin(fiZ2x1) 
V2=ylzcos^z^!) + 52COS(|3Z2A:1 )' 

It emerges when 

^ ^ r ZM^Z^L)-^^- Z2t<m((3Z2L)=0. 
gZi + h gZ2 + h 

The *!-antisymmetric velocity field 

'v^AiCOstfZiXi) +Blcos(BZ2x1) 
V2=A2sin(BZlxl) +B2sm(pZlXl) 

emerges when 

aZl+f Z!COtan(/3ZiZ,) - g f 2
2 + f Z2cotan(/3Z2Z,) =0 . gZf + A gZ| + /i 

(54) 

(55) 

found 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

3.6 Analytical Solution for Localized Bifurcation. 
According to Rice (1976), strain may bifurcate in localized 
modes instead of diffuse modes. Strain localizes when a ve
locity field v different from the homogeneous fields emerges. 
in a planar region, which is referred to as shear band. The 
difference between the gradients of the velocity field inside 
and outside the shear band is 

Avu=g^j (62) 

where «,• represents the normal to the shear band and g,- depends 
only on the distance across the band and vanishes outside the 
band. Instead of being enforced uniformly through partial 

differential equations (equation (26)), the equilibrium of stress 
rate is enforced only in the direction normal to the shear band 

rijAiji = 0 (63) 

where AE,-,- is the difference between the nominal stress rate 
inside and outside the band. By substituting the constitutive 
equation (15) into (63), the following system of two linear 
equations with two unknowns g\ and g2 is obtained in the case 
of plane-strain deformation: 

= 0 gi (din2i + d3n2) + g2(d4 + c/7)/!i«2 = 

gi(d4 + ds)nin2 + g2(d5nj + d2nl) =0. 
(64) 

Equation (64) has nontrivial solutions when its determinant 
is equal to zero, i.e., when the variable Z, 

Z = 
«2 

« l ' 
(65) 

obeys the characteristic equation for diffuse bifurcation, equa
tion (35). Therefore, (35) also gives the inclination of the shear 
band. However, since localized modes are not required to obey 
boundary conditions they systematically appear in the para
bolic and hyperbolic regimes. 

4 Applications 
The general solutions derived in the previous sections are 

verified by comparing them to existing results for particular 
materials. 

4.1 Nearly Incompressible Solids. The present solutions 
generalize the results of Biot (1965), Hill and Hutchinson (1975), 
and Young (1976) by defining the following linearized solids: 

Ciin = 2/Ji + X 

C2222 = 2/i2 + X 

Cl212=2/l 

Cll22 = C22H = X 

(66) 

where m and /t2 are the shear moduli in the X\ and x2-directions, 
respectively, /x is the shear modulus, and X is Lame's modulus. 
Shear modulus and Lame's modulus are related through Pois-
son's ratio v 

X = 
2n*v 
\-lv 

[i* is the average shear modulus 

(67) 

(68) 

The constitutive equation of Hill and Hutchinson (1975), 

T\\-hi = 2lx*{Dn-D22) 

Ti2 = 2/iD12 

Al+Z>22 = 0, (69) 

may be approximately described by equation (66) by using 
nearly incompressible materials, e.g., v = 0.4999. Figure 2 
represents the bifurcation regimes of nearly incompressible 
materials as a function of the dimensionless stress a22//i* and 
moduli ratio /t//i* when the lateral stress <JU is equal to zero. 
As in Hill and Hutchinson (1975), Fig. 2 shows that the bi
furcation domains coincide for compressive and tensile stress. 
Figure 3 represents the buckling stress a22/p.* versus the wave
length of the diffuse mode of bifurcation m(irL)/(lH) in the 
EC, H, and P domains for the particular case /i//t* = 5. 
For slender specimens (L/H < 1) subjected to compression, 
the bifurcation stress of the first antisymmetric mode coincides 
with the buckling stress of a Euler column that is axially loaded 
while its extremities are prevented from rotating (Timoshenko 
and Gere, 1961): 
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Fig. 2 Bifurcation regimes of incompressible hypoelastic materials 
(v = 0.4999 and an = 0) 

o„/u* 
Fig. 5 Bifurcation regimes of compressible hypoelastic materials (v 
0.3) 

n \ ' . *-

H 

P 

^ - ^ r r - ^ ^ t i = ^ Z ^ i r ? r 

EC 

^ 
, / . : 

-fe^^^-S^zr^SE^SSKSiSS2 

symmetric 
antisymmetric ! 

• 

•; , / , / • 
10 

m7rL/2H 

Fig. 3 Buckling stress versus wavelength of the elliptic (E), parabolic 
(P), and hyperbolic (H) bifurcation modes of nearly compressible hy
poelastic material </i//t* = 5, v = 0.4999, and a„ = 0) 

mrrL/2H 

Fig. 4 Lowest bifurcation stress of symmetric and antisymmetric modes 
during plane-strain compression and tension of nearly incompressible 
solids {v = 0.4999) 

^22 (1 + v)lC 

IX* ~ 6 
(70) 

For bulky specimens ( — — oo J and very short wavelengths 

(m — oo), the symmetric and antisymmetric modes emerge for 
the same buckling stress independently of the wavelength 
mL/H, which is a characteristic result for surface instability 
(Biot, 1965). For intermediate wavelengths, symmetric and 
antisymmetric bifurcations alternate to give the lowest buckling 
stress. Figure 3 also displays the P and H solutions in addition 
to the EC solutions. The buckling stress varies continuously 
through the EC-H and H-P transitions. The symmetric and 
antisymmetric modes alternate orderly in the P domain, while 
they interlace in wavily fashion in the H regimes. As pointed 
out by Hill and Hutchinson (1975), the lowest buckling stress 
in the P (or H) regime coincides with the E-P (or E-H) transition 
for bulky specimens or very short wavelengths. 

Figure 4 shows the lowest bifurcation stress as a function 
of the wavelength y = m(wL)/(2H) obtained for symmetric 
and antisymmetric elliptic modes of bifurcation corresponding 
to selected values of /*//**. Since Fig. 4 duplicate Young's 
results, it is concluded that our analytical solutions apply to 
incompressible solids. 

4.2 Compressible Solids. Figure 5 shows the bifurcation 
diagram of compressible materials (equation (66) and v = 0.3). 
The E, P, and H domains are different for compressive and 
tensile stress, which contrasts to the symmetric domains of 
Fig. 2. As shown for tensile stress in Fig. 5, the P domain 
moves to partially occupy the EC and H domains of Fig. 2 
and to give its place to EI solutions. Strain localization and 
internal buckling with very short wavelength emerges when the 
tensile stress CT22 reaches about —3.5/**. As in Fig. 4, Fig. 6 
represents the compressive and tensile buckling stress a12/v-* 
versus the wavelength m(irL)/(2H) of the diffuse bifurcation 
for the particular case /*//** = 5. The first antisymmetric 
mode emerges in the P regime in tension and in the EC regime 
for compression. Diffuse elliptic bifurcation is not obtained 
during tension of bulky specimens (L/H > 1). 

4.3 Elastoplastic Mohr-Coulomb Materials. The incre
mental stress-strain relationship of the flow theory of plasticity 
(Hill, 1950) has the following coefficients: 

Qjki = t*(8ik!>ji + Su&ji) 

H+MPaa)(Qbb)+2»PcdQcd 
+ X5,/5; ipkr (71) 
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Fig. 6 Buckling stress versus wavelength of the elliptic, parabolic, and 
hyperbolic bifurcation modes of compressible hypoelastic material Fig. 8 Bifurcation regimes and elliptic symmetric (dotted line) and an-
(/t/p* = 5, >• = 0.3 and a„ = 0) tisymmetric modes for non-associative compressible elastoplastic sol

ids (</i„ = 30 deg) 
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J?z' Fig. 9 Bifurcation regimes and elliptic symmetric (dotted line) and an-
Fig. 7 Bifurcation regimes and elliptic bifurcation modes for nearly tisymmetric modes for nonassoclative compressible elastoplastic solids 

fa, = 30 deg) 

-(7g2/M 

iptic bif 
incompressible elastoplastic solids (4- = 0 deg) 

where H is the plastic modulus, p the elastic shear modulus, 
X the elastic Lame's modulus, and Py and Qk/ the plastic flow 
and yield directions, respectively. The flow direction Py of 
elastoplastic Mohr-Coulomb solids is 

/ Pu=-
1 - sin^ 

•\/2(l+sin2i/>) 

1 + sin\j/ 

>/2(l + sinV) 

\ = 0 

where the dilatancy angle 4> (Rowe, 1971) is 

. Pi 1+P22 rfefi + rfef2 
S m PU-P22 d&-d& 

The yield direction Qy is 
1 - sin<j) 

Ql2 = 

V2(l+sin20) 

1 + sin<£ 

V2(l+sin20) 
--0 

(72) 

(73) 

(74) 

where $ is the tangential friction angle. In the case of cohe-
sionless materials, 4> is approximately equal to the mobilized 
friction angle 4>m, 

sin<j>« sm<t>m = °l~°3 (75) 
0"l + 0"3 

where o\ and a3 are the major and minor principal stresses, 
respectively. 

4.3.1 Nearly Incompressible Elastoplastic Mohr-Coulomb 
Solids. By selecting \p = 0 and v = 0.4999, the present anal
ysis generalizes the work of Needleman (1979) for incompres
sible elastoplastic solids with nonassociative flow rule. 

Figure 7 represents the various regimes of bifurcation as a 
function of - 022/M a nd H/p. The logarithmic representation 
of Fig. 7 allows us to include stresses CT22 that are small com
pared to the elastic shear modulus. <J\\/(JL is assumed to be 
equal to 10-3, which is a reasonable value for sands. Lade and 
Nelson (1987) established experimentally that /t for sand is 
typically between 100 to 1000 times larger than the current 
stress level. If the material is isotropically stressed (an = 022) 
and behaves elastically (H/JX = + 00) at the beginning of the 
plane-strain compression, the point ( - 022/V, H/p) lies in the 
upper left corner of Fig. 7. As the compression proceeds, the 
point ( - <T22///It> H/fi) moves gradually downward and toward 
a failure point on the 022/n-axis. Therefore, diffuse bifurcation 
is first possible in the EC domain. As the plastic modulus 
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H/jt. decreases further, localized bifurcations may occur first 
at the EC-H transition and later in the H domain. 

Figure 7 also represents the location of the emergence of the 
antisymmetric elliptic modes corresponding to the wavelengths 
y = m(%L)/(2H) = 0.1, 0.2, 0.5, and 1. Symmetric modes 
do not emerge in the EC domain for the selected range of 
parameters. It is concluded that slender specimens (e.g., L/H 
< 0.1) are more likely to bifurcate than bulky specimens (L/ 
H > 1) in antisymmetric modes. 

4.3.2 Compressible Elastoplastic Mohr-Coulomb Sol
ids. Needleman's analysis can be extended to compressible 
elastoplastic materials. As' in Rowe (1971) and Vardoulakis 
(1981), the dilatancy angle varies as a function of the mobilized 
friction angle 4>,„, 

. sin<ftm - sin0„ 
sirnH - - . ^, (76) 

1 - sin</)msin0^ 

where </>M is the friction angle between particles. Equation (76) 
implies that the material is compacting for <f>m < $M, incom
pressible for 4>m = 4>M, and dilatant for <j>m > </y 

As in Fig. 7, Figs. 8 and 9 shows the various bifurcation 
regimes and the elliptic modes for compressible elastoplastic 
materials. The typical value of 30 deg is selected for 0M. The 
lateral stress an is arbitrarily fixed to ffn//x = -0.001 and 
fii//* = ~~ 0-01 • The axial stress a22 varies, but remains smaller 
than fj.. As shown in Figs. 8 and 9, the symmetric and anti
symmetric EC modes appear simultaneously for 7 = 10. This 
case corresponds to surface instability (L/H — 00) and diffuse 
bifurcation with very short wavelength (m -~ 00). Antisym
metric and symmetric modes also appear almost simultane
ously for y = 1. However, in contrast to antisymmetric modes, 
symmetric modes do not appear for 7 < 0.5. Figures 8 and 9 
show that diffuse bifurcations may occur when the applied 
stress a22 is on the order of /x, which is unrealistic for cohe-
sionless materials. The comparison of Fig. 7 and 8 indicates 
that the flow rule (equation (76)) influences the EC-H transition 
(i.e., strain localization) more than it affects diffuse elliptic 
bifurcation. Based on the scarcity of diffuse bifurcation so
lutions for the parameters characteristic of sands, it is con
cluded with Vardoulakis (1981) that sand specimens may 
deform under plane-strain rectilinear deformation without ex
periencing diffuse bifurcation. 

5 Conclusion 
Analytical solutions have been derived for the diffuse bi

furcations of compressible solids subjected to plane-strain 
loading. These solutions generalize the works for incompres
sible solids of Biot (1965) and Hill and Hutchinson (1975). 
They describe diffuse symmetric and antisymmetric bifurca
tions and localized bifurcations. They have been validated by 
applying them to the incompressible solids of Hill and Hutch
inson (1975), Young (1976), and Needleman (1979) and to the 
elastoplastic Mohr-Coulomb materials of Vardoulakis (1981). 

The present analytical solutions are capable of reproducing 
the lowest bifurcation stresses for incompressible solids cal
culated by Hill and Hutchinson (1975). In contrast to incom

pressible solids that systematically experience diffuse elliptic 
bifurcations before any other types of bifurcation, compress
ible materials are found to reach the elliptic-hyperbolic bound
ary (i.e., to localize) prior to encountering diffuse elliptic 
bifurcation. When applied to elastoplastic Mohr-Coulomb ma
terials, the analysis corroborates the conclusions of Needleman 
(1979) and Vardoulakis (1981). It emphasizes that the elastic 
shear modulus influences diffuse bifurcation much more than 
the flow rule. 

The proposed analytical solutions are useful to assess the 
role of material compressibility on plane-strain bifurcations, 
to develop plane-strain bifurcation analysis of specific solids 
and to calibrate the numerical bifurcation analysis performed 
with finite elements. 
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On the Crucial Role of 
Imperfections in Quasi-static 
Viscoplastic Solutions 
The stability and structure of shear bands and how they relate to initial imperfections 
is studied within the framework of a one-dimensional boundary value problem. It 
is shown that in strain-softening viscoplasticity the structure of the band depends 
on the structure of the imperfection. A Fourier analysis shows that the width of the 
shear band depends directly on the width of the imperfection, suggesting that the 
imperfection scales the response of the viscoplastic material. For continuously dif-
ferentiable imperfections, the shear band is continuously differentiable, whereas 
when the imperfection is C° at the maximum, the shear band is C°, and cusp-shaped. 
For step function imperfections, the shear band is shown to be a step function, but 
it is shown that this solution is unstable. 

1 Introduction 
The scaling or size of a shear band is an important physical 

feature which does not emanate from the governing differential 
equations for the quasi-static response of a viscoplastic ma
terial, which does not possess a parameter of the dimension 
of length. A length scale does emerge in a dynamic or coupled 
thermal boundary value problem. However, in a Hopkinson 
torsional experiment, the rise time is very large compared to 
the traversal time of a torsional pulse across the shear band 
and yet too small to engender significant thermal conduction. 
Therefore, it can be argued, that these scale factors do not 
explain the scatter in size of shear band widths as reported by 
experimentalists such as Duffy (1984) and Marchand and Duffy 
(1988). 

In this paper, we propose that the shear bands are scaled 
primarily by the imperfections in the specimen. For this pur
pose, we will examine the effect of various initial imperfections 
on the structure of the shear band. For this purpose, a closed-
form solution of a traction controlled boundary value problem, 
and some numerical solutions of a velocity-controlled bound
ary value problem, are used. 

Considerable progress has been achieved in the past decade 
in the understanding of shear banding. Strain-softening vis
coplastic models have proven to be effective in capturing some 
important characteristics of shear banding. Molinari and Clif
ton (1987) have shown that viscoplastic material models exhibit 
what they call L„ localization. Pan (1983) has shown that 
viscoplastic material models are unstable if the strain field is 
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perturbed as the stress passes a maximum. It has been shown 
that with strain gradient regularization, perturbations with 
wavelengths above a threshold, which depends on the locali
zation parameter, do not grow unboundedly (Lasry and 
Belytschko, 1988). Wu and Freund (1988) have shown that for 
dynamic problems, rate-dependent softening models exhibit a 
phenomenon which they term "deformation-trapping" as a 
consequence of imaginary wave speeds. They then showed that 
they could obtain a solution numerically by adding rate de
pendence (viscoplasticity) and coupled heat transfer. Bazant 
and Belytschko (1985) obtained a closed-form solution for rate-
independent strain softening. They showed that the strain soft
ening was limited to a set of measure zero. Needleman (1988) 
showed that the ill-posedness of the rate-independent model 
could be eliminated by the addition of rate dependence in the 
form of a viscoplastic model. 

Shawki and Clifton (1989) have presented a closed-form 
solution for the strain field subjected to a temperature per
turbation, neglecting the effects of elasticity. Tzavaras (1986) 
has addressed the issues of the existence of classical solutions 
and stability of uniform shearing, using a rigorous mathe
matical analysis. Wright and Batra (1985) and Wright and 
Walter (1987) have reported numerical solutions for visco
plastic dynamic problems coupled with heat transfer. Wright 
and Walter show that the shear strain distribution at the max
imum is actually flat over a very small distance; however, 
extremely fine meshes with a logarithmic distribution about 
the center of the band and on the order of 103 mesh points 
were needed to achieve such solutions. 

In most of these solutions, the role of the initial imperfec
tions, or perturbations of the initial data, was given little at
tention. Most of the authors cited have used triangular 
imperfections or step imperfections. In this paper, a closed-
form solution is developed for a traction-controlled boundary 
value problem which is essentially one of constitutive response. 
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Traction Boundary Condition Velocity Boundary Condition 

Fig. 1 A slab of viscoplastic material subjected to simple shear 

This simple solution facilitates the demonstration of the crucial 
role of imperfections in the evolution of the strain field. It is 
shown via one-dimensional finite element studies that similar 
behavior is also seen in a velocity-controlled problem. In both 
cases for a quasi-static analysis, the strain field in the shear 
band is governed by the initial imperfection. 

We will adopt the classical mathematical viewpoint of dy
namical systems theory in that an evolution solution is con
sidered stable if a perturbation results in a solution which is 
in a finite "hypersphere" about the unperturbed solution. By 
using this framework, we show that the homogeneous solution 
for a strain-softening viscoplastic material is unstable. Solu
tions which are step functions with one subdomain in a strain-
softening regime, the other in a nonsoftening viscoplastic re
gime, are also shown to be unstable solutions. These solutions 
cannot be achieved physically and are meaningless. 

The morphology of the shear band is shown to depend 
strongly on the structure of the imperfection. If the imper
fection is smooth (C1), then the shear band has the same char
acter with a continuous derivative at its maximum. If the 
imperfection is C° with a discontinuity in its derivative at the 
maximum, then the shear band has a cusped structure with 
discontinuous derivatives at its maximum. Furthermore, we 
show that imperfections introduce a length scale into the evolv
ing shear band. In particular, the spectrum of the shear band 
is related to the spectrum of the imperfection. It is possible 
that the viscoplastic model, when used correctly with imper
fections that are representative of those which occur in nature, 
will reproduce the strain fields observed in experiments. 

The behavior of the strain field at the point of maximum 
strain is examined using a Taylor series expansion, and it is 
shown that though the viscoplastic model is well posed, and 
leads to a unique solution at a given time, the shear band 
narrows with increasing deformation. This feature has also 
been observed experimentally. 

This paper is organized as follows. In Section 2, the relevant 
governing equations are outlined, and in Section 3, a closed-
form solution of the governing equations for a traction bound
ary condition is presented. In Section 4, 5, and 6, the issues 
of stability, scaling, and the narrowing of the shear band are 
addressed using the closed-form solution as a vehicle. In Sec
tion 7, the conclusions reached in Sections 4, 5, and 6 are 
verified for a velocity boundary condition by one-dimensional 
linear finite element studies. 

2 Governing Differential Equations for Shear Banding 

Consider a viscoplastic slab of length 2L subjected to pure 
shear as shown in Fig. 1. The slab is fixed at x = —L: the 
edge x = +L, may be subjected to either a velocity v0 or a 
traction a*. The relevant governing equations are the momen
tum equation, 

o,x=P ii, (1) 

the strain displacement equation, 

e = u,x, (2) 

(3a) 

(3b) 

the viscoplastic constitutive equations, 

a = G(h-k"p) 

V=tvp(o,ivp,6), 

and the energy balance equation, 

pCpb'=kB,xx + Kot"'. (4) 

In the above, a is the shear stress, e is the corresponding shear 
strain, G is the elastic shear modulus, p is the density, Cp is 
the specific heat at constant pressure, k is the thermal diffu-
sivity, K is the Taylor-Quinney coefficient, and 6 is the tem
perature. Superposed dots denote material time derivatives and 
commas denote derivatives with respect to the variable which 
follows. 

The boundary conditions are 

(1) Traction controlled: 

a(L,t) = a* (t) (5a) 

w ( - Z , ) = 0 . 

(2) Velocity controlled: 

u(L,t) = v0(t) 

u(-L)=0. 

(5b) 

(5c) 

(5d) 

In this paper attention is restricted to the quasi-static, iso
thermal case, i.e., with pit, k, and pCp6 assumed to be neg
ligible. 

3 Closed-Form Solution for a Traction Boundary Con
dition 

We consider a slab of length 2L subjected to a shear traction 
which rises instantaneously to a value a* and then remains 
constant (see Fig. 1). The boundary conditions are 

a(L,t) = a*H(t) (6a) 

u(-L)=0 (6b) 

where H(t) is the Heaviside step function. 
The viscoplastic constitutive function (3b) is chosen to be 

''"-(ifc)'- (7) 

Here, a0 and m are material data, 0 < m < 1 and m — 0 
represents the rate independent limit. Equilibrium in the quasi-
static case implies 

b = Oforx${-L,+L],t>Q. (8a) 

Hence, 

a = a*, t>0. (8b) 

As a consequence of the loading condition, the elastic strain 
remains constant and is given by 

e * = ^ . (9a) 

Therefore, 

e = e"p. (9b) 

The plastic response function for the softening material is 
taken to be 

g(e"p) =°>m (10) 

so that when e"p = 0, g(e"p) = aY, wherep > 0 is a material 
constant, oy is a reference stress that corresponds to the yield 

stress and e0 = —. 
G 

Let 
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e = e0 + e-e* . (11) 

Using equation (10), and since the elastic strain rate ee = 0, 
for t > 0, the viscoplastic response function may be written 

This, with equation (7) and equation (8b), gives 

o*=g(e) •CO' 

(12) 

(13) 

To represent initial imperfections, the yield stress aY is per
turbed as follows: 

ffy=ff„(l-Hfl*)) (14) 

where JX is a small parameter representing the amplitude of the 
strength imperfection. Combining equation (13) and equation 
(14) yields 

—=(-Y'(1)' 
o0a(x) \e0J \a0J 

where a(x) = (1 - nf(x)). 
Introduce the following dimensionless variables 

t=a0t 
e 

7 = — 

(15) 

(17a) 

(lib) 
to 

a* 
r*= - . (17c) 

<Vo 

Equation (9a) may now be written in dimensionless form as 

T* = a ( x ) 7 - " ( t j ) . (18) 

Integrating in time yields 

(19) 

where i) and f are dummy variables. After integration, the 
following expression is obtained for the strain field 

y(x, t)- m-p 
m a(x) ' ( f + 1) (20) 

For simplicity of notation, this expression is recast in the 
following form and is used as such henceforth. 

y(,x,t) = l + %ta 

where 

m 
m-^p 

(^yL-> 

(20a) 

(20b) 

(20c) 

Unless stated otherwise all results presented subsequently 
have been obtained using r* = 1, m = 0.01, p = 0.02, and 
all spatial profiles of field variables have been evaluated at 
i = 0.9. Shawki and Clifton (1989) have demonstrated via a 
closed-form solution which neglects elastic effects that the 
behavior of the strain field depends strongly on the sign of the 
exponent. They also showed that the most interesting case for 
modelling shear band development is when the exponent is 
negative, i.e., for a strain-softening case. 

4 Stability of the Strain Field Solution 

For a perfect slab, i.e., a(x) = 1.0, equation (20) yields the 
homogeneous solution 

7<x.O = [l + * / ] " . (21) 
However, this solution is unstable when the exponent is neg
ative. Stability requires that if the initial data is perturbed by 
a small amount, then the solutions must differ by a small 
amount. To be specific, if solutions with initial data aj (x) and 
a2(x) are ux(x,t) and u2 (x,i), then if 

lla1(*)-a2(.x:)ll</i, (22) 

then U\ (x) is a stable solution is 

l la i (* ,0-W2(*>OH<Q* Vt, (23) 

where C is a constant, fi is a small constant, and II • II indicates 
a norm. If 

«i(x) = 1.0 (24) 

a2(x) = 1 — p cos • (25) 

then 7i (x, 1) is a homogeneous solution given by equation (21), 
whereas y2(x, i) and the numerically integrated displacement 
fields U\ (x, i) and u2(x, i) are shown in Fig. 3. It can be seen 
that the two displacement fields do not satisfy equation (23), 
so the homogeneous solution U\(x,i) is unstable. 

o-\—.—r 

x /L 

u ( x ) "10 

x / L 
Fig. 2 Strain and displacement field response to the imperfection rep
resented by equation (25) 
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a ( x ) 

a = 1.0 (no imperfection) 

1 
a, = 0.9995 

200 

^L 
a, (x) 

AT 
a! = 0.999 

x / L 

a = . _ > 

V 
a2 = 0.999 

a(x) 

a2(x) 

/ — v 
a2 = 0.9995 

x / L 

Fig. 3 Imperfections used to illustrate the random location of shear 
bands. Note that these imperfections are different. 

It is interesting that even for two perturbations which satisfy 
equation (22), the displacement fields may vary markedly. 
Thus, if we consider a! (x) anda2(x) as shown in Fig. 3, these 
perturbations satisfy equation (22) but the solutions, shown 
in Fig. 4, do not satisfy the stability condition (23). It appears 
that stability in solutions with these materials is a subtle prob
lem; perhaps once a perturbation is defined, its stability should 
be examined by considering small perturbations of this initial 
perturbation, i.e., by considering oi^(x) where 

\\a2(x)-(xi(x)\\<ij2. (26) 
Another approach to obtaining a less sensitive measure of 
stability is to use a response function approach to stability, 
described subsequently. 

A commonly used perturbation in the literature is the step 
function 

a(x) = 1.0-n(H(x-b)-H(x+b)). (27) 
The solution to the above perturbation has the interesting 
property that even under the restriction (26), it is unstable. To 
illustrate, we consider the perturbation a3(x) shown in Fig. 
6(a). The solutions u2(x, t) and H3(X, 0 do not satisfy (26) 
(see Fig. 6(b)), so u2(x, i) is an unstable solution. Step-function 
imperfections are tacitly used in most finite element solutions. 
This analysis shows that the resulting solution is not stable or 
physically meaningful for this constitutive model. 

4.1 Stability in Terms of a Response Function. A feature 
of the viscoplastic constitutive model under consideration here 
is that localization is triggered at the point at which a{ (x) is 
a global minimum. As shown in Fig. 4, the shear band occurs 
at the location of the minimum of a2 (x), which is quite random 
in a real body. Thus, for an arbitrary, small imperfection, the 
location of the band may differ markedly. This randomness 
is in accord with experimental observations; unless notches or 
other tailored geometric imperfections are used to trigger lo
calization, the location of the shear band is often quite un
predictable. However, the overall response only depends on 

Y 100 

0 H • 1 > 1 > 1 ' 1 > 1 • 1 ' r -

- 1 . 0 0 - 0 . 7 5 - 0 . 5 0 - 0 . 2 5 0 .00 0 . 25 0 .50 0 . 7 5 1.00 

X / L 

30 

2 5 -

2 0 -

U ( X ) 

x / L 
Fig. 4 Strain and displacement fields in response to the imperfections 
shown In Fig. 3 for a traction boundary condition 

the occurrence of the band, not its location. Thus, for engi
neering purposes, it appears worthwhile to consider an alter
native definition of stability in terms of a response function, 
the appropriate choice of which will depend on the problem. 

This definition of stability is stated as follows. Given two 
imperfections oti(x) and a2(x) satisfying (22), then if 

\\ri(t)-r2(t)\\<C0fi (28) 

where /•(:) is the response function, the solution is stable. For 
the particular problem considered here, the response function 
may be taken to be 

r{t)=u(L,t), 

so stability requires that 

«M0-r 2(0l Jo I«i<£. t)-u2(L,t)Ydt\2<C0lx. (29) 

Here, t may be any suitable measure of time. 
Note that neither the homogeneous solution (20) nor the 

solution with the step-function imperfection (27) meets this 
stability criterion. On the other hand, the solutions corre
sponding to the perturbations ci\(x) and ct2(x) as defined in 
Fig. 3 meet this criterion. 
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The appropriate response function depends on the problem. 
For engineering purposes, a solution which is stable in terms 
of a response function should be an adequate solution. In a 
problem with a prescribed velocity, the response function would 
be the resulting load or average stress. 

The relevance of this definition of stability for a velocity 
boundary condition is demonstrated in Fig. 5. It is seen that 
though the resulting strain fields are such that criterion (23) 
is violated, these solutions satisfy (28). For a velocity boundary 
condition, localized deformation is accompanied by a sharp 
drop in the stress/nominal strain curve, this has been observed 
experimentally and is in fact used to determine the onset of 
localization (Marchand and Duffy (1988)). This sharp drop 
represents a decrease in the load-carrying capacity of the ma
terial and maybe construed as failure in any sense of the term. 
Thus, the response function concept provides a physically 
meaningful framework to examine localization failure. 

5 Imperfections and Scale in Shear Banding 

The issue of length scales has particular significance in the 
shear band problem. A dimensional analysis of the governing 
equations (l)-(4) reveals two length scales, an inertial length 

7 

B -

5 -

4 -

3 -

2 -

1 -

1z 

i 
a 
4 
II 
•1 

i i Y ' 

_ J L 
0.2 0.4 0.6 1.0 

X / L 

nominal strain 
Fig. 5 Strain field and stress/nominal strain curve in response to the 
imperfection shown in Fig. 3 for a velocity boundary condition 

scale L, = (\/a0) (G/p)W2, and a thermal length scale Lr = 
{k/pCpa0)

I/2. Needleman (1988) showed that the inertial length 
scale does not alleviate the problem of an ever increasing strain 
gradient. In the isothermal quasi-static case only a boundary 
condition-dependent length scale L% = v0/a0 is present, which 
only scales the nominal strain rate. 

For a step function perturbation, the width of the region of 
intense straining is set by the width of the imperfection, i.e., 
the width of the shear band is equal to the width of the im
perfection. But, as shown previously, this is an unstable so
lution which is not physically meaningful. Given the absence 
of a length scale in viscoplastic materials models for quasi-
static loading conditions, it has been of interest as to what 
determines the width of shear bands. To better understand the 
effect of C1 imperfections, the strain field given in equation 
(20) is expanded in a Fourier series, c0 + cm cos (mx/L), where 
a repeated index represents a summation. The effect of the 
width of the perturbation on the spectrum is then studied where 
the width of the imperfection implies the base of the C1 im
perfection. For the case of a parabolic imperfection it was 
found that the amplitude of the dominant mode, the coefficient 
c1; was directly proportional to the width of the initial per
turbation. From Fig. 7 it can be seen that the width of the 
initial imperfection scales the amplitude of the dominant mode 
of the Fourier spectrum of the strain field. 

6 The Spatial Distribution of the Strain Field 
In this section we characterize the effect of the initial im

perfections on the spatial distribution of the strain field. We 
first focus attention on the traction-controlled boundary con
dition and present results from the numerical solutions of the 
velocity boundary condition. 

It can be seen from equation (20) that if a (x) is a C1 function, 
then y(x) is also a C1 function. Thus, for a(x) € C1, the 

dy 
maximum of 7 (x, t) occurs where — = 0. The first and second 

dx 
1 spatial derivatives of the strain field are given by 

dy /£« t . , „ 
dx \ m ' 

1 \ n - 1 1 + m 

a "> ) — 
/ax 

(30) 

(Py 

dx2" (-£M£)- (-£)<D(s) *» 
where 

18= )\+%ta" 

From the foregoing expressions it is clear that the derivative 
of the strain field vanishes only when the derivative of the 

87 9a 
imperfection function vanishes, i.e., — <* —- = 0. If a(x) is 

dx dx 
a C° or C1 function, then y(x) is a C° or C1 function, respec
tively, and y(x, /) is a maximum where a(x) is minimum (see 
Fig. 8). If a(x) is a C° function, with a cusp-shaped maximum 

dot dot 
at xn, then — (x0 - Ax) < 0 and — (xQ + Ax) > 

dx dx 
0 for Ax > 0, i.e., the left-hand derivative is negative and the 
right-hand derivative is positive. Equation (24) then implies 
that the right spatial derivative of y{x, I) is positive and the 
left spatial derivative is negative since the quantities in the 
parentheses are positive. Thus, the cusp-shaped spatial distri
bution for y{x, t) occurs only when a(x) is a C° function. 

6.1 Behavior of the Strain Field Near the Point of Maximum 
Strain. To examine the behavior of the strain field near the 
point of maximum strain, the strain field is expanded in a 
Taylor series about the point of maximum strain x, and the 
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Fig. 6(a) Imperfection to illustrate the instability of a step-function 
perturbation 
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Fig. 7(a) Effect of the width of the imperfection on the components of 
the Fourier series cm. Here a = wl2L, where w is the width of the im
perfection. 

x /L 

u(x) 

perturbed step 

Fig. 7(b) Effect of the width of the initial imperfection on the dominant 
mode (m = 1) of the Fourier series 

If the imperfection function is assumed to be C then 

fo(-*>_0 hlil=0 d2«(*)>0 
dx dx dx2 

d2y( 

x /L 
dx2 ~\ my 

d2a(x) 
dx2 

Fig.6(b) Strain and displacement fields in response to the imperfection y(x + Ax,t) y(x,t) 
in Fig-6(a) _ 

' ( -£ ) ( 1 + { , -„^~'„—***>* . . <„> y(x t) 
behavior of fit) = —-—! =r is examined 

7(x + Ax,0 
- - ldy(x,i) 

y(x + Ax,t)=y(x + t )+--*—_ Ax 

+ 2< dx2 

2 dx 

+
 l-d^:t)Ax2

+... (32) 
2 d;r yields the following 

Dividing the above expansion for y(x + Ax, t) by 

Y(*,0= l + £fa~m 
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y(x + Ax,t) 

y(x,t) 

<j>(Ax)t 

where 

Let 

4>(Ax)=-[^a(x)~ m -^ (x)jAx2. (35a) 

/ (Ax, t) = 7 ( * , 0 
y(x + Ax,t) 

It may be noted that £« > 0, 
d2a(x) 

3x2 

(35b) 

> 0, a(x) > 0, Ax2 

> 0, 4>(Ax) > 0. Equation (41) may then be written as 

1 . 4>(Ax) t 
/ (Ax, t) 

dt" 

(l + Zia~A 

•f 

l + £ r a 

<t>(Ax) 

(l + $ia A 

(35c) 

(35d) 

f(Ax, O is a mon-

v5„ 

a/ 
Irrespective of the sign of £, —- > 0 
otonically increasing function of time. For £ > 0, - ^ is mon-

dt df 

otonically decreasing with time for all Ax. For £ < 0, T-= is 
a t _ 

monotonically increasing with time for all Ax, i.e., f(Ax,t) 
is a convex upward function of time. Thus, for £ < 0, i.e., 
m < p, the ratio of the strain at the point of maximum strain 
to the strain at a point very close to it grows at an ever increasing 
rate and results in an ever narrowing region of intense straining, 
this feature has been observed experimentally by Marchand 
and Duffy (1988). 

7 Numerical Analyses for a Velocity Boundary Con
dition 

In this section, we consider a viscoplastic slab subjected to 
velocity boundary conditions (5c) and (5d). The problem ge
ometry is defined in Fig. 1. The results are obtained by one-
dimensional constant strain finite elements. The slab is mod
eled as elasto-viscoplastic. The viscoplastic function is chosen 
to be the power-law model described by equation (7). The yield 
function is chosen to be bilinear. The following dimensionless 
parameters were used in the analysis: 

(T0/G = 0.002 

Vo/(L a0) = 100. 

The value of m in equation (7) was taken to be 0.01, a typical 
value for structural steels. The response of the slab to C°, 
imperfections was studied and the resulting strain profile is 
shown in Fig. 9. The imperfections are modeled by assuming 
a variation in the yield strength in the appropriate elements. 
It is seen that for C° imperfections, the strain fields have a 
maximum here the imperfection function has a global mini
mum. 

The different boundary conditions lead to some differences, 
the most noteworthy of these are: 

(1) for the velocity boundary condition the strain field is 
always bounded for finite end displacement and localization 
in the L„, sense of Molinari and Clifton (1987) is accompanied 
by a sharp drop in the stress/nominal strain curve; 

(2) for the traction boundary condition, localization in the 
L„ sense occurs at finite end displacement. 

However, there are some features that are common to both 
situations: 

150 

x /L 
Fig. 8 Strain field response to C ° and C imperfections, respectively, 
for a traction boundary condition 

(1) The strain fields in both cases are almost entirely de
termined by the initial imperfections. In particular: 

(a) the relative maximum of the strain field occurs where 
the yield strength is a global minimum; 
(b) wherever the imperfection function has a constant 
magnitude, the strain field is constant; this further implies 
that if the imperfection function is a step function, then 
the strain field also contains a step function (see Fig. 8). 

(2) The response of the material to initial imperfections is 
initially quasi-homogeneous in the softening regime followed 
by localization of the deformation in a narrow region. 

8 Conclusions 
It has been shown that the scale or size of the shear band 

in a viscoplastic material is governed by the scale of the im
perfection. A closed-form solution for a traction-controlled 
quasi-static shear banding in a viscoplastic, one-dimensional 
problem and numerical results for a velocity-controlled bound
ary condition have been presented. The solutions exhibit a 
strong dependence on the morphology of the initial imperfec
tion. In particular: 

664 / Vol. 58, SEPTEMBER 1991 Transactions of the AS ME 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0.4 0.6 

x / L 

Fig. 9 Strain field for C° imperfections for a velocity boundary condition 

(1) in a homogeneous stress field, the shear band occurs 
at an extremum of the imperfection, so the position of the 
shear band is quite random; 

(2) the continuity of the strain field is identical to the con
tinuity of the imperfection, i.e., for a C1 imperfection, the 
shear strain field is C!. 

(3) when the imperfection is C'\ i.e., a gate function, the 
strain field is also C~l. 

It has been shown that the solution with a gate function 
imperfection is unstable. This finding is of relevance in finite 
element solutions with constant strain elements, where the 
imperfections are gate functions, when constant strain elements 
are used, and the imperfection is a perturbation of one element. 
Furthermore, when the imperfection is a gate function, the 
morphology of the strain field differs significantly from that 
which arises from more realistic imperfections. Thus, solutions 
based on step function imperfections cannot reveal the details 
of the strain field which are needed to understand material 
behavior at high strains. 

The definition of a stable solution for a viscopiastic material 
presents an interesting problem. Even two imperfections which 
are close to each other in the sense of a norm can lead to 
strikingly different solutions. Therefore, a definition of sta
bility in terms of a response function has been proposed. This 
definition is useful for engineering purposes since it overcomes 
difficulties which arise from random locations of shear bands. 

It has also been shown that the ratio of the strain at the 
point very close to it is ever increasing resulting in an ever 
narrowing shear band. This feature has also been observed 
experimentally: 
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Viscoelastic Multilayered Cylinders 
Rolling With Dry Friction 
Two circular cylinders consisting of a rigid core which is covered by an arbitrary 
number of homogeneous, isotropic, viscoelastic coats of arbitrary, but uniform 
thickness are pressed together so that a contact area in the form of a strip forms 
between them, and subsequently rolled in the presence of dry friction. A Maxwell 
model of viscoelasticity is employed; the friction is finite and modeled by Coulomb's 
law; partial slip in the contact area is allowed. It is required to find the viscoelastic 
field in the cylinder, notably in the contact strip, when the compressive force and 
the creepage in rolling direction are specified. The proposed method works almost 
equally fast in the case of pure elasticity and of viscoelasticity. It is akin to the 
method of Bentall et al. (1968), but automated, modernized, and extended. 

Introduction 
Consider two infinite rigid cylinders with parallel axes which 

are covered with a number of homogeneous, isotropic, linearly 
elastic or viscoelastic layers that are completely bonded to each 
other and to the cylinder they cover. They are pressed together 
and subsequently rolled over each other until a steady state 
sets in. The circumferential velocities of the cylinder-cum-lay-
ers systems may differ, so that partial or complete slip occurs 
in the interface. Friction is present in the interface; it is assumed 
to behave according to Coulomb's law with a constant friction 
coefficient. 

It is required to find the displacement and the stress in the 
layers with respect to the Eulerian coordinate system that is 
attached to the axes of both cylinders and which is, conse
quently, fixed to the contact area. In particular, one is inter
ested in the displacements and loads present in the contact 
area. 

The analysis is linear and two-dimensional. For the calcu
lation of the (visco)elastic field the cylinders are approximated 
by layered (visco)elastic half spaces in contact. The surface 
load is approximated by a function which is constant in ad
joining, equally long intervals with the aid of algorithms that 
have proved their utility before in the programs CONTACT 
and LAAGROL and that have been established rigorously by 
Kalker (1988) in the elastic case. 

In order to use these algorithms the (visco)elastic field due 
to a typical normal surface load, and that due to a typical 
shearing surface load, are required. To find these fields, the 
displacements and stresses are expressed in Airy's stress func
tion which obeys a two-dimensional bi-potential PDE. This 
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equation is attacked by applying a complex Fourier transform 
in the tangential direction and by analytically solving the re
sulting fourth-order ODE in the normal coordinate. The so
lution, a Fourier transform, is inverted numerically by a method 
which guarantees a prescribed accuracy. 

The method presented is akin to that of Bentall and Johnson 
(1968) but extended, automated, and modernized. 

1 Elasticity Theory 
The cylinders are numbered 1 and 2 (see Fig. 1). We introduce 

a Cartesian coordinate system with the plane z = 0 in the 
mutual tangent plane of the cylinders, the /-axis in the axial 
direction, and the x-axis in the tangential direction; the z-axis 
points into body 1. We denote the normal stresses ax, ay, az, 
and the shear stresses as rxy, ryz, T^. All quantities (displace
ments, stresses, strains) can be provided with a subscript a = 
1, 2, signifying cylinder a. The displacements are u(u, v, w); 
the linearized strain ex, ey, ez, exy, eyz, ea. We assume a two-
dimensional situation in which the dependence on y of all 
quantities disappears and in which the /-component of the 
displacement v = 0 (plane strain), 

7 - = 0, v = 0. (1) 
dy 

An Airy function approach yields (H is the Airy function): 

u = —zr~ H„, — - H.xxz (2) 
1 

E 
ff, 

E 

v(\+v) 
E 

i / v 

°x~"^,zzzxi Gz~~**iX 

TXZ= -H 

*,zzzz 

,xxzz< Oy=v(ox+Oz) 

A ,xm ' -* •* ,xxxx 

iX = d/dx,tZ = d/dz 

E: Young's modulus, v. Poisson's ratio 

(3) 

(4) 

(5) 

(6) 

(7) 
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Fig. 1 Two cylinders in contact 

-z = D1=D1l>D„ 

contact 
z=D„>0-

- z= -D„<0 
z=Dan=0 

21* 

© 
—7777777 777777 >»/??*// -z=-D1 = -Dj ,<-D2 . 

Fig. 2 The layers and the cylinders 

We note that equations (2)-(7) hold for any two-dimensional, 
homogeneous isotropic elastic body. When we consider a lay
ered medium with each layer homogeneous and isotropic, 
equations (2)-(7) hold for each layer separately. 

1.1 A Fundamental Boundary Value Problem. We assume 
that both layer and cylinder can be taken as plane as far as 
elasticity calculations are concerned. For the boundary values 
we retain the real geometry. The situation is shown in Fig. 2. 
The layers consist of several sublayers; the interface between 
sublayer ;' and sublayer ;' + 1 has the equation 

z = (-ir~lDrt, « = 1.2; i = 0 mah Daie R, (8) 

mai: number of sublayers of layer a. (9) 

Da0 = Q<Dal<Da2... <DamadefDa. (10) 

The situation is shown in Fig. 2. 
The sublayers are completely bonded together, so that we 

have that 

«> w, az, TXZ (11) 

are continuous across the interface of two sublayers. The sub
script a is omitted as long as this causes no confusion. The 
layers are rigidly bonded to the cylinder. So 

«(*,(-• I)""'/)*) = w(x, ( - l ) « - 1 Z ) o ) = 0 . 

Moreover, it lies at hand to suppose that u, w, ax, az, 
0, far from the contact area. Therefore, we assume 

//—-0 with all derivatives if Ixl — 00. 

Finally, we assume that at the surface z = 0, 

ax(x,0) defa(x) = prescribed 

(12) 

(13) 

TXZ(X,0) defr(x) = prescribed. 

(14) 

(15) 

We shall use solutions of this type to construct the more com
plicated solutions we need. In particular, we consider the case 
when o(x) and T(X) are piecewise constant, (see Fig. 3). These 
traction distributions can be considered as built from elements, 
see Fig. 4. We are interested in the influence numbers, i.e., 
the displacements in y due to the element with height 1, width 
a, and center x. The traction distribution, hence the displace
ment, is determined by the numbers ah rh heights of the /th 
element. 

a,x a-.,x. 

t 
i' " i 

Fig. 3 Piecewise constant traction 

OX 

x - a / , x-*a/o 

Fig. 4 An element 

h=h'-P 

(c) 

> 
contact 1 d=0 "d>0 

undeformed surface 

.deformed surface 

.deformed surface 

undeformed surface 

Fig. 5 The cylinders touch in Fig. 5(a). The layers are not shown. They 
approach each other over a certain distance in Fig. 5(b). In Fig. 5(c) a 
deformation occurs, which cancels the penetration in Fig. 5(b). In Fig. 
5(d) the construction of the deformed distance is shown. 

2 Contact Formation 
Consider two cylinders (see Fig. 5). The boundaries between 

rubber and steel are not shown. 
In Fig. 5(«) the cylinders touch; their vertical distance at the 

position x is h'{x). h'{x) is given by 

h' 
1 

(x)=-
1 

x2, 
(16) 

i?a:radius of cylinder a. 

Subsequently the cylinders are pressed together, causing their 
centers to approach each other over a distance /3. If we omit 
the elastic deformation, their distance is now 

. . 1 
h(x) = h'(x)- ' \2R{

 + 2Rj 
x2 - 0. (17) 

Now the bodies overlap (see Fig. 5(b)); this is cancelled by the 
elastic deformation shown in Fig. 5(d), and the bodies look as 
shown in Fig. 5(c). It holds that the distance after deformation 
is d(x), and from Fig. 5{d) we can tell 

d(x) = h(x) - w2(x) + w, (x) > 0 

as the bodies cannot overlap (18) 

d(x)=0: contact. 
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We assume that the bodies cannot exert tractive forces on each 
other, or a{x) < 0; and that tractions can occur in the contact 
only, or a(x)d(x) = 0, while the normal force is continuous, 
in the sense that ax (x) = a2 (x) + a (x). Summarizing, we 
obtain 

algorithm is so robust that even with the modification it has 
never failed so far. 

This, added to the fact that the second alternative allows 
easy generalization to the three-dimensional case (Kalker, 1988) 
leads us to adopt the second alternative. If instead of fi the 

h{x) = (i+i)^-' (19) 
d(x)=h(x)-w2(x) + wx(x)>0, ol(x) = o2(x) = (j(x)<0, o(x)d(x)=0. 

We assume an element with length a; and we want to know 
the traction/displacement in the interval ( - na, na) of the x-
axis. This is called the potential contact; n can be chosen freely 
as long as the entire contact area is within the potential contact. 
We cover this interval with the elements of Figs. 3 and 4. These 
elements are numbered / = 1, n and they are determined by 
the tractions in their centers, 07, and Tai. Their centers are in 

Xi ( '"*?>• 
wai is also sampled in these points; it holds 

and the tractions oj and the following connection between wa 

the tractions raj, the latter of which we consider given. Then 
we want to solve the following problem. Find all a/. 

oy<0; dj = d(xj) >0 ; o/l, = 0; 7, given. (20) 

The following algorithm solves the so-called complementarity 
system (20), if approach /3 is given: 

Algorithm N, Kalker (1983, 1988). 

For all i within the potential contact: 

Step 0 Suppose 07 = 0, 1 < / < 2n + 1; we assume 77 
given. 

Step 1 If d, < 0, then i is placed in index set (= set of 
indices) K. If d{ > 0, then / is placed in index set 
B (K: contact, B: surface of the half space outside 
contact ("exterior")). 

Step 2 We set d/ = 0 if /' is in K; we set 07 = 0 if / is in 
B. These are In + 1 linear equations for the In + 
1 unknowns 07; solve them. 

Step 3 If / lies in K and the just-found <r, < 0, i will remain 
in K. If /' lies in K and the just-found at > 0, one 
such i will go to B, If / lies in B, i will remain in B. 

Step 4 If .fiT is changed in Step 3, then go to Step 2. 
Step 5 Now a, < 0 in K; 07 = 0 in B, dt = 0 in K. We 

verify whether d, > 0 in B. If / is in B and dt < 0, 
one such i will go to K; otherwise K and B remain 
unchanged. 

Step 6 If K is changed in Step 5, then go to Step 2. 
Step 7 Now 07 < 0 in K, a, = 0 in B, d: = 0 in K, d{ > 

0 in B: We are ready. 

Remark. This algorithm can be proved rigorously to con
verge towards the unique solution of equation (20) in a finite 
number of steps (see Kalker, 1983, 1988). The number of 
iterations, though finite, may be large; actually it will be of 
the order of 4«, «: the number of elements in the contact area. 

Two methods may be used to accelerate the process: 
(1) Only one element of A" goes to B, and vice versa. Hence, 

the system of linear equations of Step 2 changes only little, so 
little that the solution may be updated by a simple update 
formula which requires only 0(n2) elementary operations. 

(2) Alternatively one may modify K and B in Step 3 by 
allowing all i to go to B for which the just-found 07 > 0; and 
by allowing all i to go to K in Step 5 for which d{ < 0. 

The first alternative is attractive in that the proof of the 
algorithm remains unchanged. The second alternative is sim
pler, but our proof of the algorithm breaks down. Yet the 

total force Qz= \ (o(x)) dx is given, we use the discretized 
J-CO 

version Qz= - Y] a 07 as an auxiliary condition. The approach 

/3 will be considered as Lagrange multiplier (an unknown) of 
this auxiliary condition, and if we define 

Wl (Xj) - W2(Xi) = J ] (Aij°j + BUTJ) 

j 

(Ay, Bjf. influence numbers) 

then the tableau is: (21) 

2^ Ayoj - R = - hn (i and j in K) 
j 

i 

with h,i=h' (x^ - J ] Bf/Tj. 
J 

The algorithm runs as above, with /3 as an extra variable that 
can take any value. 

3 Friction 
Let Vv be the slip of body 2 over body 1 when 1 and 2 are 

considered rigid. In the time interval (T - t, T) the relative 
displacement will be Vvt. As a result of the elastic deformation 
of the layers on the cylinders, the particle that was in x at the 
time T has undergone a tangential displacement of u (x) with 
respect to the cylinder. At the time T — t the particle was in 
x + Vt (see Fig. 6). The tangential displacement of the particle 
with respect to the cylinder at the time T — t is u(x + Vt). 
The net tangential displacement of the particle with respect to 
the cylinder in the time interval (7"- r, 7) will be u(x) - u(x 
+ Vt). 

Therefore, the total tangential displacement of the cylinder 
(2) with respect to (1) is: 

vi(x) = Vvt+ (« , (*+ Vt) -u2(x+ Vt)) - (ul(x)-u2{x)). 

(22) 

Rolling velocity 
Particle velocity 
-^ 

o:same particle 

Fig. 6 The movement of a particle through the contact plane 

668 / Vol. 58, SEPTEMBER 1991 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



If we choose Vt = a, where a is the width of an element, then 
we get 

Vi = av + ui+i-Ui\ Vt = a (23) 

(u = ui-u2). 

With the aid of the influence numbers tij is expressed linearly 
in the 07 and the 77. Concerning the forces we observe that the 
stress is continuous across the interface of the bodies, so that 

Ti(x) = T2(X), o{(x) = a2(x). (24) 

We assume that the friction can be described by the law of 
CouIomb-d'Amontons, with a friction coefficient / . Discre-
tized, this reads: 

l r , l < - / a , ( a , < 0 ) . 

If the slip at element /, 17 ^ 0 then we have 
77 = >,- sign (v,) in K. (25) 

The problem is now solved by the following algorithm. 

Algorithm F (Kalker (1983, 1988)). 

Step 0 Initiate with 77 = 0. We work only within the contact 
area K, i in K, cr, is given. 

Step 1 If IT,-I > —fa (CT, < 0,), then / is placed in S (index 
set: area of slip). If IT,-I < - /07, then / is placed 
in A (index set: area of adhesion). 

Step 2 If / is in S, T,- is set equal to -fa{ sign (77) which 
means that 1771 is reduced to —/o>, while 77 retains 
its sign. If /' is in A then 17 is set equal to 0. These 
are linear equations. Solve them. 

Step 3 If / is in A, as well as the just-found 1771 > - /07, 
then /' is placed in the area of slip. No further mu
tations; the area of adhesion can only decrease. 

Step 4 If A is changed in Step 3, then go to Step 2. 
Step 5 Now it holds in A: 1771 :S - fa-, and 17 = 0, and 

in S: 1771 = - /(j,-. If i is in S and 77 and 17 have 
the wrong sign with respect to each other, see equa
tion (25), then 1 is placed in the area of adhesion 
A, see equation (25). 

Step 6 If S is changed in Step 5, then go to Step 2. 
Step 7 Now it holds in A: 1771 < -fab and 17 = 0: area 

of adhesion, and in S: 77 = fa, 17 / 1171: area of 
slip. We are ready. 

Remark. When in step 3 only one i with 1771 > -fa, is 
allowed to pass from the area of adhesion A to the area of 
slip S, and when in Step 5 only one i for which 77 and 17 have 
the same sign is allowed from S to A, the algorithm F can be 
proved rigorously, in the same manner as N. Then, as in N 
(see the Remark after it) there are the same two alternatives 
by which F may be accelerated. We have adopted the second 
alternative, which has actually been given in our presentation 
of F. As in N, no failures have been observed. 

3.1 The Panagiotopoulos Process. Because the algorithm 
F assuming a certain 07 will change the 77 with respect to their 
original values, the algorithm N, which uses these values as 
data, will change the a-, as well, thus causing a discrepancy. 

We solve this by repeating the algorithms Â  and F: NF NF 
NF. . . until a convergence of 07 and 77 occurs. This process is 
called the Panagiotopoulos (1975) process. If it is performed 
once: NF, it is called the Johnson process (Bentall et al., 1967). 
There is no guarantee that the Panagiotopoulos process con
verges, and if it converges, whether the solution found makes-
sense. In my examples, treated by the LAAGROL program, 
no complication occurred, and a most convincing convergence 
was reached after 4 x NF. 

4 Elasticity and Viscoelasticity 
In Appendix E it is shown that for a certain class of vis-

coelastic materials, 

^{Xbr)=W)aT»-W)°fu,bu (E14) 

with E(r) as in Appendix E, equation (E15). The superscript 
/ indicates a complex Fourier transform with respect to time 
and parameter r (see Appendix E, equation (E7, sqq.). It is 
shown in Appendix E that efj, a^j, uf form a purely elastic field 
for any value of the parameter r. Hence, we may introduce 
the Airy stress function H as in equations (2)-(7) (we omit the 
parameter and the superscript f): 

" - E
 H,zzz~ ^ H,x 

1-v2 

J J ±L,XKX p 11,XZZ 

(26a) 

(26b) 

Hzzzz + 2HXXZZ + Hm = 0, H~ 0 if I x I - 00 (26c) 
az = Hm, T„ = - HiXXZZ, given at z = 0 (26d) 

(w,w) = (0,0)ifz = (-l)«~1Z»a. (27) 

Equation (E15fl) specializes v to be constant, and E to 

E(r) = (1 -jqr)/(K-jqQr) (E15«) 

with K, Q, q viscoelastic constants which are interpreted in 
equation (El5). When K = Q, one regains elasticity with E 
= l/K. Consequently, equations (26a,b) become 

(1 -jqr)vf= (K-jqQr){(1 - v2)rfzzz~ v(\ + vWm}. (28a) 

(1 -jqr)wr= (K-jqQr) ((1 - V
2)rf„x- v(\ + PWXZZ). (28b) 

We transform back, (cf. equation (El6)): 

(1 + q d/dt)u =(K+ qQd/dt)[(1 - v2)HiZZZ-v(\ + v)HtXXZ} 

(29a) 

(1+q d/dt)(w= (K+qQd/dt){(i-v
2)H_xxx-v(\ + v)HiXZZ}. 

(29b) 

In steady-state rolling in the positive x-direction with velocity 
V > 0, d/dt = - Vd/dx, hence 

(\-qVd/dx)u = (K - qQVd/dx) {(I - v2) Hzzz 

- v(\ + v)H:XXZ] (30a) 

(\-qVd/dx)w = (K - qQVd/dx) {(1 - c2) H:XXX 

- v(\ + v)H,xzz]. (306) 

We introduce a complex Fourier transform with respect to x, 
with k as parameter and a hat ( ) as transform indicator. 
The complex Fourier transform with respect to time is de
scribed in Appendix E, Section E4; the transform with respect 
to position is analogous. We obtain in a multilayer 

E, 
1+Vi 

u(k,z) = (1 - vW&z + Vik2HiZ, 

i=l. . . ,ma, ma: number of layers; E: 
1 +jq,Vk 

Ki+jq&Vk 

E, 
1 + v, 

w(k,z)=jk\\-vdH+jkvfi,z 

°z=Jkl,H,z> rxz=k2HiZZ 

(31) 

(32) 

(33) 

(34) 

with 

H.zzzz - 2l<2HiZ , + k4H=0. (35) 

We confine ourselves to body 1; the layer of body 2 is treated 
similarly. 

We solve the differential equations (35); they are ODE in 
z; for ft. We find in layer Z,,-
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Li={(x,z)\Di_1<z<Di}, / = ! , . . . ,m, 

D0 = 0,Dm = D 
(36) 

that 

H(k,z)={Ai(k) + zBl{k)}ek+{C,ik) + zGi(k)}e-kz, 

Ah Bj, Ch G,: integration constants depending on k. 
(37) 

integration constants Ait Bh C„ G,-, i = 1,. . . ,m. The coef
ficients of these equations and the integration constants are 
functions of the transform parameter k. 

Let 

A, = (Ah B„ C„ G,)T, 0 ,= (0, 0, 0, Of, i= 1. . . ,m. (43) 

Then the boundary conditions (42) become, in symbolic form 

Consequently, the transformed field quantities become, in 
the transformed layer Lh 

Uj(k,z) = 

^ = {{k, z) l A - i ^z<Di), i = 1,. . . ,m 

E, 

+ 

![{kHA, + zBd + (3-2v,)k%}eKZ + 

•/t*(C,+zGd + (3-2y/)/c2G,)e- fe] 

* , ( * , z ) = , ^ ^ [ { * 3 M / + «B/) + 2vik
1Bi}ekz + 

+ [/c3(C, + zG,~ 2vik
i G,)e-kz] 

3zi(k, z) = jklikHAi + zB,) + k2Bi) ekz + 

+ I -k3(Cj+zG,) + £2G,-)e-fe] 

fxzi (k,z) = k[[k3 (Ai + zB,) + 2k2Bi\ e"z + 

+ {^ (C ; + zGi) - 2k2Gi)e'kz] 

3xi(k,z)=-jk[{k3(Ai + zB,) + 3k%} ekz + 

+ {-k3 (C, + zG,) + 3k2Gj) e~kz] (k,zeL,. 

(38) 

(39a) 

(396) 

(39c) 

(39d) 

(39e) 

N 

-Ar 
B, 

c, 
G, 

A2 

9 • * 

-A„,_ 

= 

~o(k)/k~ 

r(k)/k 

0 

0 

o2 
• 

- o,„ _ 

s * 

~ ^ i -

* i 

c, 
G, 

A2 

• 

—Am _ 

= AT' 

-a(k)/k~ 

t{k)/k 

0 

0 

o2 
• • • 

_ o,„ _ 

We write 

A : =k3Ah B; = k%, c; = k3ch G; = A:2G, (40) 

and omit the primes again. In terms of the new definition (40) 
of Ait Bh C„ G„ we obtain 

(44) 

where N is a 4m x 4m complex matrix function of k which 
is regular and continuous everywhere. 

Define S(k) as the first column of TV"1, and T(k) as the 
second column of TV"1. Then we have, if S and T are parti
tioned: 

i/k 

S/, T,- are complex 4-vectors. (45) 

We are interested in the response of the layered medium to 
the normal surface load 

r A , i 
* 

Am 
= 

r s r 
* 

3 m 

b/k + 

r T i i • 
• 

T 

Ui(k,z) = —[{A, + (3 - 2v, + kz)Bi)e
kz 

<r0(x) = /(*) = 0 \x\>a 

Wi(k,z) = 

+ [ - Q +(3 - 2vt - kz)Gi)e~kz] 

fc^ [{A, + (2i», + kz)Bi}ekz 

+ [Ci + (kz - 2x,-)G,-)e-fa] 

ozi(k,z) = jk [{A, + (1 + kz)Bi}ekz 

+ {-C, + (1 - kz)Gi}e-kz] 

fxzi(k,z) = k[[A, + (2 + kz)Bi)e
kz 

+ {C, + (kz - 2)Gi}e-kz] 

Sxi(k,z)= -jk {[A, + (3 + kz)Bi] ^ 

+ ( - C , + (3 - kz) G,) e~kz\, (k,z)Z L{. 

We consider the boundary conditions: 

(a) um(k, D) = wm (k, D) = 0, D = £>ffl. Perfect 
adhesion between the layer system and the rigid 
substrate. 

(b) 3z(k, 0) def 3{k) = prescribed, fxzi(k, 0) 

rfe/ f(k) = prescribed. Surface loads 

prescribed. 
(c) <?,•(£, A ) = ",+ i (A:, A ) ; iv, (*> A ) = w,+ 1 (A:, 

A ) ; szi (k, A ) = ffz,/+i (k, A ) ; ?«,• (£, A ) = 
fxz.i+i (k,D,), i=l,. . . ffj-1. Continuity of w, 
w> ffz> T« o n t n e inner boundaries between 
the constituent layers. 

(41a) 

(41b) 

(41c) 

(41d) 

(41c) 

= 1 l x l < « 

/(A;) = (2sin(A:fl)}/A: 

(46a) 

and also to the tangential surface load 

T0(X) = I(X). (466) 

We will approximate the true surface stress distribution by 
the following piecewise constant one: 

n 

<**)= E ohI(x-2ha) 
(47) 

T(X)= Yt rhI(x-2ha) 

(42a) 

(42b) 

(42c) 

Equations (42) constitute 4m linear equations; for the 4m 

where (oh, rh j are constants to be determined by the algorithms 
TV and F, and the Panagiotopoulos process. 

The calculation consists accordingly of two parts: 
(1) We must know the elastic field F" (x, z) = (u"(x, z), w" 

{x, z), o% (x, z), TxZ (x, z), 4 (x< z)) r due to the surface load 

a(x) = I(x),T(x) = Q (48a) 

and the similarly defined elastic field F' (x, z) = («' (x, 
z),. . . , ,. . . ) r d u e to the surface load 

O(X) = 0,T(X) = I(X). (486) 

We call F" and F' the normal and tangential influence func
tions of the problem. 

(2) Once we have the influence functions, we determine the 
weight factors [a„, TA) by the algorithms TV and F, and the 
Panagiotopoulos process. Then the resulting field is 

670 / Vol. 58, SEPTEMBER 1991 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



V(x,z) = £ {ahF"(x-2ha,z) + ThF
!(x-2ha,z)}. (49) 

h=-n 

For the determination of (o>, rh) we need, apart from the 
surface load, the surface displacement: 

n 

u(x)d^ful(x,0) = £ [ahu
n(x-2ha) + Thu'(x-2ha)} 

= A = - n 

(50a) 
n 

w(x)defwl(x,0) = Y, {<yhw"(x-2ha) + Thw'(x-2ha)). 

(506) 

4.1 The Fourier Transform of the Influence Functions. We 
transform o0 (x) and T0(X); we denote the result by 
a0(k), f0(k), and we drop the subscript zero. For a purely 
normal or a purely tangential load we have 

S"(k) = (smka)/k, f"(k) = 0 (51a) 

^ ( 0 = 0, f'(A:) = (sin ka)/k. (516) 

Usually, our considerations hold for a purely normal and for 
a purely tangential load, and then we will drop the superscripts 
"n"oi"t". Occasionally, however, it is essential to distinguish 
between the two types of loading, and then we will use the 
superscripts. 

We recall that the connection between the elastic field F and 
the integration constants A,- was given in equation (41). In 
symbolic form we have 

F = M;A, = M,(S/ d/k + T,f/k) = S*$/k + T*f/k, (52a) 

with Mi a complex 5 x 4 matrix depending on k and z, defined 
by equation (41); (526) 
S,-, T,: see equations (42), (44), (45); they are complex 4-vectors, 
functions of k and z. (52c) 
So we have obtained the elements of F; they are complex. 
However F itself is real, so that 

F(*) = 

so that 

e1"" F(x) dx = \ ¥(x) cos (kx) dx 

A +j _ T(x) sin (kx) dx 

- J Re (¥(k)) = ¥(x) cos (kx) dx: even in k. (53a) 

Im (F(A:))= j _ o ¥(x) sin (kx) dx: odd in k. (536) 

On the other hand, 
1 f°° 

F(x) = — ¥(k)e~Jkxdk = 
2-K •J"x 

. poo . poo 

= ̂ r\- Re(t(k))e~Jkxdk + ̂ - \_ Im(t(k))e-Jkxdk 
27T J °° 27T » °° 

so that, since ¥(x) is real, 

Re(F(A:)) cos kxdk i r 
7T J 0 

IT J „ 
Im (¥(k)) sin (kx) dk (54) 

which are real integrals, one a cosine, one a sine transform. 
We will show in Appendix C how these integrals can be cal
culated numerically, fast, and with a prescribed accuracy. 

When we consider elasticity rather than viscoelasticity, K = 
Q, and some gain in calculation speed can be obtained by 
keeping track of the real and imaginary quantities. Then equa
tion (52) can be formulated in terms of purely real and purely 
imaginary components of F, while there is hardly any need of 
complex arithmetic. Either one or the other integral appears 
alone in equation (54). This yields a reduction in calculating 
speed of roughly a factor 4, which is due to the circumstance 
that a complex multiplication results in 4 real products instead 
of in 1. On the other hand, the algorithms N and F are equally 
fast in viscoelasticity as in elasticity, so that once the influence 
functions are known, the viscoelastic and elastic calculations 
are equally fast. 

5 Conclusion 
A fast method has been presented for the calculation of the 

elastic field on and inside a viscoelastic or elastic multilayered 
cylinder. It is found that the calculation times for a viscoelastic 
multilayer differs not too much from its elastic counterpart. 
Details of the calculation are given in the Appendices of this 
paper, as well as a dimensional analysis. 
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A P P E N D I X A 

A Second-Order Approximation for the Deformed Dis
tance 

In some applications it is found that in equation (17) 

0 = d(x) - dx (x) def h (x) + w, (x) - w2 (x) 

h(x)=zlW-z2(x) (17)(A1) 
is not satisfied at all points of the contact area of one specifies 
that di (x) = 0 in contact. Apparently, the deformed distance 
of equation (Al), which has a second-order error, is not ac
curate enough. In this Appendix we derive an expression d2 (x) 
of d(x), with third-order error. To that end we reanalyze the 
deformed distance (see Fig. Al). 

From Fig. A 1(a) it is clear that 

d(x)=z^-zl (A2) 

So we must calculate z*a, a = 1,2 (see Fig. 1A(6)). We note 
that u„, a = 1,2, is the displacement at the surface of the oth 
body, at x-coordinate xa (XZ in Fig. Al(6)). We calculate ua, 
the displacement component tangential to the undeformed sur
face (^Kin Fig. Al (6)), and wa, the displacement component 
normal to it (VZ in Fig. Al(6)). They are assumed to coincide 
with the x, z displacement components in the half-space ap
proximation. The auxiliary quantities w* = wa/cos (za,x) = 
wa + third-order terms. So we have that 
z* =Za(x) + w* =za(x) + wa(xa) + third-order terms 

= z„ (x) + wa (x - ua (xl) + wa (x)za,x) + third-order-terms 
= za (x) + wa (x - ua (x))+ third-order terms (A3a) 
= za(x) + wa(x) -ua(x)w„iX(x)+ third-order terms. 

(A36) 
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parameters of the problem. This will result in the construction 
of a number of parameters by which the solution, viz. the Airy 
function H, will be nondimensionalized. 

The problem is governed by the following equations and 
inequalities. 

(1 - qJa Vd/dx) u = (Kja - qJaQja V d/dx) X 

X [Q-ifeH^-rjJl + vjJH^) (30«)(Bla) 

(1 - qJa Vd/dx) w = (KJa - qJaQja V d/dx) x 

X I (1 - v%)H,xxx- Vjc/i\ + pja)HiXi 

--H, # , 

**,XXXX "r" ^^,XXZZ ' **,ZZZZ 0. 

(306)(B16) 

(26d)(B2a) 

(26e)(B26) 

Subscript j : sublayer number, a: cylinder number. 
Boundary conditions are: 

The field quantities u, w, az, TXZ are continuous at the interfaces 
(-Y)"-1 DJa,j = 1,. . . ma-l; u = w = 0 at z = ( - 1 ) a~l 

Da, where the interface is with the rigid substrate, see equation 

(x,z7(x)) 

( x 2 , z 2 ( x 2 ) ) 

Fig. A1(D) 

Fig. A1 (a) The deformed distance d(b) construction of (x, z'2) 

Therefore, 

d(x) = d2{x) + third-order terms, 

d2(x)^zl(x)-z2(.x) + wi{x)-w2(x) 

-W\AX) uAx) + w2x(x)u2(x) 

(13). 

Further, the contact formation conditions: 

d(x)=h(x) + w(x )>0 , = 0 in contact; 

w(x) = Wi(x,0) - w2(x,0); 

a(x) = az (x,0) < 0 in contact, = 0 outside contact; 

(B3) 

h(x) (w+w) *-f>=**-e 
(A4a) and the frictional conditions are: 

I T I < —fa, T(X) = TXZ(X,0) on the entire surface ( 

if v ;*0 then T = -fa sign (v) (v. slip of body 2 over body 1) 

(19)(B4a) 

(")(B46) 

(25)(B5a) 

where it can be derived from equation (22) that 

s = v/Vt = v + du/dx; t:& time increment 

V: rolling velocity 

u(x)=ul(x,0)-u2(x,0); 

Vt = a, element length. (B5fe) 

= ddx) + w2>x(x)u2(x)-wUx(x) Ui(x) (A4b) 

= Zi {x)-z2(x) + wy (x- ux (x)) - w2{x- u2(x)) (A4c) 

= dl(x) + wl(x-ui(x)) 

-w{(x)-w2(x-u2(x)) + w2(x). (A4rf) 

d2{x) is the promised expression for d(x) with third-order 
error. 

If we calculate so that dx (x) = 0, we are left with a deformed 
distance <3?error which equals 

terror (x)=W2<x(x) U2 (x) 

- wi,x M w i W + third-order terms, (A5«) 

= wl (x- w, (x)) - w, (x) - w2(x- u2(x)) 

+ w2(x) + third-order terms. (A&) 

In the correction terms of the constituent wa<x and ua(x) need 
not be calculated very precisely. 

A P P E N D I X B 

Dimension Analysis 
In this Appendix we consider the interdependencies of the 

As Vt > 0 we can use s = v/Vt instead of v in equation (25). 
It is seen, by enumeration, that the problem is uniquely 

defined by the parameters 

P= (qjaV,Kja, Qja, vja, / , v, (3, A, Djol) (B6) 

and that the variables are (x, z). Furthermore, the problem is 
described by the Airy function H 

H=H(P; x,z). (B7) 

Quantities of interest are: 

u,w,ax,rxz,a^bi<b2 

(the endpoints of contact), Q (total force). (B8) 

Let X, n, 7/ > 0, 0, 0 be real, positive scale factors, and 
define 

qJaV = \qJctV, Kja =Kja/n Qja =QJa/iJ> 

Vi~ =Vja, f = / , V =7fV 
(B9) 

0 =Aijj8, A =vA/\, Dja =DJa 

x =~\x, z =Xz 
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6, = X6„ b2 = \b2, Q 
[•52 

) dx = X/MJQ. (B12) 
and let 

P= (q~y, Kja, Qja, vJa, f, v, 0, A, DJa). (BIO) 

The Airy function with parameters P, variables (x, z), which 
satisfies the biopotential equation, and has displacements (w, We can use equations (B9)-(B11) to reduce the number of 
v), stresses (a,r,ax), deformed distance d and slip s, is given parameters needed to specify a problem. Set 

\=A^p-in,V = A-inp-in,^K | (B13«) 

with K some representative elastic constant, of dimension m2/Nj 
Then, 

H{P;x,z) = \-*ii-lv-1 H(P x,z) 

X" V V =A-3/2P5/2K-1, P given by equation (BIO); 

(B9) is: 

qjctV=AU2p~W2qjaV, Kja = KjJK, Qja=QjJK 

1 = 1 

x=Al/2p-[/2x, 

/ = / 

A = l 

i=Al 

; = A~W2P-U2P 

DJa = Al/2&-U2Djcc 

>. (B136) 

by equation (B7)^ The Airy function of the contact problem 
with parameter P, variables (x,z) is given by H(P;x,z); it 
satisfies the bipotential equation in the variables (x,z). It will 
be shown that 

H(P;x, z) = \4
mH(P;x,z). 

To that end we define 

H0(P; x, z) defXV'! H{P; x,z). 

(Bll) 

The we have: 

H0,i = \-lH0iX=\^r, H,x{P;x,z) 

H0ii = \~lH0iZ = \3
M HtZ(P;x,z). 

Higher derivatives satisfy similar formulae. Clearly, then, 
H0 (P; x, z) satisfies the bipotential equation in the variables 
x, z. So, H0 is a feasible Airy function in the variables x, z, 
and field quantities («, w, a, f, ax, d, s). We calculate these 
field quantities. Consider u: 

(l-q~~Vd/dx)u = (l-qjaVd/dx) u = 

= {Kja-qjaVQjad/dx) 

X ((1 - v2
a) H0,zzz- vJa(l + vJa)H0,xxz I = 

= ^v(KJa - qJa VQjJ/dx) 

X ((1 - v)a HiZZZ{P;x,z) - vja{\ + vJa)HtXXZ(P;x,z) j 

=» U = \t}U. 

Similarly, by equation (Blft), w = X-qw; by equation (B2a), 
o- = ni)(j, T = jar)T, bx = fi-qax. Therefore, the field quantities 
" , w, a, T are continuous throughout the layer, since u, w, 
Oj T are, and X, 17, n are constants. The undeformed distance 
h (x) corresponding to H0(P; x, z) is (see equation (B4b), 

h(x) = X-qh (x) =» equation (B4o) 

is satisfied in the barred system 

and the frictional conditions (B5) are likewise satisfied with 
s = r)S. 

This establishes that H0 is the Airy function of the contact 
problem for the parameters P and the variables x, z, so that 
it can be identified with H(P; x, z), as we set out to prove. 

We can derive expressions for the modified contact end 
points and the total force: 

As we see two parameters drop out, as J3 = 1 and A = 1, 
while one of the constants Kja, QJa may be likewise set equal 
to 1, by a proper choice of K. 

An important special case is the case of symmetry about the 
plane z = 0. Then we have that 

Dj = Dn =Dj2;Ri =R2 = R(A = \/R) geometric symmetry 
vj=vn = vj2\(ij=Qj\ = qi2, 
KJ=Kn= Kn '• QJ=Syi = Qn material symmetry 

(B14) 

and in equation (B136) one may omit the subscript a. 
In this case of symmetry we decompose H(P; x, z) into two 

sub-Airy functions H„ (x, z) and Ht(x,z). Quantities pertaining 
to H„ are given a subscript n\ similarly, quantities pertaining 
to H, are distinguished by a subscript t. In addition, quantities 
of the upper cylinder (z > 0) carry a subscript 1, the quantities 
of the lower cylinder (z < 0) carry a a subscript 2. All Airy 
functions are defined in the entire space, and satisfy equations 
(Bl), (B2), (B3); 

a„, a„ a and T„, T„ T are continuous at z = 0. (B15) 

In addition, 

H(P;x,z) = H„(x,z) + H,(x,z); (B16a) 

H„ (x ,z) is odd in z 

=*Hnz (x, z) is even in z (B16&) 

H,(x ,z) is even in z 

=>HUz (x, z) is odd in z. (B16c) 

Simultaneous satisfaction of equations (B15) and (B16) is pos
sible owing to the symmetry of the problem. 

Inspection of equation (Bla) teaches us that in view of equa
tion (B166) un is even in z. Similarly, we find by inspection of 
equations (Bl) and (B2a): 

u„(x, z), w,(x, z), a„z(x, z), 
TtxZ(x>z), anx{x, z) are even in z; (B17a) 

u,(x, z), w„(x, z), alz {x, z), 
TnxJ<x, z), alx{x,z) are odd in z- (B176) 
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Consider the contact formation conditions (B4). We have: 

w(x) = w,(x ,0)- w2(x,0) 

= w(x,0 + ) - w ( x , 0 - ) is discontinuous; (B18a) 

= 2w„(x,0 + ) . 

Since alz (x, z) is odd and continuous at z = 0, atz (x, 0) = 0, 
and 

o(x) = onz(x,0) + olz(x,0) = o„z(x,0). (B186) 

So the tangential (/) quantities do not affect the contact for
mation which is governed by equation (B4), and we determine 
H„(x, z) without being influenced by the tangential quantities 
(f). Consider the frictional conditions (B5) 

u (x) = ut (x,0) - «2 (x,0) 

= u(x,0 + )-u(x,0-) is discontinuous; (B186) 

= 2u,(x,0 + ) . 

Since T„XZ(X, z) is odd and continuous at z = 0, T„ (X, 0) = 0, 
and 

T(X) = Tnxz{xfi) + T,JX, 0) = T,JX,0) . (B19a) 

So the normal (n) quantities affect the tangential problem only 
through the traction bound (—fa), which is determined without 
reference to the tangential quantities (?). Apart from that, the 
normal quantities («) do not affect the calculation of H,. The 
parameters P„ which determine the Airy function H„ of the 
normal contact problem are the same as of equation (B13Z>), 
but the friction coefficient / and the creepage v may be omit
ted. The parameters are 

Ay2fi-U2qjV, Kj/K, Qj/K, Vj, 

Am$-in Dj (all dimensionless). (B20a) 

In case there is only one homogeneous elastic layer on each 
cylinder, we can take 

Kj = Qj = K,qj = 0,Dj=D, 

and the parameters are only vu Al/2(3~l/2D. (B20b) s o that 

The parameters P, which determine the Airy function H, of 
the tangential problem are (B136), 

AW2t3-l/2qjV, K/K, Q/K, Vj, f, 

2 A A-inp-inv,Ainp- ~j 

v and / occur only in the slip, and in the traction bound of 
Coulomb's law (see equation (B5)). 

Suppose we divide r by the friction coefficient/in equation 
(B5«). The easiest way to accomplish this is to divide Ht b y / . 
This does not affect the normal stress a, as H„, and hence the 
normal quantities are not affected. ut, however, is affected; it 
is divided by / To retain the slip equation (B5&) intact, v 
should be divided by / The direction of s is not affected, as 
/ > 0. So the governing parameters of the tangential problem 
become: 

Axn&-y2qjV, K/K, Qj/K, Vj.. 

A-W2p-l/T]v, AW2(3- <Dj. (B21(a) 

In case that there is only one homogeneous elastic layer on 
each cylinder, we can take, as in the normal problem, K = Kj 
= Qj, Qj = 0, Dj = D, and then the parameters are only 

u2rl", (B216) Vl,A
i/2p-1/2D,A-infi 

all three of which are dimensionless. 
In the case that there is no symmetry, but that each cylinder 

is covered by a homogeneous, elastic layer, there are seven 
dimensionless parameters, viz. 

Kt/K2, vu v2,f, A~U2rW\ A,/2p-U2DuA"2p~"2D2. 

(B22) 

A P P E N D I X C 

Numerical Analysis 

In this Appendix we consider the numerical analysis of the 
inversion of the field quantities t(k; z). To that end we in
vestigate 

(1) the behavior of f(/r, z) near k = 0, 
(2) the behavior of t{k, z) as k -~ <x, and 
(3) the numerical inversion of the Fourier integrals. 

CI The behavior of F(k, z) near k = 0. As we see from 
equation (52), a factor k occurs in the denominator of the 
transform F. It is therefore interesting to investigate what 
happens when k — 0. To that end, we expand F in a Laurent 
series about k = 0: 

F(/c) = F_,/A: + F() + F1A: + F2£2+. (CI) 

where F, € (Ĉ  
Since Re (F(k)) is even in k, and Im (F(k)) odd, F2f is real, 

and F2f_ i is purely imaginary. 
It is of interest numerically to know F0 and F_[. 

CIA F0 . We have: 

Fo = ^ (A:F j t ) = ^ ( M , ( S , a + T;r)) 

S;, T,-, M ; regular in k = 0. 

By equations (48) and (46a) we also have 

(C2) 

a(k) = 6 sin (ka)/k = 6a(\--k2a2\, 6 = 0, or 1 

r(k) = (1 - 6) sin (ka)/k = (1 - 9) a (l - i k2a2 j 

a(0) = da, &'(0) = 0; 'defd/dk 

T(O) = ( l - 0 ) a , f'(0) = 0. 

(C3) 

(C4) 

Then we have 

F0 = aMftO) (0S,(O)& + (1 - 0)T,(O)f) 

+ «M,(O)(0S;(O)a + (1 - 61) T/ (0)r). (C5) 

M/ follows straight from equation (41). The S, and T, constitute 
the first two columns S and T of the square, regular matrix 
N~l of equations (42) and (44), independent of z, as follows: 

S = (Sf STJT, T = (Tf,. . . ,TT
m)T. (C6) 

The derivative of the inverse of N reads 

[N{k)-1}' = -N(k)-ilN(k)}'N(k)-i (CI a) 

so that 

S'(k)=-N(k)-l{N(k))'S(k) 

(Clb) 

T(k)=-N(k)-i[N(k)}'T(k) 

all factors of which can be determined straightforwardly. 

CI.2 F _ ; . It will appear useful to separate the term 
t-i/k (see equations (CI), (52)) from the rest: 

t(k)= [t(k)-t_l/k) +t_l/k 

F_ ,= limkFk = a{dS*(0,z) + (l-d)T*(0,z)} (C8) 
k— oo 

F ( / t ) - F _ , / / t = 0 ( l ) as A:-oo. (C9) 
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C2 The behavior of F (k, z) as k — oo. Also important is 
the behavior of t(k, z) as k — ±00. In view of equation (54) 
it is sufficient to consider only the case that k — °°. We must 
consider the equations (42)-(41), which we will write out in 
abbreviated form in Table 1. For the abbreviation we use the 
following convention: 

that the top layer completely determines Cx and Gx: they are 
O(X). The first interface makes A x, Bx, C2, G2 vanish asymp
totically. The second interface makes A2, B2, C3, G3 vanish. 
The bottom makes A}, B3 vanish, and we have solved the 
equations in first approximation, valid for k — 00. It may be 
found that 

a,b: arbitrary functions of k 

i= 1,2,3,. . . 

+ /' means {a+bkz)e +D'k 

- i means (a + bkz) e ~ D'k 

+ means {a + bkz) 

0 means 0 

X means "a known function of A:." 

In our order-of-magnitude considerations we confine ourselves 
to the most important terms, viz. the exponentials. 

We write out the equations for a three-layered medium. 
We start from the supposition that a positive exponential 

behavior of F does not occur, since otherwise a Fourier in
version is impossible. At the first interface, Ax and Bx are 
multiplied by e°'k, and at the top by eok. So Ax and Bx are at 
most of magnitude 0(e~Dlk) as k —• + 00, and the contribution 
of A1 and Bx at the top will be at most 0(e~D,k), which will 
turn out to be of secondary importance. We encircle the ele
ments in the first interface corresponding to Ax and Bu as the 
coefficients that determine the behavior of Ax, Bx. 

We turn to Cx, G\. At the top, they are multiplied by eok. 
At the first interface, they are multiplied by e~Dik. So they are 
at most O(l): then they remain bounded in the first layer, and 
on the first interface they contribute 0(e~Dlk) to F, well below 
the 0(1) contributed by Ax and Bx. We encircle the elements 
of C\ and Gx at the top, as the coefficients that determine the 
behavior of C\ and Gx. Now we see that Cx and Gx are actually 
of the order of magnitude of the knowns. A\ and Bx are not 
determined by the first two equations, and A2, . . . and A3, 
. . . are not involved at all in the first two equations. 

We turn to A2 and B2, and try to find the significant coef
ficients. 

First Interface: coeff = 0(ekD
l) 

Second Interface: coeff = 0(ekD
2), D2 > Dx\ =» A2, B2 

= 0(e~kD
2). 

From this we see that the coefficients of A2, B2 in the second 
interface are the significant ones. We encircle them. Similarly, 
all other encirclements are placed. 

When k — 00, the nonencircled coefficients give no contri
bution. Concentrating on the encircled elements alone, we see 

(CIO) 

y * ( - C , + G,) = 8<*) / - l l \ / c \ 

k(Cx-2Gx) = j(k) \ 1 - 2 / \GX) 

-©-(:::!) ©-©• 
(Cll) 

Note that all field quantities — 0 as k — + 00 when z > 0. 
One can obtain a better approximation of the behavior of 

theyl, by using the value of C b Gx we just obtained, viz. O(X). 
Enter these into the equations of the first interface; they are 
of magnitude 0(Xe~kD{). Next, one regards them as right-
hand sides. We see: 

Ax, Bx = 0(Xe~2Dlk) 

C2, G2 = O(X). 

We enter C2 and G2 into the second interface equation, and 
find 

A2, B2 = 0(Xe~2D2k) 

C3, G3 = O(X). 

Finally, we enter C3, G3 into the bottom equation, and find 

A3, B3 = 0(Xe~2D3k). 

Generally, it may be stated: 

C„ G,= 0(X), A„ B^iXe-20"1), 1= 1, 2, 3,. . . (C12) 

and 

t(k, z) = 0(Xek{z~2Di) + 0(Xe~kz) 

= 0(Xe-kz), D^^z^D,, A:-00. (C13) 

We emphasize once more that only the exponential behavior 
in k has been taken into account. 

Table 1 The equations for a three layered medium with the conventions (CIO) 
Top 
o(k) 

m 1st interface 
0\ 
* i 
az\ 
Txz\ 

2nd interface 

Bottom 

Ax 

+ 
+ 

+ 1 
+ 1 
+ 1 
+ 1 

0 
0 
0 
0 

0 
0 

5 , 
+ 
+ 

+ 1 
+ 1 
+ 1 
+ 1 

c, 
+ 
+ 

- 1 
- 1 
- 1 
- 1 

0 0 
0 0 
0 0 
0 0 

0 0 
0 0 

G, 
+ 
+ 

- 1 
- 1 
- 1 
- 1 

0 
0 
0 
0 

0 
0 

" 2 

M>2 

& *2 

Txz2 

u2 

w2 

°zl 
Txz2 

A2 
0 
0 

+ 1 
+ 1 
+ 1 
+ 1 

+ 2 
+ 2 
+ 2 
+ 2 

0 
0 

B2 c7. 
0 0 
0 0 

+ 1 
+ 1 
+ 1 
+ 1 

+ 2 
+ 2 
+ 2 
+ 2 

- 1 
- 1 
- 1 
- 1 

- 2 
- 2 
- 2 
- 2 

0 0 
0 0 

G2 

0 
0 

- 1 
- 1 
- 1 
- 1 

- 2 
- 2 
- 2 
- 2 

0 
0 

" 3 

w3 

5 * 3 

TATl3 

" 3 

H>3 

A3 
0 
0 

0 
0 
0 
0 

+ 2 
+ 2 
+ 2 
+ 2 

+ 3 
+ 3 

B3 Q 
0 0 
0 0 

0 0 
0 0 
0 0 
0 0 

+ 2 
+ 2 
+ 2 
+ 2 

+ 3 
+ 3 

- 2 
- 2 
- 2 
- 2 

- 3 
- 3 

G3 
0 
0 

0 
0 
0 
0 

- 2 
- 2 
- 2 
- 2 

- 3 
- 3 

= 
= 

= 
= 

= 

knowns 
X 
X 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
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Remark. It may very well be that the boundary conditions 
possess no "bottom" equations. Under those circumstances, 
"A-$ = B3 = 0" in Table 1 replaces the bottom equations. 
This will occur when the elastic layers are bonded to an elastic 
half space as substrate. 

C3 The Numerical Inversion of the Fourier Integrals. We 
saw in equation (54) that for the inversion the following types 
of integral must be evaluated. 

(54a) f(k) is even in k =>/(x) 

1 r°° 
= ~ 1 fit(k) cos (kx) dk = e\en in x. 

vrJ0 

(546) f(k) is odd in k =>f{x) 

IT -
= ~ I fi(k) cos (kx) dk = o&& in x. 

i rJ0 

In both cases we split the interval of integration into two parts, 
viz. [0,b] and [b,ao], where b will be chosen presently. It de
pends o n / . 

C3.1 The Integration Over [0,b]. We denote fR and fj 
both by g. We approximate g by a function ga which is so that 

f* 
\ g„(k) (cos (kx)) dk can be calculated exactly. Examples of 

such functions are 
— piecewise constant functions; 
— piecewise linear, continuous functions; 
— splines, i.e., piecewise cubic functions that are contin

uously twice differentiable. 
The simplest are the piecewise constant functions. Let ga be 

constant in the interval ((h — 1) c, he), with c constant, > 0, 
and value gh, h = 1, 2, 3 q, qc = b. Then 

he 

ga(k) cos (kx) dk 

2 sin (cx/2)~) A 
L Sh cos J N) ex 

{ b = qh 

0 ga(k) sin (kx) dk 

2 sin (cx/2)] (cx/2)-] « . f / 1\ 

cos h-2CX , sin h - - ) ex 

determined recursively (see equation (CI4c)). (CI5) 

We can easily approximate a continuous g by a piecewise 
constant ga (k), by setting 

8h = g H> (ci6) 

Call 

eh= max \g(k) -gh\, e = b max e,, 
*€[(A-I)c,Ac] h 

(C17) 

then the error of the inversion integral due to the integration 
over the finite interval [0, b] is 

b 

[g(k)-ga(k)] r errorfinite part 

''sin kx 

cos kx) )dx s i [g(k)-ga(k))dk <e. (C18) 

( A - l ) c ' 

We observe that we have that /# is continuous in [0,oo], as 
is {?/-(?_]/£)) , see equation (C9), w i t h / _ ! constant. The 
term (f-i/k) which must be added to the latter function to 
obtain fh can be inverted analytically: 

= -gh I sin [hex] - sin[(h - l)cx]) = 

{(2gh/x) sin (cx/2)} cos H) 

1 r , • /, xdk 

sign 
(C14a) 

he 

{h-\)c 
ga(k) sin (kx) dx 

1 

ign (x) f-

= 2 / - ! siga(x) 

dk 
sin (k\xl) -— = 

A: 

(C19) 

= ~£A (cos [(h - 1) ex] - cos [/JCX] j = 

= ((Zgh/x) sin (cx/2)) sin H) ex (CI 46) 

Note that the (finite) first factor is common to all terms, while 
the second can be determined recursively: 

sin 

H) 

H) 

ex = cos 

-sin 

ex = cos 

+ sin 
L 

— - lex :H) cos (ex) 

sin (ex) 

sin (ex) 

cos (ex). 

(C14c) 

by Abramowitz-Stegun (1965), equations (5.2.1) and (5.2.5), 
so that 

{00 

0 f,(k) sin (kx) dx 

= {0 ( / / - W-i/k)} sin (kx) dk + lf-t sign (x). (C20) 

C.3.2. The Integration Over [b,o°), When z > 0. We 
recall that by equation (CI3) the Fourier transform of all field 
quantities is 

i(k,z) = 0(e-kz)=>f(k) = 0(e-kz)ask-oo (C21) 

where we have omitted the factor X. We assume that we want 
the field quantities a fixed distance z > 0 below the sur
face.Then, if b is large enough, the behavior of 

f(k) =f(b) e
{b-k)\ b<k~oc. (C22) 

We given an estimate of the contribution to the Fourier 
integral by the tail of he integration, i.e., 

Consequently, 

f b=qk 

. g„(k) cos (kx) dk 

f» / s i n (&x)\ 
V / ( * ) ) dk. 
Jb \ c o s (kx)/ 
We have 
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, f™ , /sin kx\ f°° 
I / ( * ) lr)dk\s\ \f(k) 
h \cos kx) Jb 

dk = 2x 

« [ lf(b)\e(b-k)*dk = -\f(b)\. 
b z 

As f(k) = 0{e~kz) as k - oo, 

''sin to 
, , dk\=0[~e-bz 

cos Arx/ \z 
(C23) 

f"» J / s in [k(a + x)] + 

^ * \ c o s [Ar(a + * ) ] -

! /s/[6 (« + *)] + 
;7r \C/ [& l (a-* l ] 

sin [&(«-.<:)] 
e?A: = 

This goes to zero rather fast, so the procedure is: 

(1) Choose e; 

(2) Determine b so that - e"bz = 0 ( e ) ; 

(3) Determine c so that 

eA= max \f(k)-fh\<e/b 
kt[(h-l)c,hc] 

by inspection of f(k); 

(4) Perform equation (CI5). 

-cos [k(a-x)]. 

sgn (a - *)S/[61 a - x I ] \ 

- * l ] - C / ( 6 l a + *l) / 

sgn(0=l if f>0 

= - 1 i f / < 0 
(C30) 

where 

sin t , 7r v-» (— 1) JT 

2 £*0(2i!+l)!(2#!+l) 

(A-S 5.2.14) 

(C24) =/(z) cos z + g(z) sin z; / , g (see below) 

C.5.5. TTje Integration Over [b,oo), W-Tzen z = 
0. According to Section C2, Ax and B{ are 0(e~Dlk), k — 
oo, and therefore the tail of the integration may be neglected 
when b is large enough. Also, it was shown that 

M M (•*"•*)„„_., 
\GJ \ I 1/ \Kk)/kJ 

(A-S 5.2.8) 

( - l ) V " 
„_, (2n)!(2n) 

7 = 0.57722. . . Euler's Constant 

= / ( z ) sin ( z ) - ^ ( z ) cos (z) (A-S 5.2.9) 

S OO . CO 

COS t n 
— - r f f = + 7 + l n ( z ) + £ 

•7 t „ _ 1 

with 
3"(/t) = sin (*:«)/* 

f(A:) = sin(A:«)//c. 
(C25) with 

We go a step further, and determine the three as yet unknown 
surface field quantities, viz. u(k), w(k), ax(k). Indeed we 
have, by equations (41a), (416), (41c) 

/ ( z ) = z~' (z4 + «iz2 + «2)/(z4 + bxz
2 + b2) + r, (z), 

l < z < ° ° ; M z ) l < 2 x l 0 - 4 

g(z)=z-2(z" + a[z2 + a^)/(z" + b'xz
L + b^)+-o'(z), 

v=vi u(k)\ [-C+(3-2v)G](l + u)/E\ 

E=EX \w(k)\ = \j[C-2vG](\ + v)/E 

C=Cl3 G = Gl \Sx{k) \ -jk[-C+3G] 

(C26) 

From a comparison of equations (C25) and (C26) we find 

fu(k)\ l-H(\-2v) -2H(\-v)\ la(k)/jk' 

w(k)\ = \ - 2jH(\ - v) -JH(l - 2 K ) 

KoAk) \jk 2jk J \r{k/k 

H d e ^ , (C27) 

so that we see, since a(k) = 8 sin (ka)/k, r(k) = (1-6) sin l < z < o o lr/'(z)l <10" 4 

(*«)/*, 6 = 0 or 1, that a1=7.241163, «2 = 2.463936; A, = 9.068580, 

\am*wi->ve. WW**-**, ^=7.157433 ( A - S 5 . 2 . 3 6 ) 
\ax(k) I <2/k as fc-oo. (C28) ^ = 7 - 5 4 7 4 7 8 > ^ = i.564072, b[ = 15.723606, 

As to Q(k) and w(&), we propose to neglect the tail. The 
procedure is as in equation (C24), where (C24.2) is replaced b{ = 12.723684. (A-S 5.2.3.7) 
by 

The procedure is as in (C24), but (C24.2) is replaced by 2" . 
2 ') Determine b so that 2H(\ - p)/b<e. (C29) ' Determine b so that Ax and 5 , are negligible, that is 

The tail of the inversion of ax(k) can be expressed in sine 
and cosine integrals (see A-S) (= Abramowitz-Stegun, 1965) 
Chapter 5. Indeed, 

e~D^b = 0(e). (C31) 

Tail 
/ R e a x ( £ ) \ ^ j f - Sin (ka) / c o s k x \ 

\lmax(k)J * ^ k \ s i n kx) 
dx = 

Reference 
A-S Abramowitz, M., and Stegun, I. A., 1965, Handbook of Mathematical 

Functions, Dover, New York. 
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A P P E N D I X D 

Determination of the Position of the Ends of the Contact 
Area 

In many applications it is of interest to know the coordinate 
of the left and right ends of the contact area. A crude estimate 
of these coordinates is found by equating them to the outermost 
boundaries of the elements in contact. However, a better es
timate is possible. To find it, consider the normal traction a(x). 
It has a vertical tangent near the ends of the contact area, and 
in fact o(x) behaves like p\x-z\l/2 inside the contact area, 
where z denotes the .^-coordinate of the end-point under con
sideration. Here, p is a slowly-varying function of x inside the 
contact, and near z. 

To find z, we propose to take p constant. Consider the two 
abscissa xx and x2 where the traction a is known: a, and a2; 
we assume ô  > 0, a2 > 0, at ^ a2. x{ and x2 are best taken 
closest to z, a crude estimate of which is given above. For best 
signficance, xx and x2 are each identified with the center of an 
element. Then we have: 

u1=p\x1-z\U2,(J2=p\x2-z\W2 

=> a\/a\ = (xx-z)/(x2-z) 

=> z=(c2x2-a
2
2xl)/o

2
i-cj1). (Dl) 

Example: x{ = 1, x2 = 4; ax = 1, a2 = 2 = => z = 0. 

A P P E N D I X E 

A Note on Viscoelasticity 
El Elastostatics and viscoelastics are governed by 

Cij(xt) =« [uij(xi) + Ujj(xt)}: compatibility equations 

(Elfl) 

xf:Cartesian coordinates, (', j , k, h, (=1,2, 3 (E16) 

e,y = linearized strain = % (E1 c) 

Uj = displacement component (Eld) 

j=d/dx/, summation convention (Ele) 

and by 

Ojjj = 0; equilibrium without inertia and body force 

(E2a) 

ff,y: stress component, ffj,-= ff,7. (E2b) 

E2 Moreover, we have constitutive relations; for elasticity 
they are: 

Off = EWiifihk> Eiw = Em = Emj. Hooke's law (E3«) 

ehk=Shkijaij' Shkij=Skhij — Sijhk- (E36) 
The symmetries (Elc), (E2b), (E3a), (E3b) entail that there 

are only six independent stress and strain components 

"fa), e7(x,), 7=1 6 (E4o) 

(3a) and (3b) become 

aI=EIJeJ, ej=S,j Oj, (E,j), (S /y)>0.0. (E46) 

In case of isotropy, we have 
1 + " " 

etJ = —g- ay - - ahk Sv (E5a) 

&,j = 0 if ijt j , 5,.. = i if / =j (ESb) 

E: Young's modulus, v. Poisson ratio (E5c) 

E3 In viscoelasticity, the constitutive relations are time 
dependent, as well as the viscoelastic field; Hooke's law reads: 

<ri+S$ bj+. . . +S\"J
)dnaJ/dtn = 

= Ef) ej+Ef) ej+. . . +E\y) dmej/dtm (E6a) 

m,n€[0,l,2,. . . j ; (>) = d/dt, material derivative 

with time t. (E6&) 

S\j\ EJP are time independent parameters. (E6c) 

In case of homogeneity, all (visco) elastic parameters are in
dependent of the Xj. 

E4 We can reduce the viscoelastic field to an elastic field 
by applying a complex Fourier transform (FT). 

The FT of a function H(xitt) is given by 

_a H(xh t) e/«dt, 

j : imaginary unit, / = - 1. (E7) 

The following inversion formula holds: 

H{x"t)=h 1— Hf(x"r) e~jrl dr (E8) 

while 

j _ „ j H(x„ t) e>"dt = -jr Hf^„r). (E9) 

Q*R is the convolution of Q and R. 
E5 We apply the FT to (E6a): 

(o u + (-jr) S<J> + . . . + ( -jr)" S\f 1 c/}(xt,r) = 

= [Ef] + (-jr) £ # + . . . + ( - j f f £«»>)efj{xt,r). (Ell) 

This can be written as 

</,(x(,r) = (Ef) + (-jr) £ # + . . . + ( -jr)m E\fyx X 

x ( 6 „ + ( - » S g > + . . . +(-jrfS^</K)af
K(xl,r) 

def &JK(r) </K(xt,r) (E12a) 

The convolution theorem holds: 

i ? ( 0 ê 'ofr 5oo poo 

_ . G(0 c"**. *V) = )_„*( ' ) e^dt 
and 

5 00 

_ M S(r ) e>rl, 

then 

- I S(/)= _ Q(t-T)R(r)dj = { 0 0 

'A, 

(t-r) dr notations*/? = Q-

(E10) 

678 / Vol. 58, SEPTEMBER 1991 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



or 

We also have, by (Ela) and (E2a), 

(El 2c) 

(El2d) 

Clearly, wf (xt, r)\ e{j (xt, r); o{j (xt, r) form a compatible, 
equilibrium Hookean elastic field for every value for the Fou
rier parameter r. Therefore^ this transformed elastic field obeys 
all elastic laws, so that when the elastic solution of a problem 
may be found, an inverse transform yields the corresponding 
viscoelastic solution. This principle is called the correspond
ence principle of linear viscoelasticity. It is a well-known prin
ciple. 

E6 An application will be given of the correspondence 
principle. If the material is homogeneous and isotropic, the 
stress-strain relations (El2b) become 

e{j(xt,r)-
! + "(/•) , 
E(r) iJ E(r) hk ij-

(E13) 

The material is incompressible if and only if v = 0.5. So, 
often one takes v(r) = constant, albeit not necessarily 0.5. 
Then equation (El3) becomes 

4(xf,r)= [(! + */) </„-* </hk8,j)/E(r). (E14) 

Assume now 

E(r) = (l-jqr)/(K-jqQr) (El 5a) 

M l | 
F=kiu 1U1 

'F1=k2u2 

^ ,u2f" 

| F , U 

F2=GG2 

F: force, u\, u2, u: displacement M = W1 + M2; 
Ky, spring constant, \/Q, see equation (E156) 
K2: spring constant, \/(K-Q), see equation (E15c) 
G: damper constant, q/(K-Q), see equation (E15c0 
D.E.: u + qii = KF + qQF u «==» ey, F <==* au. 

Fig. E1 Two-spring, one-damper model of a viscoelastic solid 

Q: "initial compliance," Q>0 (El5b) 

K: "final compliance," K>Q>0 (E15c) 

q: relaxation time, q>0. (El5d) 

This form is based on the two-spring, one-damper model of 
a viscoelastic one-dimensional solid (see Fig. El) . 

So we may write: 

(l-jqr) efij(Xl,r) = {K-jQqr){{.l + v)afij-Vofhk&iJ} (E16a) 

which we may transform back to obtain the constitutive equa
tions of homogeneous, isotropic viscoelasticity of the type -
Fig. El : 

ey + q e,y= (K+qQ d/dt){{\ + v)aij- v o^}. (E16Z>) 
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Biaxial Loading Experiments for 
Determining Interfacial Fracture 
Toughness 
The paper establishes the range of in-plane fracture mode mixtures and contact zone 
sizes that can be obtained from an edge-cracked bimaterial strip under biaxial applied 
displacements. The development of a suitable loading device for and the application 
of crack opening interferometry to interfacial crack initiation experiments is de
scribed. The crack initiation process under bond-normal loading is examined in 
detail for a glass/epoxy interface in order to establish a hybrid optical interference/ 
finite element analysis technique for extracting mixed-mode fracture parameters. 

1 Introduction 
It has become increasingly clear that the fracture resistance 

of composite materials can be strongly affected by the tough
ness of the interface between constituents. The reliability of 
microelectronic devices, which may contain a large number of 
different interfaces, may also be compromised by their tough
ness. The same may also be true of structural adhesively bonded 
joints and coatings subjected to hostile environments. If a crack 
is constrained to grow along the interface, then the growth is 
inherently mixed mode in nature and a suitable parameter must 
be found that characterizes critical and subcritical growth over 
a range of mode mixes. The purpose of this paper is to describe 
the examination and development of a method for providing 
mixtures of mode I and II over a wide range of mode mixes. 

Although any interfacial fracture test will, in general, involve 
some mode mix, a series of specimens loaded in different ways, 
a single specimen under biaxial load or a change in delami-
nation shape will usually be required to determine interfacial 
toughness over a range of mode mixes. The first strategy was 
recognized early by Malyshev and Salganik (1965) and Gent 
and Kinloch (1971) and later by Takashi et al. (1978), but 
fracture mode mixes were not explicitly extracted. Trantina 
(1972) using scarf joints, Anderson, DeVries, and Williams 
(1974) using cone, peel, and blister specimens, Liechti and 
Hanson (1988) using blister specimens, Cao and Evans (1988) 
using symmetric and asymmetric double cantilever beams, four-
point flexure (Charalambides et al., 1989a) and composite 
cylinder (Charalambides and Evans, 1989b), and Rosenfeld et 
al. (1990) introducing the microindentation test all used finite 
element analyses to extract fracture mode mixtures. Analytical 

' Currently Assistant Professor, Yeungnam University, Seoul, South Korea. 
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 

OF MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED M E 

CHANICS. 

Discussion on this paper should be addressed to the Technical Editor, Prof. 
Leon M. Keer, The Technological Institute, Northwestern University, Evanston, 
IL 60208, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by the 
ASME Applied Mechanics Division, Nov. 10, 1989; final revision, Apr. 4, 1990. 

stress intensity factor solutions were obtained for blister spec
imens (Arin and Erdogan, 1971), sandwich specimens (Suo 
and Hutchinson, 1989), and brazil nut sandwiches (Wang and 
Suo, 1990). Single specimens under multiaxial loads were em
ployed by Mulville et al. (1978) and Liechti and Knauss 
(1982a,b) and suggested by Suo and Hutchinson (1990). Fi
nally, in the realm of thin coatings, a clever use of residual 
stresses has been made in determining the effect of mode III 
on interfacial toughness by examining the shape of the delam-
ination emanating from a straight cut made through the coating 
to the substrate interface (Jensen et al., 1990). A simplified 
analysis for extracting three-dimensional mode mixes from 
curved delamination fronts in thin films has recently been 
presented by Chai (1989). 

The approach that was chosen here for obtaining a wide 
range of mode mixes was to use a single specimen in con
junction with a biaxial loading device. The stress analysis of 
the specimen and loading is considered first in order to establish 
the potential mode mix range and crack-face contact effects. 
The development of the biaxial loading device and the meas
urement of normal crack opening displacements (NCOD) is 
then described. A hybrid procedure for extracting stress in
tensity factors based on the measured NCOD and comple
mentary finite element analyses is then discussed with reference 
to crack initiation under some initial experiments bond-normal 
loading. The results of a series of experiments over a wide 
range of mode mixes are presented in a companion paper 
(Liechti and Chai, 1989). 

2 Specimen Geometry and Analysis 
The choice of specimen geometry was motivated by a number 

of factors. First, it was desirable to have a specimen that gave 
rise to crack-length independence of fracture parameter and 
mode mix. This feature simplifies data reduction, particularly 
for crack propagation studies and allows cracks to be initiated 
and arrested by suitable control of the loading. The use of a 
single specimen minimizes variations in surface preparations 
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Table 1 Material properties 

MATERIAL 
TYPE 

Epoxy 

Glass 

YOUNG'S 
MODULUS, 

E(GPa) 

2.07 

68.9 

POISSON'S 
RATIO, 

v 

.37 

.20 

(MPa) 

34.5 

HARDENING 
EXPONENT 

(n) 

5 

w = 17.78 cm h = 1.27 cm 

Fig. 1 The edge-cracked blmaterial strip specimen 

a 
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Fig. 2 The range of mixity available under positive bond-normal dis
placements 

which affect the intrinsic adhesion or toughness which, in turn, 
control the overall toughness (Argon et al., 1989). It also means 
that the specimen should be amenable to biaxial loading. Con
tinuing the desire the make measurements of NCOD near the 
crack front in order to assess the importance of nonlinear, 
three-dimensional, and crack-face contact effects (Liechti and 
Knauss, 1982; Liechti and Hanson, 1988) required that at least 
one material be transparent. Glass was chosen for this work, 
but transparency need not be limited to the visible spectrum. 
In view of these considerations, the specimen geometry and 
loading that was adopted was the edge-cracked bimaterial strip 
shown in Fig. 1. 

The homogeneous strip geometry is well known for its linear 
compliance versus crack-length relation for sufficiently long 
cracks (Knauss, 1966; Rice, 1967). The extension to the bi
material case under bond-normal loading has been made by 
Atkinson (1977) and energy arguments yield the bond-tangen
tial contribution so that 

G = 
(1-21.!) | (l-2»>2) 

A*l(l - Vi) / i 2 ( l - "2) 

-\ul 
+ XV 

2h 
r 1 n 
—+— 
Ml M2 

(1) 

in the notation of Fig. 1. 
From the analysis by Knauss (1966) we expect the steady-

state solution (1) to be valid for a/h>2. This expectation was 
verified by finite element analysis (Chai, 1990). However, a 
more important contribution of the finite element analysis was 
in the extraction of the mode mix associated with any particular . 
combination of materials and «0 and v0. The definitions of 
complex interfacial stress intensity factor K, bimaterial con
stant, e, etc., that was used in this work follow those given by 
Rice (1988). 

The mode mix or mixity, i/-, was taken to be 

*=tan i^im 

Epoxy-glass Dundurs' parameter a — —0.935 
/3 = -0.188 

Bimaterial constant £ = +0.0604 

Ramberg Osgood Representation: 

Table 2 Energy release rates under bond-normal and tangential dis
placements 

" 0 

dim) 
1.27 

0 

»o 
(fim) 

0 

1.27 

G{J/m>) 
NUMERICAL 

0.04669 

0.22160 

G(J/m2) 
ANALYTICAL 

0.04673 

0.22160 

(DEG) 

-74.03 

16.00 

The energy releasejate can also be obtained from K and its 
complex conjugate K through 

KK 
G = 

( 1 - »>i) | (1 - ya) 

y-\ V-l 4 cosh ire 
(3) 

(2) 

Following a comparison (Ginsburg, 1987) of techniques for 
extracting mixed-mode interfacial fracture parameters based 
on crack opening displacements (Smelser, 1979), virtual crack 
closure (Raju, 1986) and a conservation integral approach (Yau 
and Wang, 1984), the latter was found to be most satisfactory 
and was incorporated as a post-processing routine in the finite 
element code VISTA (Becker et al., 1984). The auxiliary so
lutions required for the technique were taken from the paper 
by Smelser (1979), taking into account the stress intensity factor 
definition in Rice (1988). The invariance of energy release rate 
and mixity over the range of crack lengths used in the exper
iments was established for unit applied displacements normal 
and tangential to the interface. For the same displacement level 
(Table 2), the bond-normal displacements give rise to an energy 
release rate that is approximately four times higher than that 
produced by tangential displacements. This can also be seen 
from equation (1) which differs from the finite element so
lutions shown by less than 1 percent. 

Under some general combination of applied bond-normal 
and bond-tangential displacements, the real and imaginary 
parts of the complex stress intensity factor can be written as 

Ki = aK\"o) + bK\vo) (4) 

K2 = aKiU0) + bKiV0) (5) 

where t6"o) and A^"o), /'= 1,2 are the base stress intensity factors 
due to unit applied displacements tangential and normal to the 
interface, respectively, and the coefficients a and b are load 
factors. In view of the crack length invariance of K and (4) 
and (5), only two finite element analyses are required in order 
to map out the spectrum of mixities that can be obtained from 
the geometry and loading shown in Fig. 1. 

The range of mixities that can be obtained for i>0>0 are 
shown in Fig. 2. Pure bond-normal displacements (wo = 0) give 
rise to a mixity of 16 deg, bringing out the mismatch between 
the glass and epoxy elastic properties (Table 1). A 1:1 ratio of 
bond-tangential to bond-normal displacements is required to 
produce i/* = 0 deg, whereas a - 7 : 1 ratio gives rise to i/< = 90 
deg. The mixity does not drop much below - 6 0 deg for w0/ 
t>o>20. Thus, for positive bond-normal displacements, the 
range of mixities is essentially - 6 0 d e g < ^ < 9 0 deg. 
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Fig. 3 Crack opening displacements under various loadings 

Another interesting aspect of the proposed specimen ge
ometry and loading is the extent of crack-face contact. For 
two semi-finite bodies with a central interface crack, Comninou 
(1978) found that, under a shear load, frictionless contact could 
occur over as much as 33 percent of the crack length. Even 
larger contact zones are possible for compression and shear, 
although complete contact can never occur. Experimental evi
dence of these trends has also been provided (Liechti and 
Knauss, 1982). 

The stress analysis for this portion of the work was con
ducted with the ABAQUS finite element code3, making use of 
special gap elements to eliminate interpenetration of crack 
faces. The response of the glass and epoxy was considered to , 
be linearly elastic using the properties noted in Table 1. The 
size of the smallest elements surrounding the crack tip was 
2xl(T4/!. The components, Auh of the displacement jump 
across the crack faces were taken to be 

A«, = H<1>-"P> (6) 
3 The permission to use ABAQUS under academic license, granted by Hibbit, 

Karlsson, and Sorensen, Inc., is gratefully acknowledged. 

where the superscripts (1) and (2) refer to the epoxy and glass, 
respectively. Under bond-normal loading (Fig. 3), Aw2

 w a s 

always positive, implying no crack-face contact within the res
olution of the mesh. However, the tangential crack opening 
was negative over a small region (r/a < 0.02). Positive bond-
tangential displacements gave rise to some contact (Fig. 3) near 
the crack tip and mouth (r/a = 1). The near-tip contact zone 
was 0.007r/a. When the constraint was removed to allow in
terpenetration of crack faces, the near-tip interpenetration re
gion was more than double the contact zone. Comninou (1978) 
also noticed that contact zones were smaller than interpene
tration zones; For negative bond-tangential loading, Fig. 3 and 
its insert indicate that there was some opening at the crack tip 
but the crack faces were in contact over most of the crack 
length (96 percent). When interpenetration was allowed, the 
open region was again crack length (96 percent). When inter
penetration was allowed, the open region was again smaller 
(r/a< 0.02). 
The noted differences between sizes of the contact zones and 
interpenetration regions did not give rise to any variations in 
energy release rate values. This is probably due to the as-
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sumption of frictionless contact, although an analysis of co
hesive mode II cracks in an adhesive layer did not reveal much
change in energy release rate when frictional contact was al
lowed (Liechti and Freda, 1989). Moreover, energy release rate
values calculated using the conservation integral approach and
crack-opening displacements (VISTA) and virtual crack ex
tension (ABAQUS) were all within 1 percent of the values
obtained from (1). A positive bond-normal applied displace
ment yielded positive K 1 and K2 values. Surprisingly, the con
servation integral calculation indicated that K 1>°for positive
bond-tangential displacements, in spite of the local crack-tip
closure (Fig. 3). The positive K, value may have been due to
the fact that the contours were evaluated in regions where the
crack was opening. The K2 value was negative under uo>O,
which seems reasonable. All crack initiation experiments de
scribed later involved combinations of Uo and Vo that gave rise,
to a total K 1(4) that was positive at initiation. Under combined
tension and shear, Comninou and Schmueser (1979) found
that K 2 was a nonlinear function of load ratio due to variations
in contact lengths. As a result, one would think that the su
perpositions in (4) and (5) are invalid. However, the nonlin
earity did not appear in the edge-cracked bimaterial strip in
the sense that the energy release rate was linearly proportional
to (u~+ v~) even when crack contact was allowed.
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3 Experimental Aspects
From the preceding analysis it is clear that the development

of a special biaxial loading device was required. The relatively
low toughness of interfaces led to the additional requirement
that the applied displacements be controlled with high reso
lution. Furthermore, since with slightest addition of bond
normal displacements removes the contact zones that arise
under bond-tangential displacements, it was important to min-.
imize any interaction (crosstalk) between the two loading
modes, The stiffness of the loading device had to be high
enough that the crack initiation process (slow extension) and
steady growth could be examined. Finally, the desire to meas
ure normal crack opening displacements (NCOD) in order to
examine nonlinear and three-dimensional effects in the crack
tip region meant that microscope access be provided.

A schematic of the loading device is shown in Fig. 4 and a

684/ Vol. 58, SEPTEMBER 1991

more detailed descript ion is given in Chai (1990), The stepper
motors , ball screws, and optical encoders were used in a com
puter-controlled feedback loop to pro vide independent dis
placement control to a resolution of I.27/Lm, Stiff load cells
measured the reactions normal and tangential to the interface.
The relative displacements of the clamped bound aries of the
specimens were also measured in the two directions using min
iature capacitative displacement transducers having a range of
0.5 mm and resolution of 0.5 /Lm (Fig. 6). All transducers were
calibrated in accordance with manufacturer 's specifications
and no drift was observed over periods much longer than the
time scale of the experiments.

In ord er to examine near-tip asymptotics, crack-face contact,
and three-dimensional effects, it was necessary to make meas
urements in the crack-front region in addition to globally ap
plied displacements and their associated reactions. Crack
opening interferometry, which has revealed interest ing non-
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Fig. 7 Crack-tip asymptotics and comparisons with finite element anal
ysis 

linear and three-dimensional effects in the past (Liechti and 
Knauss, 1981,1982b; Liechti and Hanson, 1988), was therefore 
employed in this study. 

A 45 deg mirror was mounted in one of the grips to introduce 
a beam of monochromatic light through the glass for reflection 
by the crack faces. The reflected beams interfere and the re
sulting fringe patterns were resolved by a microscope with a 
100-mm working distance. For the normal incidence and air-
filled crack used here, a dark fringe of order m is a contour 
of NCOD, AJB2, given by 

Ali2 = m\/2. (7) 
The wavelength X was 546-nm, yielding a resolution per half 
fringe (bright to dark) of 0.137 ftm. The field of view was 
approximately 0.5 mm and fringes could be located to within 
5 /*m. The fringe patterns were recorded through a video cam
era and timer onto a high resolution video cassette recorder. 
The recordings were later analyzed using a digital image anal
ysis system to obtain light intensity profiles along the center 
of the specimen. Because the fringe patterns were recorded for 
all times, there was no possibility of ambiguity in assigning 
fringe numbers and signs. The intensity profiles were filtered 
prior to thresholding in order to determine fringe locations. 
The whole procedure and fringe counting was automated so 
that NCOD profiles could be obtained every 1/30 of a second 
if necessary. The video timer allowed the NCOD measurements 

to be synchronized with those of the applied displacements 
and reactions. 

A series of video frames is shown in Fig. 6 to illustrate crack-
face contact and propagation under sequential loading in which 
positive bond-tangential displacements were applied first, fol
lowed by bond-normal applied displacements. The first frame, 
taken at a slight preload, indicated some initial opening. The 
crack front was convex in the direction of crack growth and, 
with proper specimen alignment, was symmetric with respect 
to the specimen midthickness. In the second frame, the fringe 
density decreased (indicating decreasing NCOD) under positive 
bond-tangential loading. However, crack closure had not yet 
occurred, due to the slight preload. Crack closure can be seen 
in the third frame which corresponds to the maximum level 
of bond-tangential displacements that were applied. Although 
it is not possible to discern crack extension under contact, the 
fourth frame, taken just after bond-normal displacements were 
initiated, indicates that such crack extension had indeed oc
curred. This interpretation of events is based on the fact that 
the crack faces immediately opened up to the new crack length 
upon application of bond-normal and further crack extension 
did not occur until some time later (frame 5). A slight dis
continuity in the fringe pattern reveals some blunting at the 
original crack front. The sixth frame was taken during steady 
crack growth. Although detailed analyses have yet to be con
ducted, it appears that steady growth at a given load combi
nation is characterized by a constant fringe spacing or NCOD 
profile. 

Although quantitative comparisons between measured and 
predicted contact zone sizes will follow in a companion paper, 
the contact zone shown in Fig. 6 was indeed small as was 
predicted in Fig. 3(b). Chiang et al. (1988, 1989) did not 
observe any contact zones in their experiments, even though 
the contact zones should have been much larger for their spec
imen and loading. In view of our experience here, a number 
of possibilities come to mind. First of all, the cracks used for 
their work were formed by Teflon inserts which give rise to 
relatively large initial gaps. Secondly, the displacement meas
urements (1988) were made at the specimen edge and the stress 
measurements (1989) were averaged through the thickness. In 
both cases three-dimensional effects could have contributed to 
the lack of contact. Finally, our observations indicate that very 
small bond-normal displacements eliminate contact and great 
care must be taken in loading device design and specimen 
alignment as was outlined in Section 2. 

4 Analysis of Crack Initiation 
The measured NCOD, by themselves, do not provide suf

ficient information with which to extract mixed-mode fracture 
parameters of interest, particularly during crack initiation. A 
previously developed hybrid experimental/finite element anal
ysis procedure (Liechti et al., 1987) was again implemented. 
The procedure consists of matching the measured NCOD and 
finite element solutions in a region of linear elastic response 
and then using the matched finite element solutions to extract 
the mixed-mode fracture parameters. The validity of the pro
cedure is established here and applied to a detailed analysis of 
crack initiation under bond-normal loading. 

A sequence of NCOD profiles was taken from the center of 
a series of interference patterns, corresponding to the center 
of the specimen, far removed from any edge effects. Crack-
tip asymptotics were examined through logarithmic plots of 
NCOD versus distance from the crack front (Fig. 7(a)). At low 
load levels, the data fall on one straight line which, in these 
experiments, had a slope of 0.52. The expected value is, of 
course, 0.5 and the slightly higher value may indicate that 
higher-order terms are having some effect. As the load level 
was increased, a point was reached where the plots took on a 
bilinear form. The particular examples shown here are at the 
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Fig. 8 Crack extension under bond-normal displacements 

critical value of applied displacement (defined later) and some
what later as the crack propagated steadily. In both cases, the 
original slope of 0.52 was retained well away from the crack 
front. Near the crack front the slopes reduced to 0.4 and 0.38 
at the critical and post critical applied displacements, respec
tively. These lower slopes are indicative of some inelastic re
sponse but do not yield the value of - = 0.167 that would 

7 7 + 1 
be expected from the power-law hardening exponent of n = 5 
for the epoxy (Table 1) and HRR singular fields. However, 
some crack extension had occurred at the times that these 
analyses were conducted and the singularities are really those 
of a growing, rather than stationary crack. Shih and Asaro 
(1988) recently showed that the asymptotic fields of a stationary 
crack between a power-law hardening and a rigid one are nearly 
similar to the HRR fields that arise in a cracked, homogeneous, 
power-law hardening material under mixed-mode loading. On 
the other hand, experimental analyses (Epstein, 1989) have not 
revealed HRR fields on the specimen surface near the tip of 
an interface crack. 

The extent of the plastic zone behind the crack front was 
taken to be at the intersection of the lines representing the 
elastic and inelastic response in Fig. 7(a). The plastic zone 
size at crack initiation (u0 = t>oc) was therefore found to be 49.3 
/mi. Considering that the specimen thickness was 5.97 mm, 
the yielding was small scale in nature, thus permitting a pre
viously employed hybrid approach (Liechti et al., 1987) for 
extracting mixed-mode fracture parameters from NCOD meas
urements to be considered here. The basis for the approach is 
the comparison between measured NCOD and linear elastic 
finite element solutions of the corresponding geometry and 
loadings, an example of which is shown in Fig. 1(b). The 
initial profile was matched by applying a suitable bond-normal 
displacement in the finite element analysis. The subsequently 
applied displacements were then added to the initial displace
ments so that measured and predicted NCOD could be properly 
compared. The experimental and numerical results for various 
applied bond normal displacements levels up to the critical one 
were in close agreement, thus permitting the finite element 
solution to be used for extracting mixed-mode fracture pa
rameters. The favorable comparison also indicates that plane-
strain conditions prevail at the center of the specimen. All 
values of fracture parameters subsequently reported were ob
tained by matching NCOD well outside any regions of inelastic 
response. 

The relatively high degree of magnification that was used 
to resolve the interference fringe patterns meant that very small 

amounts of crack extension (Aa/a — 2x 10~5) could be re
solved. The question arose as to what degree of crack extension 
constituted "initiation." The procedure that was adopted is 
now described with reference to Fig. 8, where a number of 
parameters are presented as a function of crack extension. 
First, it can be seen that the energy release rate increased with 
load level and crack extension until the crack attained a steady 
velocity. The elapsed times from load initiation are noted for 
various values of crack extension and indicate the energy re
lease rate peaked just prior to dropping off slightly to a con
stant value.as steady propagation occurred. If the load was 
held constant during the time when the energy release rate was 
increasing, then crack extension would stop. Thus, on this 
scale, the relatively brittle crack initiation process under bond-
normal displacements as judged by the maximum G value of 
18.4 J/m1 displays a response that is reminiscent of stable crack 
initiation in very tough materials. The critical value of energy 
release rate was taken to be the constant value associated with 
steady crack extension and all quoted values of critical applied 
displacements were likewise associated with the attainment of 
constant crack velocity. Since the G values in Fig. 8 were 
essentially derived from NCOD profiles, the results indicate 
that steady crack propagation is associated with a fixed NCOD 
profile. 

The other parameters noted in Fig. 8 were derived from 
logarithmic plots of the type shown in Fig. 7(a). The values 
noted above and below the resistance curve at various degrees 
of crack extension correspond respectively to the slopes of the 
lines in the regions of elastic and inelastic response. Thus, it 
can be seen that the exponent in the elastic region was con
sistently the 0.52 value noted in Fig. 7(a) and that exponent 
variations occurred in the inelastic region, depending on the 
degree of crack extension, until steady crack propagation oc
curred. The plastic zone sizes, rp, were also recorded as a 
function of crack extension. An increase in rp was noted during 
stable crack extension but it was then followed by a sharp 
decrease to a constant value which was associated with steady 
crack growth. The smaller plastic zone size during steady crack 
extension is presumably due to rate effects. The synchroni
zation of changes in energy release rate values, inelastic ex
ponents and plastic zone sizes were all very consistent and give 
a picture of blunting (on a very small scale) prior to steady 
propagation. 

A series of experiments under bond-normal applied dis
placements were conducted on a single specimen by unloading 
very quickly once steady crack propagation was well estab
lished. The arrested crack became the starter crack for the next 
experiment. This procedure gave rise to starter cracks that were 
sharp and not influenced by the previous experiment. The same 
crack extension behavior noted above was observed in all ex
periments and the critical value of energy release rate associated 
with steady extension was found to be 17 J/m2 with a coef
ficient of variation of 8.3 percent, indicating reasonable re
producibility within one specimen. 

5 Conclusions 
The paper has described the analysis of a single specimen 

which, when used with a specially developed biaxial loading 
device, should be capable of providing a wide range of mixtures 
of mode I and mode II. A stress analysis revealed that, for 
positive bond-normal applied displacements, the mixity ranged 
from - 60 deg to 90 deg for ratios of applied bond-tangential 
displacement to bond-normal displacements of 10 to -7.5, 
respectively. The degree of crack face contact near the crack 
tip was relatively small (</V100) under positive bond-tangen
tial displacements and nonexistent (within the resolution of 
the finite element mesh) for negative bond tangential and po
sitive bond-normal applied displacements. 

The biaxial loading device was capable of producing steady 
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crack propagation under all loading directions. Crack exten
sion accompanied by near-tip crack face contact was observed 
using optical interferometry to measure NCOD. In a series of 
experiments under bond-normal applied displacements, the 
measured NCOD revealed that, for the relatively weak bond 
between epoxy and very smooth glass, crack initiation was 
accompanied by small-scale blunting whose extent was traced 
as a function of crack velocity. Energy release rates were ex
tracted from linear elastic finite element solutions that matched 
the measured NCOD in regions of elastic response. Due to the 
high resolution in crack extension measurements, the energy 
release rates were found to increase with increasing crack ex
tension until steady propagation occurred. The constant G 
value corresponding to steady propagation was taken to be the 
critical value and was found to be 17 J/m2 for ^=16 deg. The 
extension of the analyses and the procedures developed here 
to determine and examine the increase in Gc with positive and 
negative mixities is described in an accompanying paper (Liechti 
and Chai, 1989). 
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Reflection and Transmission of 
Rayleigh Surface Waves by a 
Material interphase 
Reflection and transmission of Rayleigh surface waves by a juncture normal to the 
free surface, between identical or different materials, has been investigated. The 
juncture, which may be an interface containing defects or a thin layer, is represented 
by a layer of extensional and shear springs. The mathematical statement of the 
problem is reduced to a system of singular integral equations for the displacements 
on the free surface and the tractions and the displacements across the juncture. 
Numerical solutions of this system have been computed by the use of the boundary 
element method. Expressions for the reflection and transmission coefficients have 
subsequently been obtained by the use of half-plane Green's functions in conjunction 
with an elastodynamic representation integral. Results are presented for selected 
values of the elastic constants of the joined bodies and the stiffness parameters of 
the juncture. 

1 Introduction 
Interfaces between adjoining materials of similar or dissim

ilar properties often are of a more complex nature than can 
be represented by the conditions of continuity of tractions and 
displacements across a surface of perfect contact. This is ob
vious when the interface is actually an interphase, i.e., a very 
thin layer of different mechanical properties, or when the in
terface contains defects such as cracks, voids, or small inclu
sions. 

One of the ways of obtaining information on interfaces is 
from the reflection and transmission of ultrasonic waves. The 
reflection of plane harmonic waves by a perfect interface of 
by a thin layer in between two half-spaces is a well-known and 
relatively simple problem. Reflection and transmission coef
ficients for a planar distribution of cracks in an otherwise 
homogeneous unbounded solid have also been calculated by 
Angel and Achenbach (1985) and Sotiropoulos and Achenbach 
(1988). The analogous results for a planar distribution of spher
ical cavities have been obtained by Achenbach and Kitahara 
(1986). In these studies it was found that the reflection and 
transmission coefficients for a thin layer and a planar distri
bution of defects depend on the frequency, while the corre
sponding coefficients for the perfect interface (as well as for 
the still simpler case of frictionless "sliding" contact) are in
dependent of the frequency. 

A convenient way of modeling the reflection and transmis-
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sion properties of an interface or interphase is by a distribution 
of linear springs. This model has previously been considered 
by a number of authors, most recently by Mai et al. (1989), 
Mai and Xu (1989), and Olsson et al. (1990). Various ap
proximations for interphase behavior have recently been re
viewed by Martin (1990). For an interface containing a 
distribution of cracks, the spring model was proposed by 
Thompson and Fiedler (1984). For a periodic planar array of 
cracks, the validity of the model over a specified range of 
frequencies was verified by Angel and Achenbach (1985) who 
also presented explicit expressions for the spring constants in 
terms of the crack widths and the crack spacings. For an 
interphase, i.e., a thin interface layer, it has been pointed out 
by Datta et al. (1988) and Olsson et al. (1990) that a spring 
layer, whose constants are expressed in terms of the elastic 
constants of the interphase only, generally is not entirely ad
equate, since the inertia effect of the interphase cannot be 
ignored. From some simple calculations the present authors 
have, however, concluded that if the ratio of the thickness of 
the interphase to the wavelength is less than 0.2, the interphase 
can in fact be modeled by a spring layer, but one whose spring 
constants depend not only on the elastic properties of the 
interphase, but also on its mass density, as well as on the angle 
of incidence. Hence, the use of a spring layer can be justified, 
certainly for an interface containing defects, but also for an 
interphase, provided that in the latter case the spring constants 
are appropriately selected. 

Of frequent interest are the mechanical properties of an 
interphase near the point of intersection with a free boundary. 
This configuration is considered in this paper, specifically, the 
case when the interphase is normal to the free boundary. The 
spring layer model is used to model the interphase properties. 

The presence of the free surface suggests the use of Rayleigh 
surface waves for the interrogation of the interphase, in the 
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same manner as this has been done for surface breaking cracks 
(see, for example, the paper by Vu and Kinra (1985)). On a 
smaller scale such an interrogation could be carried out by a 
line focus acoustic microscope, similarly to the investigations 
reported by Kushibiki and Chubachi (1985). 

The specific configuration is shown in Fig. 1. It is shown in 
this paper that the mathematical statement of the problem of 
reflection and transmission of Rayleigh surface waves by a 
spring layer interphase can be reduced to a system of singular 
integral equations over the boundaries. In our procedure full-
plane Green's functions have been used. As a consequence the 
system of singular integral equations consists of equations over 
the traction-free boundaries of the quarter-planes as well as 
over the interphase. The boundary element method has been 
used to solve the system of integral equations, but for practical 
purposes it was necessary to truncate the infinite integrals. To 
reduce the error related to the truncation, the omitted inte
gration paths over the traction-free boundaries have been re
placed by infinite elements which can accommodate the 
outgoing Rayleigh surface waves reflected and transmitted by 
the interphase. Once the boundary integral equations have been 
solved for the interphase fields, integral representations using 
half-plane Green's functions have been used to write expres
sions for the reflection and transmission coefficients. Numer
ical results are presented for selected ratios of the mechanical 
properties of the quarter-planes and the spring layer constants. 

The results presented in this paper also have relevance to 
earlier generally analytical results for the reflection and trans
mission of surface waves in a quarter-plane. The many ana
lytical efforts devoted to this problem have been reviewed by 
Knopoff (1969) and Miklowitz (1987). The case of joined 
quarter-planes was investigated by Viswanathan (1966) who 
employed an iteration method. The quarter-plane problem was 
recently reconsidered by Gautesen (1985). It is shown that for 
the appropriate limit case the results of this paper agree with 
those obtained for the quarter-plane. 

2 Statement of the Problem 
A half-plane is composed of two homogeneous, isotropic, 

linearly elastic quarter-planes, A and B, which are joined by 
an interphase. The materials of A and B may be the same or 
they may be different. The half-plane occupies the domain 
*2>0, and the interphase is located along X\ = 0. The two-
dimensional geometry is shown in Fig. 1. 

The motion of the half-plane is time harmonic with angular 
frequency u. In the following analysis, the time-harmonic fac
tor exp(-zW) will, however, be omitted. 

The incident wave is a Rayleigh surface wave which prop
agates from x\ = - oo to X\ = 0 in the region A. The displace
ment components of the incident wave may be written as 

uA*)-UAe ^+{/4)2_2{kir e^MeikRx\ (la) 

2 ( X ) ~ Z M + (kA
T?-2(kA

R? 
e-yfaLikin (lb) 

where kf, kj-, and kji are the wave numbers of longitudinal, 
transverse, and Rayleigh waves, respectively, 

kl = a/c£, ct = [(\A + 2nA)/pA]U1 , (.2a,b) 

kf = o/ci 4= (///)' i?a,b) 

Here, cf, <$-, cj. are the longitudinal, transverse, and Rayleigh 
wave velocities, \A and /j.A are the Lame elastic constants, and 
P is the mass density of A. Also, 

Rayleigh wave 

->-
r- w r x 

Fig. 1 Two quarter-planes joined by a spring layer 

In region A, the components of the total displacement field, 
uf (in this paper the lower case Latin subscripts range over 1 
and 2), are the sums of the corresponding displacement com
ponents, of the incident wave, d", and the back-scattered wave, 

uf = uf + usj ,j=l,2. (6) 
The components of the transmitted displacement field in region 
B are denoted by uf. According to Hooke's law, the corre
sponding stress fields are 

ofJ=\A5uu
A,k + VA(i4j+u£i) > (7) 

og = X%«*.t + / ( « u + «A/)- (8) 
where Xs and /J.B are the Lame elastic constants of the material 
in region B. On a surface with unit outward normal vectors 
n"4 or nB, the tractions are 

ft = 4nf ,ff=4nf. (9a,b) 
A spring layer with appropriate spring constants may often 

be used to model the interphase, and the problem can then be 
simplified significantly. Let SL and ST denote the extensional 
and shear constants of the spring layer. The conditions of 
continuity along X\ = 0 can then be expressed as 

ft=~fj , (10) 

fA = SL(uB-uA)=SL(uf-u[n-,4), (11a) 

fl=sT(i4-t4)=sT{t&-ift-iA). (iiz>) 
On the free surface, X2 = 0, the tractions vanish and thus 

/ / (x)=/;J(x)+/f(x)=0, xonTu (12a) 

ff(x) = 0, xonTB (12b) 

where ff and f" are the tractions related to the back-scattered 
and incident waves, respectively. Since f'f(\) = 0, for x on TA, 
we have 

fj(x) = 0, xonTA. (13) 

yt- UkA
R)2-(kA

L)Y2 ,yAr=[(kA
R)2 (kA

T)2]m • (5a,b) 

3 Boundary Integral Equations 
To derive the boundary integral equations which can be used 

in conjunction with the boundary element method to obtain 
numerical results, we start with an integral representation of 
the elastodynamic solution for the back-scattered and trans
mitted fields. For the present problem two integral represen
tations can be used: one based on the half-plane Green's 
functions for materials A and B, and the other based on the 
full-plane Green's functions. The integral representations of 
the scattered fields in terms of the half-plane Green's functions 
(which satisfy traction-free conditions on the surface of the 
half-plane) include only integrals along the interface of the 
two quarter planes. Unfortunately, the use of the half-plane 
Green's functions increases the computing effort due to the 
high complexity of these functions. The integral representa-
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tions of the scattered fields in terms of the full-plane Green's 
functions (the fundamental solutions) on the other hand in
clude not only the integral along the interface of the quarter-
planes but also along the traction-free surfaces of the quarter 
planes. The full-plane Green's functions are, however, of sim
pler analytical forms, and they make the boundary element 
computations more efficient. However, as we will see in the 
next section, once the displacement and traction fields on the 
interface of the two quarter-planes are known, it is easier and 
more accurate to calculate the solutions in the far-fields by the 
use of the half-plane Green's functions. 

In the sequel u%(x;xp) and ofjk(x;xp) denote the full-plane 
fundamental solution and the second fundamental solution, 
respectively. The physical meaning of ufk(x;xp) is that these 
components denote the displacement in the direction x, at point 
x, due to a concentrated load at xp, applied in the direction 
xk. The components afjk(x;xp) are the corresponding stresses. 

The integral representation for the back-scattered field in 
region A can be written as 

eA(xpM(xp)=\ [u?k
A(x;xp)fUx) 

- < r f ( x ; x p K ( x ) « / ( x ) ] * , , (14) 

1 , xp e A 
where 

tA{xp) = 
0 , x , U , 

and the contours TA and CA are indicated in Fig. 1. The anal
ogous integral representation for the displacement field in re
gion B is 

eB(xp)u
s
k(xp)= \ [ufk

B(x;xp)ff(x) 
JcB+rB 

-<j$(x;xp)uf(x)n?(x)]dsx (15) 

where 
Cl , xpeB, 

£f l (X" )=[o,x^fi, 
and again r f l and CB are indicated in Fig. 1. Explicit expressions 
for the fundamental solution and the second fundamental so
lution may be found, for example, in the work by Kobayashi 
(1987). For reference purposes the expressions have been stated 
in the Appendix. 

For xp $A, substitution of (6) and (10)-(12a) into (14) yields 

[ <ffiujn?dsx+\ [o$ufnf+(u?k
A + a?A

knf/SL)f 

,,GA . J3A„A + (titf + a%n?/ST)ftldsx 

\ {.o^ufr4-ugAff)dsx,xp^A. (16) 
J<=A 

For the xp $ B, (15) becomes, by the use of (126), 

( afi?ufnfdsx- \ u?k
BfBdsx = 0 , xp * B . (17) 

JcB+rB ->cb 

Taking the limit of xp $ A-~xpe YA or CA, and xp £ B —xp € 
TB or CB, equations (16) and (17) become a set of boundary 
integral equations for the following unknowns: 

Uj(Xp) , xp on TA , 

uf(xp) , xp on CA , 

ff(xp) , x p on CB, 

uf(xp) , xp on TB . 

After the boundary integral equations have been solved, we 

can calculate the displacement field of back-scattered and 
transmitted waves at any point in the half-space from (14) and 
(15). 

4 Far-Field Behavior of Back-Scattered and Trans
mitted Waves 

Once the integral equations (16) and (17) have been solved, 
the fields in the quarter-planes can conveniently be obtained 
by the use of an integral representation in terms of the half-
plane Green's function. This integral representation may be 
written as 

«4(x,)=( [^(x;xp)4(x) 
"CA 

-Tfjt(x;xp)if,{x)\nf (x)dsx xpe A , (18) 

where lfik
A and T%A are half-plane Green's displacement func

tion and Green's stress function for material A. 
According to Neerhoff, by expanding the half-plane Green's 

displacement and Green's stress functions for \xp\\~<», we 
obtain 

w£(x*)~* uf(xp) , (19) 

where R is defined as the reflection coefficient and uk
R is a 

Rayleigh wave propagating in the negative x\ direction, 

uf(x)=U e^ix2 + 2yAyr 

«f(x)=-/C/^ e"7ix2 + 

(l4)2-2(kR)2 

2(/4)2 

e - y ^ i *Rxl 

(i4)2-2(/4y 
e - 7 ^ 2 

(20a) 

(206) 

We have 

R = ( [Qf ( x )4W - SA- (x)u*(x)]nf(x)dsx , (21) 
JcA 

where 

6?(x) 

2(\A + 2^A)yiDA 

- 1 
Sfj(x) 

~2(\A + 2ixA)ylDA 

NA
LLk fAeiklkIJAxJ + NiLekik JAeikrk 

Ntjct(\ASu 

TAx-J V 

+ 2v.AkfAkfA)eikALkIiAxi 

+ N$Lk V (e,jk JA + e,fcf) kfAeikAr Vxi (22) 

In these expressions, e,y is the two-dimensional permutation 
tensor, and 

NA
L=-2[(kl)2-2(ki)2)2, 

NTL = TA kATkA
RyAd(kA

T)2-2(kA
R)2] , 

DA = &ktyiyt + 4(kif(yA./y<r + yA
T/yA) 

+ ikA
R[(kA

T)2-2{kA
R)2} 

kfA=^(-kA
R,iyt), 

kr=^(-ki,iyA
T) 

(23) 

(24) 

(25) 

(26) 

(27) 
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Fig. 5 Absolute values of the total stress component <r12 along the 
interface 

CB are known, reflection and transmission coefficients R and 
7" can be obtained from (21) and (30). 

Fig. 3 Phase angles of the reflection and transmission coefficients for 
a spring layer between identical materials 

Similarly, when x^oo , for the transmitted wave, we have 
uB

k(xp)~TuB
k
R (xp), (28) 

where uBR is a Rayleigh wave propagating in the positive xx 
direction, and T is the transmission coefficient: 

«?R(X)=I/£! 
K L 

e-yLx2 + 
-. B B 

(£?)2-2(*f): 

e-*l*i + WR)1 

(£f)2-2(*f)2 

e-yh. 

j - T ^ 

e ' V i , 

(29«) 

e*f*i, 
(296) 

T=f [Qf(x)of(x)-Sg(x)«f(x)]/if(x)dy,. (30) 

Replacing all A's by 5's in equations (22)-(23) and (25) and 
changing (24), (26) and (27) to 

N*TL= - 4 / - i kB
RyB

L[(kB
T)2-2(kB

R)2] (31a) 

* " = 7^(*l , fyf ) , kJB = -B(kB
Rliy

B
r) (31*,c) 

we obtain the expressions for gf and Sf in the integrand of 
(30). Thus, if the displacement and stress fields along CA and 

5 Boundary Element Method 
In this section, we will obtain numerical solutions to the 

boundary integral equations (16) and (17) by using the bound
ary element method. In (16) and (17), the integral paths along 
TA, CA, CB and TB extend, however, to infinity, which is not 
suitable for the numerical procedure. 

The wave system generated by interaction of the incident 
surface wave with the interface consists of reflected and trans
mitted surface waves, diffracted body waves, and possibly 
interface waves along CA and CB. Interface waves along a 
spring-layer juncture have been discussed by Jones and Whit-
tier (1967). Along the interface the free surface waves and the 
body waves decay as Xj increases. If in addition it may be 
assumed that sufficiently far from the free surface, interface 
waves along CA and CB yield negligible contributions to R and 
T, the integral paths CA and CB may be truncated to the extent 
that a desired accuracy is achieved. The integrals along CA and 
CB can then be replaced by integrals along finite paths, say 
CAi and CB\. For the integrals along TA and TB, on the other 
hand, the reflected and transmitted waves do not decay as 

, 1*11 ^e», since the main parts of these waves are outgoing 
Rayleigh surface waves. The relative amplitudes of the out
going Rayleigh waves (T and R) can, however, be computed 
by truncating TA and TB at some finite length, as was done by 
Zhang and Achenbach (1988). The accuracy obtained by such 
a truncation is not very clear. Indeed, if the displacement fields 
on the free surface must be determined at values of IJ>CI I which 
are not large enough, the truncations on YA and TB may pro
duce big errors. 
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Fig. 6 Absolute values of the total displacement component u, along 
the tree surface for x, > 0 
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Fig. 7 Absolute values of the total displacement component u2 along 
the free surface for x, > 0 

In order to reduce the error related to the truncations of TA 

and TB we will add additional terms. For that purpose we split 
TA at X\ = X\A in TA0 and TAi, where 

T/10: X2=0, XI<XIA i 

r ^ j : x2 = 0, 0 > Xi>xiA • 

Here, \x\A\ is large enough so that for X\<xlA, the back-
scattered displacement fields can be expressed by (19). If/5* 
denote the traction components corresponding to uSR, we can 
write according to equation (14) 

j [u?k
A(x;xp)ff

R(x) 
rAO + rAi + CAl 

-ogC(x; xp)ufR (x))nf(x)]dsx = 0 (32) 

for xp $ A. By the use of the traction-free conditions on TA, 
equation (32) becomes 

S „OA,,SR„AJ„ [ JJA.SR^JC 

aljkUj njdsx=-\ aijkUi rij dsx 

( (u%Af?*-c%u?*n?)dsx. (33) 

"TAI 

+ 

Now, substituting (19), into (16) and using (33), we obtain 

\ „G/t,,S„.4 j„ , \ r GA,.B„A , ,,,GA , „GA„A / c •. fB 

oijk Ui rij dsx + [<jiJk Uj rij + (u9k + am n} /SL )J i 
TAl TAI 

+ {i4k + °?fknf/ST)fBi]dsx 

-R(\ a$u?Rnfdsx-\ ugAffRdsx 

\JrAl + CAl JCAl j 

0.8 
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Fig. 8 Absolute values of the reflection and transmission coefficients 
for a spring layer between different materials 
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Fig. 9 Phase angles of the reflection and transmission coefficients for 
a spring layer between different materials 

[ ^ufnf-urfnds,. (34) 
CAI 

Using a similar approach, for the transmitted waves, we have 
from (17) 

Cm+r, 
offittfnfdsx- \ uiffdsx 

1 CB\ 

-T(\ a$u?Rnfdsx-\ u?k
BffRdsx) =0 (35) 

V CBlrBl CA\ I 

where Tm is the part of the boundary x2 = 0 defined by 
0-CX! <X\B, and xiB is large enough such that for X\ >X\B, the 
transmitted waves can be expressed approximately by (28). 
Also, jfR denotes the tractions corresponding to iPR, where 
the latter are defined by (29). 

Equations (34) and (35) are boundary integral equations 
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ficient R and the transmission coefficient Tare shown in Fig. 
2 as functions of the dimensionless spring constant 

SL = 

Fig. 10 Absolute values of the reflection and transmission coefficients 
for an extensional spring layer between identical materials; ST=x 

Fig. 11 Absolute values of the reflection and transmission coefficients 
for an extensional spring layer between identical materials; ST=0 

which can be solved in the usual manner by the boundary 
element method. 

It is useful to examine equations (34) and (35) for the special 
case when the two materials in A and B are the same and 
ST=SL~ oo. This case corresponds to a homogeneous half-
plane problem, and therefore the back-scattered fields must 
be exactly zero and the transmitted wave is just the same as 
the incident Rayleigh surface wave. Indeed, w/=0, uf=ij", 
ff= —f", R = 0, T= 1 satisfy the boundary integral equations 
(34) and (35) exactly. To check the effect of truncation for 
this case, the terms with R and T in equations (34) and (35) 
can be omitted. Numerical results for neglecting the terms with 
T and R of (34) and (35) have been computed. The error of 
the displacement fields of the transmitted waves on the free 
surface TBl, is not negligible, but both the stresses and dis
placements on the interface CAi and CBi, show excellent agree
ment with the exact results. If Tand R are then calculated by 
substituting the results obtained on CA\ and Cm into (30) and 
(21), we obtain accurate results, namely: T= 0.9994, R = 0.0000. 

6 Numerical Results 
For the same materials in quarter-planes A and B and Pois-

son's ratio v= 1/3, the absolute values of the reflection coef-

Ar^A • (36) 

For these results we have also taken ST=ST/fi kr=2SL. The 
corresponding phase angles have been shown in Fig. 3. In the 
numerical calculation the lengths of YAi and rfll, are 4Xr, the 
lengths of CA\ and Cm are 3X7-. where X7-=27r/A:'7'is the wave
length of transverse waves in region A, and TAi, TB1, CAi, Cm 
are divided into 50 elements. The results_show that Tincreases 
monotonically from zero to unity as SL increases, while R 
decreases^ monotonically from a value smaller than unity to 
zero as SL increases. In the limit SL-~0, the results should 
reduce to the ones for the quarter-plane. For the quarter-plane 
case and ^ = 0.33, the reflection coefficient was obtained as 
0.40 by Achenbach et al. (1980), and 0.39 by Gautesen (1985). 
In the present work the smallest value of SL was chosen to be 
0.01 and the reflection coefficient was obtained as 0.3997, 
which shows a very satisfactory agreement, with the above-
mentioned results. 

The effects of truncation of the integral along the interface 
have been investigated for the case of two identical quarter 
planes which are connected by an interface defined by 5^ = 0.5 
and ST= 1. Calculations were carried out for two lengths of 
CAI = CBl, namely 2Xr and 4\T. For these cases the number of 
elements along the interface was 50 and 100, respectively. Fig
ures 4 and 5 show the absolute values of the total stresses along 
the interface. Similar plots have been obtained for the dis
placements, but they are not shown here. It is noted that the 
stresses decay rapidly. It is also noted that there is no significant 
difference between the two cases over the range where both 
are obtained. Further calculations have shown that the addi
tional information that is obtained for the longer length does 
not affect the numerical results for R and T. 

To check the effect of the integration lengths along the free 
surface, TAl and rfll, calculations were carried out for two 
lengths, namely, 4Xrjmd 8X7-, for the case of identical quarter-
planes and SL = 0.5, ST= 1. For these cases the absolute values 
of the total displacments were obtained along the free surface, 
for X[>0. The results are shown in Figs. 6 and 7. Only minor 
discrepancies are noted for I U\ I. 

The results of Figs. 4-5 and 6-7 show that truncation of the 
interface and the use of a finite integration length with an 
additional term along the free surface yield accurate results. 

For different materials in quarter-planes A and B, (pB/ 
/ = 2.0, pB/pA_=\.0, / = / = 0.20) the absolute values of T 
and R versus SL, (ST=2SL), and the phase angles <j>T and </>fi 
are shown versus SL in Figs. 8 and 9. As SL increases, T 
increases, but the limit value of T as S— 00 in not unity. When 
Si—0 the problem again reduces to a quarter-plane problem. 
For e = 0.2, Gautesen (1985) obtained l/?l«0.3, and for 
Si = 0.01, we obtain \R\ =0.2837. 

Figures 8 and 9 also show further checks on the accuracy 
of the results. Case 1 corresponds to CA\ = CBi = 1.7Xr, 
rUi = rB1 = 2.3Xr, while CA\, Cm, YA\, Tm are divided into 50 
elements each. Similarly, case 2 corresponds to 
CUi = Csi = 2.1Xr> r^1 = rfli = 3.45X, and each segment is di
vided into 100 elements. For case 3, CA\ = CBX = 4.2Xr, 
T/ii = r«i = 6.9Xr, and 100 elements were used on each segment. 
It is noted that there are no significant differences between the 
results for these three cases. _ _ 

Finally, for the special cases of Sr -~ oo_ and ST — 0, (only 
extensional springs exist), Tand R versus SL are shown in Fig. 
10 and Fig. 11 for identical quarter-planes. Very different 
variations of \R\ and 171 with SL are obtained. 
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A P P E N D I X 

Two-Dimensional Time-Harmonic Elastodynamic Fun
damental Solutions 

The expressions for the displacements are 

r i \ dr dr 
ug(x;xp) =— Udr)5ik- U2(r) — — 

4/x / dXj dxk 

where r= Ix-x,,!, and 

[/, (r) =m\k7r)--L- j / ^ W ) - ^ M'W) 

(Al) 

(A2) 

U2(r) = H$)(k7r) - \j±\ H$\kLr) 

r,r^T/'i,<w (A3) 

here I${ ) is the Hankel function of the «th order of the first 
kind. The corresponding stresses follow from Hooke's law: 

du?k duf. O / „ . „ \ \ umk s , / U"ik , 
aiJk(x;xp) =\-— 5jj + ii(— + 

dxm \dxj dXj 

(A4) 
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Axisymmetric Scattering of a Plana 
Longitudinal Wave by a Circular 
Crack in a Transversely Isotropic 
Solid 
The scattering of elastic waves by a circular crack situated in a transversely isotropic 
solid is studied here. The axis of material symmetry and the axis of the crack 
coincides. The incident wave is taken as a plane longitudinal wave propagating 
perpendicular to the crack surface. A Hankel transform representation of the scat
tered field is used, and after some manipulations using the boundary conditions this 
leads to an integral equation over the crack for the displacement jump across the 
crack. This jump is expanded in a series of Legendre polynomials which fulfill the 
correct edge condition and the integral equation is projected on the same set of 
Legendre polynomials. The far field is computed by the stationary phase method. 
A few numerical computations are carried out for both isotropic and anisotropic 
solids. Results for the isotropic solid compare favorably with those available in the 
literature. 

1 Introduction 
Scattering of elastic waves by an internal crack is a problem 

of considerable importance in the field of quantitative non
destructive evaluation of materials. The circular crack has been 
extensively studied analytically, because compared to other 
shapes the circular crack is relatively simple to analyze. Rep
resentative examples of previous work can be found in Rob
ertson (1967), Mai (1968a, 1968b, 1968c, 1970), Sih and Loeber 
(1968, 1969), Martin (1981), Krenk and Schmidt (1982), Kris-
tensson and Waterman (1982), Martin and Wickham (1983), 
Keogh (1986), Niwa and Hirose (1987), Nishimura and Ko-
bayashi (1988), and others. However, in most of the previous 
studies the crack is located in an isotropic solid. Some inves
tigations have also been carried out on elastic wave scattering 
by a circular crack at the interface between two isotropic solids 
(Srivastava, Palaiya and Gupta, 1979; Bostrom and Peterson, 
1989a) or by a soundhard circular disk at the interface between 
two fluids (Bostrom and Peterson, 1989b). No analytical study 
has yet been carried out to investigate the scattering of elastic 
waves by a circular crack in an anisotropic solid. For detection 
and quantitative measurement of internal cracks in a fiber-
reinforced composite solid, one needs to study the crack scat
tering problem in an anisotropic solid. With this goal in mind, 
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the scattering of elastic waves by a circular crack in an aniso
tropic solid has been studied in this paper. 

As a first step, an axisymmetric problem is solved. The 

CIRCULAR CRACK 

INCIDENT P WAVE 
Fig. 1 Schematic diagram of the problem geometry 
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composite solid is made of unidirectionally oriented fibers. 
The fiber diameter and fiber spacing are assumed to be much 
smaller than the wavelengths of the elastic waves in the ma
terial, so that the fiber-reinforced composite solid can be mod
eled as a transversely isotropic solid with the fiber direction 
as the axis of symmetry. The circular crack is located perpen
dicular to the fiber direction. This orientation of the crack 
naturally appears when it is generated due to fiber breakage. 
A plane longitudinal wave propagating along the direction of 
the fibers strikes the crack. The crack opening displacement 
(COD) and the far-field scattered displacements are studied in 
this paper. COD is an important parameter to study, since the 
critical COD determines when a crack starts to propagate; thus 
the study of COD gives one some insight about the crack 
propagation. Investigation of the far-field scattered displace
ments is necessary for internal crack detection by nondestruc
tive testing techniques. 

2 Problem Statement 

Consider a cylindrical polar coordinate system r, 8, z with 
the origin at the center of the crack, so that the crack is located 
at z = 0, 0 < r < a, see Fig. 1. Let co be the circular frequency 
of the incident waves. In what follows the time dependence of 
all the field quantities, assumed to be of the form e~mt, will 
be suppressed. 

The material is assumed to be a unidirectionally fiber-rein
forced composite solid whose fiber diameter is small compared 
to the wavelength so that one can consider the material as a 
transversely isotropic solid. The fiber direction is parallel to 
the z-axis. The stress-strain relation for this material has the 
following form [Vinson and Sierakowski (1986)] 

(1) 

Only five of the above six material constants are linearly in
dependent. c6 can be expressed in terms of cx and c2: 
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c6 = \(.cv c2) (2) 

Let a longitudinal wave propagate in the negative z direction 
as shown in Fig. 1. Since the geometry, material properties, 
and the loading are symmetric about the z-axis, the response 
must be axisymmetric. For such an axisymmetric problem the 
stresses can be expressed in terms of the displacements in the 
following form 

dur ur duz 

ooe = c2 

°zz = Ci 

Trz = C5 

du, Ur 
+ c,— + c3 dr r 

dur ur 

dr r 

du, du, 
— + —-
dz dr 

+ c4 

dtiz 

dz 

djh 
dz 

Tre = Tze = 0 (3) 

where ur and uz are the radial and vertical displacement com
ponents, which are functions of r and z only. 

Equations of motion for the problem are 

(d2Ur , 1 dur u\ d \ (d\ d2ur\ 2 
C\jS+-r^-7)+C3drJz + C5\JrTz + W)+P"Ur=0 

, (d2ur 1 dur\ fd\ 1 du\ 

aV 
+ C t"a?+ P z = 0 (4) 

where p is the material density. The solution of this system of 
equations can be assumed to have the following form 

A(k)eipzJ0(kr)kdk 

ur= \ s(k)A(.k)eipzJ1(kr)kdk (5) 

where J0 and J{ are Bessel functions of first kind of orders 
zero and one, respectively. 

Substitution of equation (5) into equation (4) gives after 
some manipulation 

s(k) = 
c5k

2 + C4P2 - pco2 

ipk{c3 + c5) 
(6) 

and 

c&P4 +{(ciC4-4- 2c3c5) k
2 - pco2 (c4 + c5) }p2 

+ [c1c5^4-pco2(c1 + c5)/:2 + p V ) = 0 . (7) 

Equation (7) is a quadratic equation in p2 so it has two roots 
p\ and pi which are given by 

Pj=T—ib2- b,k2 + ( - 1) W 4 + B2k
2 + B3)

1/2) (8) 
2c4c 

where 

bl = clC4-c2-2c3c$ 

b2 = poi2(ct + cs) 

Bx = b\- ^ ^ c 2 

5 2 = 4pco2c4c5(c1 + c5) -2bxb2 

i?3 = p2co4(c4-c5)2. 

From equation (8) it can be shown that pfij = 1, 2) is equal 
to zero at k = kj where, 

(9) 

*, = « . -

fc-j = CJ 

For k < kj, p2 is positive and pj is defined to be a positive 
real number, and for k > kj, pj is negative and pj is defined 
to be a positive imaginary number. 

The general axisymmetric solution, hence, have the follow
ing form 

100 2 

2 Aj(k)e ±ipJzJQ(kr)kdk 
n • . y = i 

I co 2 

Y\ s(k)Aj(k)e ±ipi% (kr)kdk 
0 y = l 

(10) 

with ± for waves (including evanescent ones) in the positive 
and negative z directions. 

For a vertically propagating longitudinal plane wave, there 
is no r dependence. With k = 0 in equation (7), the two roots 
are coVp/c4 and coVp/cj. These two roots correspond to the 
longitudinal and transverse wave numbers, respectively, in the 
fiber direction. Thus, the displacement and stress fields cor
responding to an incident vertically propagating longitudinal 
plane wave are 
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t/' = 0 

The COD Au(r) can be expressed in terms of Legendre 
polynomials (Krenk and Schmidt, 1982). 

, i ^ B + 1 (Vl - / -Vf l z ) 

-io)ypc4e 
- ioizvp/c^ (H) 

AM(r) = S«'«( - 1 ) ' i4»+i(0) 
(21) 

3 Integral Equation Formulation 

The scattered field is defined such that when it is added to 
the incident field then the total field is obtained. It can be 
clearly seen that, since the crack surface is traction-free, the 
scattered field should produce a traction which is equal but 
opposite in sign to the incident field traction at the crack 
position: 

oJ: = / toVPQ at z = 0, r<a. (12) 

The scattered field should also satisfy the same governing 
equations (4), so it must have the form given in equation (10). 
Using the continuity of <fzz for z = 0 and all r one can set 

S oo 2 

Y) Aj{k)eipJz(Sia z)Mkr)kdk 

{<*> 2 

Y, Sj(k)Aj(k)eipJz^n z)Ji (kr)kdk (13) 

where 

sgn z= 1, z>0 

= -l,z<0. (14) 

It should be noted here that vfr becomes automatically contin
uous across the z = 0 plane by this solution. The vertical 
displacement jump across the z = 0 plane is equal to 

{ oo 2 

J]Aj(k)J0(kr)kdk = 0 r>a 

o j=i 
= Aw(r) r<a (15) 

where Au(r) is the crack opening displacement (COD). In
version of the Hankel transform gives 

where am is an unknown expansion coefficient and P^+i is 
the associated Legendre function. This expansion incorporates 
the correct square root behavior of the crack edge (see, e.g., 
Kuo, 1984). 

Using the relation (Krenk, 1982), 

[ i ^ + 1 ( V l - r V f l V o < * r ) n / r 

= {-DmPL+dOVim + dka)- (22) 
k 

one can evaluate 

i a oo 

Au(r)J0(kr)rdr=- J] aj2m+i(ka) (23) 
0 m = 0 

where y2„,+ 1(/ta) is the spherical Bessel function of first kind 
of order 2m + 1 (Abramowitz and Stegun, 1972). 

Equation (23) is then substituted into equation (20) to give 

f(k) — Y) aj2m+l(ka)dk= - a > V ^ (24) 
-P2S2 " n 

where 

f(k) = (s{-s2) (c3k
2-p1p2c4) 

+ ik(pl-p2)(c4 + c3sls2). (25) 

Multiplication of both sides of equation (24) by rPy+i 
( V l - P / V ) and integration over r from 0 to a yields 

00 p o o 

/ ( * ) 
k(PiSi~p2s2) 

hj+\(ka)j2m+dka)dk 

Adk) + 
1 r Au{r)J0(kr)rdr. (16) 

= - SyoWpCt - (26) 

where 8j0 is the Kronecker delta. 
Thus, equation (26) can be rewritten in the following form: 

From the continuity of i% across the z = 0 plane follows 

k-ipisi 

2 Qjnfitm = - ^ WyfpC4&jO (27) 

where 
A2(k)=- Adk). 

k-ip2s2 

Substitution of equation (17) into equation (16) gives 

k-ip2s2 

(17) 
Qjr, i" / ( * ) 

k(PiSi-p2s2) 
J2j+i(ka)j2m+i(ka)dk. (28) 

Ai(k) = 
2i(piSi-p2s2) r Au(r)J0(kr)rdr. (18) 

After some algebraic manipulations, the boundary condition 
equation (12) becomes 

{00 

A{(k)[(c3Sik + iCiPi) 
0 

k—ipjSi 

k-ip2s2 

Finally, equation (18) is substituted into equation (19) to 
give 

Equation (27) can now be solved for am\ then equations (21), 
(18), (17), and (13) give the scattered field components «4 and 

4. 
The semi-infinite integral of equation (28) can be converted 

to finite integrals by considering proper contours as suggested 
by Krenk and Schmidt (1982). The details are omitted here 
and only the final result is given: 

{c3s2k+ic4p2)]J0(kr)kdk = ioi spc4. (19) 

Au(r)J0(kr)rdr\ \(k-ipiSi) (c3s2k + ictp2) 
'0 I 

Jn(kr)k 
-(k-ip2s2)(,c3sik + c4pl)) — dk = oi\fpc4. (20) 

2(PiSl-p2s2) 

This is an integral equation over the crack for the COD Au(r). 

,.,. J2j+i(ka)h2i+i(ka) 
J{k) 5 

PlSl -PlSl 

72/+1 (ka)h2l+l(ka) dk 

iw\pc4 1 

'Jm a(4j + 3) k 

dk 

k 

g(k) 
P1S1 -p2s2 

kia(4j+3) 
(29) 

where 

Jo \ J O 

g(k) = ik(c3pisis2-p2c4) - (s2c3k
2+pip2SiC4) (30) 

and h2
ll+i(ka) is the spherical Hankel function of first kind 

of order 2m + 1. Equation (29) can be used to evaluate Qjm 

foij > m and the symmetry Qmj = Qjm then gives the remaining 
elements. 

Two comments are in order concerning the obtained solu-
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Fig. 2 Variations of stationary points (solutions of equation (35)) for an 
anisotropic material and an isotropic material. Material properties are 
given below equation (35). 

tion. For the case of an isotropic solid, the system of equations 
(27) and (28) reduces to the solution given by Krenk and Schmidt 
(1982) for their symmetric part with m = 0 (rotational sym
metry), although the normalizations are somewhat different. 
In the static limit only the last term in the Q matrix in equation 
(29) survives, and this matrix thus becomes diagonal. The 
system of equations (27) can thus be solved and this gives 

a0= -2ikya 

am = 0,m=l,2 (31) 

As in the case of an isotropic solid, the COD in equation 
(21) in the static limit thus becomes a simple square-root func
tion. 

4 Far-Field Calculation 
In the near field (small z and r), the integrals in equation 

(13) can be evaluated numerically to compute i4 and i/r. How
ever, in the far field, the numerical evaluation of these integrals 
is awkward because of the rapid oscillations introduced in the 
integrand by the Bessel functions and the trigonometric func
tions. 

Keeping only the first term in the asymptotic expansion of 
the Bessel function 

Jm(kr)-. 
1 * r - i ( 2 m + l ) -

e 4 + e 
ikr+i(2m+\)-

\jl-wkr 

in equation (13) gives, after some algebraic manipulations, 

jy+\(ka) 
• OO n OO 

M* = (sgnz) , , , „, , 
Sk(pysx-p2s2) 

x eiP2Zisgn z)-(k- ip2s2)e
 ip*z(ssn z) 

(k-ip,si) 

ikr-i-
e 4 + e 

-ikr+i-
4 dk 

Q 
O 
O 
a 
UJ 
w 
< 
cc o z 

0,0 0,5 1,0 

r/a 
Fig. 3 Normalized COD as a function of r/a in the isotropic solid, for 
k2a = 0,1.4, 3.2, 4.4, and 6.0. Solid lines are from the present analysis, 
crosses have been obtained by Mai (1970), and white squares are from 
Budreck and Achenbach (1988). 

V 8 i r / - ^ J0 y/k(plsi-p2S2) (. 

-sdk-ip2s2)e
ip^z)[ \e * +e 

ikr-
3w 

dk. (32) 

So, oscillations in the integrand are introduced by the factors 
of the form 

p ±ipjz±ikr 

This type of oscillatory integrals can easily be computed by 
the method of stationary phase (Lighthill, 1978; Jeffreys and 
Jeffreys, 1950). 

For this purpose, a spherical coordinate system R, <l>, d is 
now introduced as shown in Fig. 1. Then 

ip;z±ikr iR{Pj cos #±fc sin </>) 

= e'%<*> or eiRxJ{k) (33) 

where 

\}/j(k) =pj cos 4> + k sin <t> 

Xj(k) -Pj c o s <S>~k sin </>. (34) 

The stationary points can be obtained from \pj (k) = 0 and 
XJ (k) - 0, which gives 

2blk~{- l)J(2Bik3 + B2k)/B(k) 

(bi-bi^ + i-lYBik))1 -= ±^/8c4c5 tan </> (35) 
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truncations in equation (27) for k2a = 2 (top figure), 10 (middle figure), 
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where 

B(k) = (B^ + B^ + B^2. 

The roots of equation (35) can be obtained numerically. For 
an isotropic material, these roots become simply equal to ±kj 
sin 4>, but for an anisotropic material, no such simple relation 
exists. For a graphite-epoxy composite material no positive 
root of k is obtained from xj = 0. \l/{ (k) = 0 gives one 
positive root and yp2 (k) = 0 gives multiple positive roots for 
some values of <f> and a single positive root for other values 
of 4>. Existence of these multiple roots is in consistence with 
the theory of elastic wave propagation in anisotropic materials 
that states that in a transversely isotropic solid along certain 
directions, the shear wave can propagate with more than one 
velocity (Van der Hijden, 1987). Denote these roots by koi and 
k'o2, respectively. For multiple values of koi, the superscript m 
takes the values 1, 2, 3. The variation of k0\ and km. with 4> 
for the graphite-epoxy composite (ci = 13.92 GPa, c2 = 6.92 , 
GPa, c3 = 6.44 GPa, c4 = 160.73 GPa, cs = 7.07 GPa, p = 
1578 kg /m\ Mai, Yin, and Bar-Cohen, 1989) and for an 
isotropic solid (Young's modulus E = 69.15 GPa, Poisson's 
ratio v = 0.25, p = 2770 kg/m3) are shown in Fig. 2. For the 
isotropic solid the Ar01 and k02 curves match exactly with ki sin 
<t> and k2 sin <j> curves, respectively. 

During the far-field computation one can neglect all terms 
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Fig. 5 Same as Fig. 4, but the material is the graphite-epoxy composite 
whose material properties are given below equation (35) 

give any positive root. Collecting everything the stationary 
phase method then gives the far-field components 

M 

«;= (sgn z) — 4 = E «J S FjV&)eL 

2Rs/sm <j> fci (jfTi 

•Gj(kn)e mti (*oi) 

2 « / \islGj(kol)e
iR^ko0 

M 

- v1 „,, is2Fj(k%2)e
iR^A (36) 

where M is the number of roots of the equation ty{ (k) = 0 
and 

i-+i-sgn[<p2(k)] 
r , k ) _ J2i+\(ka)(k-iPlsl) -4 4 

1 \Mkk)\ulJk{p\s,-p2s2) 

„ , , , J2j+i(ka)(k-ip2s2) - / j+^sgm^w] 

\M'(k)\1/2jk(PlSl-p2s2) 
(37) 

containing e in equation (32) since %} W = 0 does not 

and 

*/ (*) = 
COS<j> 

Vli C4C5 
[ (2bi - ( - 1)JB (k) ~ \2B\k6 + 3B{B2k

4 
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+ 6B1Bik
2 + B2B3)}{b2-bik

2 + (-l)JB(k) + : 
1 

2 

(-\)jB(k)-\2Blk
3 + B2k))2]{b2-blk

2 

[2bik 

+ (-l)jB(k) - h (38) 

where b\, b2, B(k) ,BitB2, and_B3 have been defined previously. 
Energy conservation generally gives a good check on a nu

merical procedure and it is often easiest to apply in the far 
field. It has been briefly investigated for the present case, but 
due to the rather implicit form of the far field, it would be 
somewhat cumbersome computationally and has therefore been 
abandoned. 

5 Numerical Results 
Numerical results are presented for two types of materials, 

an isotropic solid and an anisotropic solid. Their material 
properties are given in the previous section (see below equation 
(35)). 

Figure 3 shows the COD of a circular crack in an isotropic 
solid when a vertically propagating longitudinal wave strikes 
the crack. Different curves are shown for different values of 
k2a. In this and the following figures, the COD has been nor
malized with respect to Wo, where W0 is the COD at the crack 
center when the crack is subjected to a static stress of magnitude 
equal to the amplitude of the incident stress field. Equations 
(21) and (31) gives 

W0=-2ikla. (39) 

In Fig. 3, crosses are results obtained by Mai (1970) and 
white squares are those obtained by Budreck and Achenbach 
(1988). The present results are closer to Budreck and Achen-
bach's results than to Mai's results. 

Equation (27) gives a set of linear equations containing an 
infinite number of terms. But for all practical purposes one 
needs to consider only a finite number of terms. This needed 
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Fig. 7 Normalized radial (continuous line) and tangential (black squares) 
components of the scattered field displacement in the isotropic solid 

truncation increases with increasing k2a. Figures 4 and 5 show 
the COD evaluated in the isotropic and the anisotropic solids, 
respectively, for different values of k2a when different trun
cations are considered in equation (27). It can be seen from 
these two figures that the truncations required for proper con
vergence is a function of k2a; these truncations are 2, 8, and 
12 for k2a equal to 2, 10, and 20, respectively. For these cal
culations, the integrals in equation (29) could be accurately 
computed with the 60-point Gaussian quadrature scheme. 

Next, for the isotropic solid the radial and tangential com
ponents (u% and usj) of displacement are computed using equa
tion (36) and the relations 

u% = u\ c o s 4> + us
r s i n <j> 

us
T= -us

z s i n <j> + us
r c o s <£. (40) 

Thus, the contributions of scattered P and SV waves are 
separated by the u% and us

T components. They are computed 
for k2a = 2 and 4 and plotted in Fig. 6. Squares in these plots 
have been obtained by Krenk and Schmidt (1982). Scattered 
displacements in this figure and in the subsequent figures have 
been normalized with the factor U0a/R, where U0 is the dis
placement amplitude of the incident wave, a is the crack radius, 
and R is the radial distance of the point of interest from the 
crack center. 

Figure 7 shows the scattered displacements in the far field 
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Fig. 8 Same as Fig. 7, but the material is the graphite-epoxy composite 
solid. In the middle and bottom plots the smaller inserted curves show 
radial displacements plotted from 0 = 1 deg, whereas the bigger curves 
are plotted from <t> = 3 deg. 

for the isotropic solid for kya = 2, 10, and 20. Both radial 
(scattered P wave) and tangential (scattered SV wave) com
ponents of displacement are shown in solid and dotted lines, 
respectively. As the frequency increases, the P wave curve 
becomes narrower and the S V wave curve gradually diminishes. 
Thus, as expected, the results become closer to the ray ap
proximations as the frequency increases. 

Figure 8 is similar to Fig. 7, but for this figure the material 
is the anisotropic solid. In Fig. 8 the radial components decay 
with the angle much more rapidly than those in Fig. 7. This 
phenomenon is due to the presence of strong fibers in the z-
direction. Because of these fibers, the disturbance quickly 
propagate in the z-direction or, in other words, the scattered 
wave remains closer to the symmetry axis of the crack. As the 
frequency increases, these peaks become sharper. In the middle 
and bottom plots the smaller inserted curves show radial dis
placements plotted from c6 = 1 deg, whereas the bigger curves 
are plotted from c4 = 3 deg to magnify the tail portion of the 
curves. Figure 9 is similar to Fig. 8, but here vertical (along 
the fiber) and horizontal (perpendicular to the fiber) compo
nents of displacements have been plotted. 

6 Concluding Remarks 
In the present paper the scattering by a circular crack in an 
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Fig. 9 Same as Fig. 8, but instead of radial and tangential components, 
the vertical (along the fiber) and horizontal (perpendicular to the fiber) 
components of the scattered field displacements are plotted 

anisotropic solid has been considered. The integral equation 
method employed is rather direct and it has the virtue that the 
unknown is a physically interesting quantity, namely the COD. 
The numerical examples show that it is possible to consider 
relatively high frequencies and the results then become closer 
to the expectations from simple ray theory. Both COD and 
far-field scattered displacements in isotropic solids compare 
favorably with those available in the literature. It is interesting 
to note that in an isotropic solid the scattered field is spread 
over a wider region as compared to an anisotropic solid. 

The present work is limited to the axisymmetric case. Gen
eralization of this technique, to the case of inclined waves and 
multilayered anisotropic solids, will be more cumbersome. The 
case with inclined incident waves are presently being investi
gated, and the main extra complication is that also the anti
symmetric part of the problem must also be solved and this 
involves two coupled integral equations (cf., Krenk and 
Schmidt, 1982). 
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Transient Analysis for 
Antiplane Crack Subjected 
to Dynamic Loadings 
The problem considered here is the antiplane response of an elastic solid containing 
a half-plane crack subjected to suddenly applied concentrated point forces acting 
at a finite distance from the crack tip. A fundamental solution for the dynamic 
dislocation is obtained to construct the dynamic fracture problem containing a 
characteristic length. Attention is focused on the time-dependent full-field solutions 
of stresses and stress intensity factor. It is found that at the instant that the first 
shear wave reaches the crack tip, the stress intensity factor jumps from zero to the 
appropriate static value. The stresses will take on the appropriate static value in
stantaneously upon arrival of the shear wave diffracted from the crack tip, and this 
static value is thereafter maintained. The dynamic stress intensity factor of a kinked 
crack from this stationary semi-infinite crack after the arrival of shear wave is 
obtained in an explicit form as a function of the kinked crack velocity, the kink 
angle, and time. A perturbation method, using the kink angle as the perturbation 
parameter, is used. If the maximum energy release rate is accepted as the crack 
propagation criterion, then the crack will propagate straight ahead of the original 
crack when applying point load at the crack face. 

1 Introduction 
Most of the analysis done regarding cracked bodies are quasi-

static. Because of loading conditions and material character
istics, there are numerous problems for which the assumption 
that the deformation is quasi-static is invalid and the inertia 
of the material must be taken into account. The inherent time 
dependence of the dynamic fracture problems makes them 
more complex than equivalent quasi-static models. Both the 
case of a stationary crack in a body subjected to dynamic 
loading and the case of a rapidly propagating crack in a stressed 
body are considered as dynamic fracture problems. 

When dynamic loading is applied to a body with an internal 
crack, the resulting stress waves may initiate crack growth. 
Few solutions for a cracked elastic solid subjected to dynamic 
loading are available. The most notable of these are the analysis 
of diffraction of a plane pulse for a semi-infinite crack by de 
Hoop (1958) and the equivalent problem for a finite length 
crack by Thau and Lu (1971). The study of propagation crack 
in a brittle solid began with the pioneering analysis of Yoffe 
(1951), and considerable progress has been made in the area 
of dynamic brittle fracture. Transient problems for constant 
crack propagation velocity along the fracture plane have been 
studied by Baker (1962), Broberg (1960), and Achenbach and 
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Nuismer (1971). In a series of papers, Freund (1972a, 1972b, 
1973,1974a) developed important analytical methods for eval
uation of the transient stress field of a propagating crack in 
a two-dimensional geometric configuration. In Freund's pa
pers, a fundamental solution is obtained and is used to develop 
the solution for negation the stress distribution on the pro
spective fracture plane by superposition. A generalization of 
this idea also led to solutions of crack kinking problems under 
dynamic loading analyzed by Ma and Burgers (1986, 1987, 
1988) and Ma (1988). 

The difficulty in determining the transient stress field in a 
cracked body subjected to dynamic loading is well known. The 
complete solution of a spatially uniform traction distribution 
acting on the crack faces can be obtained by integral trans
formation methods. If the problem is modified by replacing 
a nonuniform distribution having a characteristic length, then 
the same solution procedure using integral transformation 
methods does not apply. Freund (1974b) developed a technique 
which makes it possible to solve this modified problem. Freund 
solved the problem of an elastic solid containing a half-plane 
crack subjected to concentrated impact loading on the faces 
of the crack. An exact expression for the dynamic stress in
tensity factor was derived by superposition over a one-param
eter family of continuously distributed moving dislocations. 
The complete elastic solution can also be determined by this 
scheme, but only the stress intensity factor was studied in detail 
by Freund (1974b). Freund found that if the applied point 
loading on the crack faces is a step function of time depend
ence, the dynamic stress intensity factor is zero until the lon
gitudinal wave, which was generated at the loading point, 
arrives at the crack tip. At the instant the Rayleigh wave arrives, 
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the stress intensity factor takes on its appropriate static value, 
and this value in maintained thereafter. Dynamic stress wave 
interaction with cracks was analyzed by Brock (1982, 1984, 
1986) and Brock et al. (1985). The analysis of the interaction 
of dynamic dislocations with stationary semi-infinite cracks 
was studied by Brock (1983a,b). Brock also focused his atten
tion mainly on the investigation of the dynamic stress intensity 
factor. 

In some classes of dynamic problems of impact loading, the 
ability to find a static field may hinge on waiting for the wave 
front to pass and the transient effect to die away. For point 
dynamic loading with the step function suddenly applied on 
the surface of a half plane, the stress field becomes a static 
value as the time tends to infinity. When a propagating anti-
plane crack subjected to dynamic loading suddenly stops, Esh-
elby (1969) and Ma and Burgers (1988) found that the stationary 
crack solution is radiated out behind the shear wave centered 
at the stopped crack tip. In this study, the problem to be 
considered is the antiplane response of an elastic solid con
taining a half-plane crack subjected to impact loading on the 
crack faces with finite distance to the crack tip as shown in 
Fig. 1. The techniques used in this study were first described 
by Freund (1974b) who investigated the same problem in the 
plane case but focused only on the dynamic stress intensity 
factor. In this study, we analyze not only the dynamic stress 
intensity factor but also the transient full-field solution. The 
main results are that the stress intensity factor is zero before 
the shear wave arrives at the crack tip, and then it jumps from 
zero to its appropriate static value at the instant of the wave 
arrival. The full-field solution of stresses will take on the ap
propriate static value instantaneously upon arrival of the sec
ondary shear wave (SS wave) diffracted from the shear wave 
(S wave) which is generated by the suddenly applied load. A 
kinked crack which suddenly propagates out of the original 
semi-infinite crack with constant velocity is also considered. 
The direction of propagation, as well as the velocity of crack 
propagation will depend on the local stress field around the 
crack tip. To understand the observed bifurcation events, the 
dynamic stress intensity factor for cracks which suddenly kink 
is obtained in closed form by a perturbation method. The 
energy flux into the propagating kinked crack tip is derived 
and these results are discussed in terms of an assumed fracture 
criterion. 

2 Statements of the Problem 
Consider a stress-free elastic homogeneous isotropic infinite 

medium that contains a semi-infinite crack, a Cartesian co
ordinate system is defined in the body in such a way that the 
antiplane deformation is in the j>-direction. The planar crack 
lies in the plane z = 0, x< 0. At time t = 0, a concentrated force 
of magnitude <r0 (per unit length in the ^-direction) acts at 
x= - / o n each face of the crack as shown in Fig. 1. The relevant 
stress components are denoted by an and axy, and the nonzero 
out-of-plane displacement is denoted by w. In a stationary 
coordination systems of x and z, two-dimensional antiplane 
wave motions are governed by 

d2w d2w 2 d
2w 

dx2 + de~b dt2' 

where b is the slowness of the transverse wave given by 

S Wave 

(1) 

Here, ^ and p are the shear modulus and the mass density of 
the material, respectively. The nonvanishing shear stresses are 

axy = n 
dw 
a? Oyz = H 

~dz" 

ayz(x, 0, t)=a05(x+l)H(t), x<0 

w(x, 0, / ) = 0 , x > 0 , 

Fig. 1 Wavefronts for a stationary crack subject to dynamic point load
ing at the crack faces 

application of the concentrated forces. Because of symmetry 
with respect to the plane z = 0, the boundary conditions can 
be written as 

(2) 

(3) 
where H is the Heaviside step function and 8 is the Dirac delta 
function. The formulation is completed by specifying zero 
initial condition. Because of the presence of the characteristic 
length / in the formulation, the standard Wiener-Hopt tech
nique cannot be used. Therefore, some other approach must 
be followed. If the boundary condition (2) is extended to the 
entire boundary, then the problem is reduced to the antiplane 
analog of Lamb's problem in the plane case. Hence, the prob
lem described in (2) and (3) is Lamb's problem with a con
centrated loading at x = - / , but with surface displacement 
negated for x>0. By solving for the fundamental solution of 
a distribution dislocation, this problem can be solved by su
perposition. This methodology was first discussed and used to 
solve the correspondence problem in plane strain by Freund 
(1974b). 

3 Transient Solutions for Impact Loading on the Crack 
Faces 

Now let us consider the same unbounded body containing 
a semi-infinite crack. At time T = 0 , a screw dislocation of 
strength 2A begins to move from the crack tip at constant 
speed v in the positive x-direction. This problem is also sym
metric with respect to the plane z — 0, the boundary conditions 
can be written as 

(4) 

(5) 

The solution of this fundamental problem can be obtained by 
using integral transformation and the standard Wiener-Hopf 
technique. The exact full-field solutions can be expressed as 
follows: 

o£(x, 0, T) = 0 , X<0 

vf(x, 0, T) = AH(VT-X), X>0. 

o£(x, z, T) = 
Ay.(b + h)1 

-Im 
(b + X)m d\ 

\ + h dr 
H(r-br), 

(6) 

<^y(X, Z, T) 

Aixib + h)1 

Im 
3X 

(b-\)l/z(\ + h) dr 
H(r-br), (1) 

P. A(b+hy 
wF(x, z, T) = 

Im 
br 

1 d\ 

(Z>-X)1/Z(X + //) dr 
drH(T-br), (8) 

The crack faces are traction-free, except for the point of and 
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l i m [ x - 4 ( ^ 0 , , ) ] = - ^ ^ # 
x-0 + 

(9) 

where 

h=\/v, 

r (r2 

X = - - cos0 + /sin01 -5 

r=\jx2 + z2. 

Now, consider the transient wave in a half-space generated by 
a impact point loading a0 at x=0, z = 0, which can be viewed 
as the Lamb's problem in antiplane analogy. The solutions are 

, , o0tsind „ , , , 
(Tyz(x, z, 0 = _L .2, / , /i-v2—TTiTiHV-br)' 

<&(*, z, t) = 

irbr2[(t/br)2- l]l/2 

o0tcosd 

vbr*[(t/br)2-l] 
-2H(t-br), 

(10) 

(11) 

vf(x,z, t)= — - I n 
t 

br+ 
1 H(t-br). (12) 

With the fundamental solution and Lamb's solution at hand, 
it is now possible to construct the field solutions for the prob
lem of impact loading on the crack faces at x = - /. As described 
in the previous section, this solution can be superimposed by 
two solutions, one is the Lamb's problem with a concentrated 
force at x= — /, z = 0, the other problem is that which cancels 
out the surface displacement for z = 0, x>0 of Lamb's prob
lem. The surface displacement for Lamb's problem by applying 
concentrated loading a0 at x= -I, z = 0 and at time t = 0 is 
obtained from (12) 

w'(x, 0, / ) = - — lm -rr—.-
/IT 0(X+l) 

b(x + l) 
1 H(t-b(x+l)). (13) 

It is observed from (13) that w1 depends only on the ratio 
t/(x+l), which means any given displacement level radiates 
out at a constant speed (x+l)/t along the x-axis for t>0. The 
speed varies between zero and the shear wave speed. For a 
particular speed vT arriving at x=0, at any time t will be vr = 1/ 
t. Then, the full-field transient solution of stress ayz(x, z, t) 
can be constructed by superposition over a one-parameter fam
ily of dislocation velocity. The result is 

<ryAx,z, t) = aL
yz(x, z, t) 

ayz(x, z, T-T0, v)— dv. (14) 

The coordinate systems and the wavefronts are shown in Fig. 
1. The wavefront for Lamb's problem consists of only the 
shear wavefront, denoted by S, propagating away from the 
loading point. When this shear wave reaches the crack tip, an 
additional shear wave indicated by SS diffracted from the crack 
tip is generated. The first term in (14) represents the contri
bution from the 5 wave while the second term is from the SS 
wave. It is convenient to change the integration variable from 
v to h= I/v. After the substitution of the explicit expressions 
for ofa,, o£ and dvf/dv into (14), the expression becomes 

M ' > 0. t) = _UD2r "f^2 „mH{t-bR) 
itbR\{t/bRY-\Y 

t-lh 
T J l = - " - cos0 + z'sinfl 

t-lh 
-b2 

6 T " 
- cos0 + is'md t-lh 

{(t-lh)2-b2r2)W2 

R = [(l+rcos6)2 + r2sm2d]i/2. 

By a similar procedure, we also get the result for axy 

oatcosQ 

(16) 

(17) 

°*y(r, 6, /) = 
riR2{(t/bRT^W,2m~bR) 

,V~br)/l 

+ - 5 l lm 1)1 di)i 

foi + h X b - i n ) 1 " dr 

dh 
imt 

(h-b)1 

-Hr+l)). (18) 

The stress intensity factor is defined by the following limit 

K= lim (2irx)l/2a„(x, 0, t). (19) 
x-0 + 

It is clear that the stress in Lamb's problem is not singular 
at x = Q, so that the stress intensity factor is determined by the 
second term in (15). From the result of (9) and in the same 
manner as the construction of the full-field solution, it is found 
that the stress intensity factor is given by 

b (h*-h)»2(h-b)i/2HU~bl) K(t)=-ao 

= -a0^-H{t-bl), (20) 

where h* = t/l. The interesting result of (20) is that the stress 
intensity factor jumps from zero to the static value after the 
shear wave generated from the loading point arrives at the 
crack tip. In the plane-strain case, Freund (1974b) found that 
the stress intensity factor takes on its static value instanta
neously upon arrival of the Rayleigh wave generated by the 
suddenly applied load. 

Now, we focus our attention on the stress along the crack-
tip line. After making the indicated change of variable, the 
result is 

,WuT 

ayz(x, 0, /) = { 1 / (t-lh-xb)1 

(hx+hl-t)ylh-b 

b(l+x)). 

dhH(t 
(21) 

After some suitable change of variables and working out the 
details, it is found that 

ayz(x, 0, t) = - \ - -^-H(t-b(x + l)). (22) 
w\jxx+l 

The remarkable result shown in (22) is that the stress at any 
point along the crack line takes on its static value instanta
neously after the shear wave has passed this point. 

The static full-field solutions of stresses for applied point 
loading a0 at the crack faces of the same problem are 

<fyz(r,d) = co /rcos(30/2) + /cos(0/2) 
r2 + 2rlcosd + l2 

(4y(r,e) = 
ffo ///•sin(30/2) + tan(0/2) 

r2 + 2rlcosd + l2 

(23) 

(24) 

VJ6 

U-br)/l 

lm 
(b + Vl)

mdr,i 
t)i + h dr 

where 

dh The numerical calculations of the full-field solutions of stress 
YjlH{t-b(r + l)), ayz in (15) a r e shown in Fig. 2. The most interesting feature 

as shown in this figure is that the full-field solutions of stresses 
' ' jump from the dynamic transient solution to the appropriate 

static value expressed in (23) instantaneously upon arrival of 

(h-b) 
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Fig. 2 The transient shear stresses ay2 lor applying dynamic point load
ing on the crack faces 

3-00-r 

000 050 100 150 200 
br / t 

Fig. 3 Nondimenslonalized transient shear stress ay2 for applied point 
loading with a finite rise time 

the secondary shear wave (SS) diffracted from the shear wave 
(S) which is generated by the suddenly applied load. Along 
the crack-tip line, the SS and S wave coincide. From the general 
features of the numerical results of full-field solutions indicated 
above, it is then very easy to draw the conclusion just made 
regarding the stress along the crack-tip line. Hence, the tran
sient full-field solution of stress ayz can be expressed as follows: 

. o ^ r , 0 , 0 = 0 for t<bR, 

Oyz(r, 6, 0 =<4 for t>bR and b(r + l)>t, (25) 

ayz(r,d,t) = (fyz fovb(r+l)<t, 

where 
R=[(x+l)z + z2]l/2-

In order to indicate the correctness of the solutions for point 
loading shown previously, these solutions for point loadmg 
are regarded as the Green function and are used to construct 
the solutions of uniform loading a0 applied to the crack faces. 
The method used to obtain solutions for stresses is very 
straightforward. The results are 

an(r, 6, 0 = —° 
IT 

2cos (0 /2 ) J - - l 

- tan 
t/br-l 
l-sinfl' -tan 

t/br-l 
1 + sine 

<jxy(r,e,t)=^sm(.e/2)J-^-l. 

(26) 

(27) 

The result of the numerical integration of stress ayz in (15) over 
the crack faces is compared with the solution shown in (26). 
The two results are in excellent agreement as indicated in Table 
1. 

Table 1 Comparison of the numerical results for ayz from integration 
of the solution of point loading and the solutions of applying uniform 
loading on the crack faces 

Green function Uniform loading br/t 

0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

B-

- 7 . 3 8 5 £ -
- 2 . 3 1 6 E -
-4.778E-
-8.393E-
-1.366J5-
- 2 . 1 5 7 £ -
-3 .416E-
-5.678E-
-1.115E-

9 = 

1.982£ -
1.180E -

-8.609£ -
-4 .217B-
-9.302E-
-1.700E-
-2.927E -
-5.132E-
-1.046E-

9 = 

1.275J5 -
1.348E -
1.190E -
8.71ZE-
3.807E -

-3.510E-
- 1 . 4 9 4 £ -
- 3 . 5 1 2 S -
-8.293E-

= 0° 

-3 
-2 
-2 
-2 
- 1 
- 1 
- 1 
- 1 
- 0 

= 30° 

-2 
-2 
- 3 
-2 
-2 
- 1 
- 1 
- 1 
- 0 

= 60° 

-1 
-1 
-1 
-2 
-2 
- 2 
- 1 
- 1 
- 1 

- 7 . 3 8 5 £ -
-2.316E1-
- 4 . 7 7 8 £ -
-8.393.E-
- 1 . 3 6 6 £ -
-2.157J5-
- 3 . 4 1 6 £ -
- 5 . 6 7 8 £ -
-1.115^7-

1.982E-
1.181S-

-8.593J5-
- 4 . 2 1 4 £ -
-9.294£ -
-1.698.B-
-2 .925E-
- 5 . 1 3 2 £ -
-1.042E-

\.27hE-
1.348£-
1.190£-
8.714£-
3.806£-

-S.510E-

-1.494 J5-
- 3 . 5 1 2 £ -
- 8 . 2 9 4 £ -

-3 
-2 
-2 
-2 
- 1 
- 1 
- 1 
- 1 
- 0 

-2 
-2 
- 3 
- 2 
-2 
- 1 
- 1 
- 1 
- 0 

- 1 
-1 
-1 
-2 
-2 
- 2 
- 1 
- 1 
- 1 

Up to this point, the time dependency of the point loading 
profile is a simple step function in time. The stress for spatially 
distributed traction on crack faces or for more general time 
dependence can be obtained by superposition. Suppose that 
the rate of increase in magnitude of the point loading from 
zero is taken to be linear, after some finite rise time, say T, 
the magnitude of the loading is held constant. In this case, the 
stress <jyz can be obtained from superposition of (15) over time. 
The numerical results are shown in Fig. 3. The transient so
lutions will become static at time t=b(l+r) + Tas expected. 
Now, let us consider uniform loading of step function applied 
on parts of the crack faces from x= - / , to x= - (h + h) at 
t = 0. The transient solution of oyz can also be obtained from 
superposition of (15), the numerical results are shown in Fig. 
4. The solutions become a static value after time t = b(li + hJri') 
as expected. 

4 Dynamic Crack Kinking 
In this section, we will analyze the dynamic crack growth 
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150 

Fig. 4 Nondimensionalized transient shear stress ayz for suddenly ap
plied uniform loading over part of the crack faces 

S Wave 

Fig. 5 Geometry of wavefronts for a kinking crack subject to point 
loading on the crack faces 

out of the original semi-infinite crack at an angle to the original 
crack after applying dynamic point loadings on the original 
crack faces. From the results indicated in the previous section, 
we know that the dynamic stress intensity factor jumps from 
zero to the static value after the S wave arrives at the crack 
tip. Hence, if the critical stress intensity factor criteria for 
crack growth is adopted, the crack will be expected to grow 
immediately after the S wave reaches the crack tip. 

Now, let us consider a stationary, semi-infinite crack in an 
initially stress-free isotropic elastic full space. A sharp crack, 
which will be referred to as the original crack, is subjected to 
a point dynamic loading at the crack faces with a distance / 
to the crack tip. A short time later, at t = 0, the S wave generated 
from the point loading arrives at the crack tip. A crack referred 
to as the new crack, propagates out from the tip of the semi-
infinite crack. The velocity of propagation vc is constant and 
less than the shear wave speed vs. The line of propagation is 
straight, making an angle 5 with the original crack, thus pro
ducing a kinked crack. The pattern of wavefronts and the 
position of the crack tip for t> 0 are shown in Fig. 5. The field 
solution for a kinked crack geometry can be considered as the 
superposition of the field for the S and SS waves of the sta
tionary crack and the field from the new crack faces subjected 
to crack-face tractions which are opposite in sign to the stresses 
computed from the stationary crack. This computation in
volves coupled integral equations which must be solved nu
merically. 

The method used to solve the problem in this study relies 
on an asymptotic approach. The perturbation procedure in
dicated by Kuo and Achenbach (1985), by using the kinking 
angle 8 as the perturbation parameter, is adopted to construct 
the solution. The first-order approximation of the dynamic 
stress intensity factor for a kinked crack can be expressed by 
the stress intensity factor for a straight crack, propagating in 
its own plane, subjected to the negative of the traction com
puted from the stationary crack problem along the line of the 
kinked crack. 

(jyZ = 0 for 3c<0, 

v$z=-oey(6 = S) for 0<x<vct. (28) 

A fundamental solution needed to construct the problem 
indicated in (28) is similar to that proposed by Freund (1972a) 
in the plane-strain case. Consider a crack extending straight 
at a constant speed vc in the 3c-direction. For t<0, there are 
no body forces or tractions acting on the body. At time t = 0, 
the position of the crack tip is 3c=0 and concentrated forces 
of unit magnitude appear at the crack tip. For t>0, the crack 
tip continues to-move in the positive 3c-direction, but the con
centrated forces continue to act at 3c =0 . The shear stress on 
the plane z = 0 can be obtained from results analyzed by Ma 
and Burgers (1986) as follows: 

<£tt,0, 0 = V^[x2 -b2-b\2/d2-2b2\/d]U2 

£ir{d+\)[b + \(l + b/d)]' 
t>b2Z, 

(29) 

where 

\ = t/ti, t;=x-vct, 

b2 = b/(\-b/d),d=\/vc. 

As indicated in the previous section, stresses for material 
points behind the SS wave are essentially a static value. With 
this special feature in mind, the kinked crack problem can be 
greatly simplified. Hence, if the kinked crack velocity is less 
than the shear wave speed, the dynamic stress intensity factor 
for the kinked crack tip subjected to dynamic point loading 
at the crack faces is the same as that for the static point loading 
case. For this reason the dynamic stress agy in (28) can be 
replaced by the equivalent static value c4y which can be obtained 
from (23) and (24) as follows: 

<4,(r, 0) = 
ffo // (r + /)cos(6>/2) 

r r2 + Irlcosd +12' 

The dynamic problem as indicated in (28) can be solved in 
a similar manner to that considered above, with the exception 
that a traction which gives rise to <4y (x) on 0<3c< vct, instead 
of concentrated forces appears through the moving crack tip. 
The solution for the case of a distributed traction o ,̂(3c) ap
pearing through the crack tip on 0<x<vct is given by the 
following superposition integral 

Oy\pc, 0, t) = <4z(.x-Xo, 0, t-x0/vc)(4y(x0)dx0. (30) 

The first-order approximation of the dynamic stress intensity 
factor Kd is obtained by considering the limiting behavior £ — 0+ 

of (30) at the moving crack tip 

Kd(t, vc, <$) = lim y/ZrtoL(x, 0, t). 
$-0 + 

(3D 

Taking the limit £—0+ in (29) first and working out the detail 
of (31) yields 

KdU,vc,5)=-\fe(l-b/dMVC' 

(i>c/+/-i7)cos(6V2) 

Kd(t, v, 5) 

VijVvct -r)[(vct-r))2 + 2{vct -ri)lcos5 +12} 

be 

\I\-V 

dv. (32) 

Equation (32) can be worked out and expressed in explicit form 
as follows: 

•OQ-

•KI 

\] ( VT)2 + 2 VTco&b + 1 + VT+ cosS") 
(VT)2 + 2FTcosS+l 

(33) 
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Fig. 6 Dynamic stress intensity factor tor various values of the crack 
kinking angle and crack speed 

where V= b/d and T= t/bl&re nondimensional quantities. Fig
ure 6 shows the dimensionless dynamic stress intensity factor 
for various values of the crack kinking angle 8 and the nor
malized crack speed b/d. The error by using this approximation 
method is less than 10 percent for the any kinking angle less 
than 90 deg; if the kinking angle is less than 45 deg, the error 
is less than 2 percent, as indicated by Ma and Burgers (1986) 
for kinking crack under stress wave loading. We believe that 
the result in (33) will also be comparably accurate. For the 
kinking angle 5 = 0, the crack propagates straight out of the 
original crack, the solution in (33) is an exact result without 
any approximation. 

K\t, v, 0 )= -o - 0 (l-b/d)U2 = K*K(d). (34) 
'v(vt + l) 

The expression for K? in (34) has the interesting form of the 
product of a function of the crack velocity K(d) and the cor
responding static stress intensity factor K* for applying con
centrated loading o-0 at the crack face with a distance l+vt 
from the crack tip. The value K (d) = (1 - b/d)xn is an universal 
function which depends only on crack speed and material prop
erties. 

At the instant that the kinking has just occurred, we have 

l i m . ^ , v,S) = :(l-£>/d)1/2cos(6V2) 

= KsK(d)cos(8/2). (35) 

That is, the stress intensity factor just after the initiation of 
the kinked crack has the form of the universal function of the 
crack-tip speed ic(d) times the stress intensity factor appro
priate for static value A* times the spatial angular dependence 
of the stationary crack field. 

The energy flux into the propagating crack tip can be written 
in terms of the corresponding dynamic stress intensity factor 
by 

where 

E= 

F ( l - K ) ' 

Kl 

2iid(l- -b2/d2)i/2~ 2nlb 
E* (36) 

V (VT): + 2 VTcosd + 1 + VT+ cos5 

•K(\+V)1" (VTy + 2VTcosS+l 

If the maximum energy release rate criterion is accepted as 
the kinking condition, then the combination of the kinking 
angle and the crack speed can be determined at which the 
energy flux into the propagating crack tip achieves a maximum 
value. The conditions for this to occur are 

a2i dE* 

dV 
= 0, 

dfE* 
•<o, 

dE* 
35 

= 0, 
d2B" 

d52 <0. 

and 

If one wants to study the criterion for a crack kinking event, 
it is clear that the most significant time.involved will be when 
the crack kinking has just occurred, i.e., T-~0. From the max
imum energy release rate criterion, it is found that the crack 
will tend to propagate straight ahead of the original crack with 
a constant crack speed yc = 0.618ys which makes .Emax = 0.191. 

5 Conclusions 
The difficulty in determining the transient stress field in a 

cracked body subjected to dynamic loading is well known. The 
problem considered in this study is the antiplane response of 
an elastic solid containing a half-plane crack subjected to im
pact loading on the crack faces. Attention is focused on the 
transient stress fields for an applied load with step-function 
time dependence. The remarkable results are that the full stress 
takes on its static value a very short time after the SS wave 
diffracted from the crack tip has passed, while the stress in
tensity factor takes on the appropriate static value after the 
shear wave generated from the point loading reaches the crack 
tip. Generalizations are discussed for spatially distributed and 
time-varying impact loads. 

Because of the interesting feature that the static field prop
agates out behind the SS wave front, the evaluation of the 
dynamic stress intensity factor of the kinking crack propa
gating with constant crack speed is the same for the dynamic 
point loading and for the static point loading on the crack 
faces. A perturbation method is used to obtain the first-order 
analytic closed-form solution of the dynamic stress intensity 
factor for the kinking crack. The elastodynamic stress intensity 
factors of the kinking crack tip are used to compute the cor
responding fluxes of energy flux into the propagating crack 
tip. With these theoretical results for the stress intensity factor 
at hand, an attempt can be made to determine the kink angle 
and the new kinked crack speed using different fracture criteria 
and to compare them with the experimental results available. 
An energy based fracture criterion is used to look at the ini
tiation of the crack-tip motion. The energy criterion suggests 
that the crack will choose to propagate in the direction and at 
the velocity for which the energy flux into the crack tip has a 
maximum value. Based on the maximum energy release rate 
criterion, it is found that the crack will tend to propagate 
straight ahead with crack speed of 0.618 vs. 
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Torsional Stress Waves in 
a Circular Cylinder With 
a Modulated Surface 
The paper describes a theoretical and experimental study pertaining to torsional 
stress wave motion in an axisymmetric waveguide whose cross-sectional area varies 
periodically as a function of the axial coordinate. Dispersion relations for the phase 
speed are obtained for both nonresonant and resonant conditions, using perturbation 
techniques for small amplitude, sinusoidal modulation. Resonant conditions exist 
when the modulation wave number is proportional to the sum or difference of wave 
numbers corresponding to various modes of the torsional stress wave. The experi
ments consist of measuring the stress wave speed in waveguides with threaded 
surfaces. The experimental observations verify the general trends predicted by the 
theory. 

1 Introduction 
We study theoretically and experimentally transmission of 

torsional stress waves in a waveguide with a circular cross-
section whose radius varies periodically as a function of the 
axial coordinate. The analysis consists of a perturbation ex
pansion in the amplitude of the modulation (e). The experi
ments consist of wave speed measurements in unmodulated 
and modulated waveguides. The experiments confirm the gen
eral trends predicted by the theory. 

The study was motivated by our efforts to develop a real
time, on line, viscosimeter (Kim et al., 1989; Kim, 1989). In 
our prior investigation, we studied the effect of an adjacent 
viscous fluid on the characteristics of torsional stress waves 
transmitted in submerged waveguides. The speed and atten
uation of the stress wave were correlated with the fluid's vis
cosity and density. We found that one method of increasing 
the sensor's sensitivity was to increase the waveguide's surface 
area in contact with the fluid. This can be accomplished by 
corrugating or modulating the waveguide's surface. In order 
to achieve a better understanding of the operation of the mod
ulated waveguide, we embarked first on studying the effect of 
modulation on torsional stress wave transmission in wave
guides in vacuum. The results of this study are reported herein. 
Our results are also applicable for the design of delay lines. 

2 Mathematical Model 
Consider a torsional stress wave propagating in a cylinder 
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with a circular cross-section (Fig. 1) whose radius (r = 1 + eh (z)) 
varies periodically (with wave number kw) as a function of the 
axial coordinate z, where h(z) = h(z + 2ir/k„). All quantities 
presented here are nondimensional. The average radius of the 
cross-section is the length scale. The speed of a torsional wave 
in a straight (smooth) cylinder, C0= (G/p)1/2, is the velocity 
scale. G and p are, respectively, the waveguide's shear modulus 
and density. 

The equations describing the dependence of the circumfer
ential displacement (u) on the radial (r) and axial (z) coordi
nates, time t and induced-frequency o> are (Love, 1927): 

a2 1 a i a2 \ 
u = 0, 0 < r < l + efc(z) (1) Lu = drA + r d r ~ 

1 d' 

T r a n s d u c e r — §[ 

De 1 ay 1 i ne-
C M a g n e t o s t r i c t i v e w i r e ) 

Wavegu i de — 

Det a i 

r 

FT 

OR X 

i 1 ) _ _ 

1 6 
Fig. 1 A schematic description of the modulated waveguide and the 
experimental setup 
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/ a l \ dh du 
B(r)U={jr-r)U = ed-zTz a t ' = 1 + ^ > ® 

u is finite at r=0. (3) 

The significance of the linear operators L and B(r) is clear 
from the context. Equation (2) represents the stress-free outer 
surface condition Tre = Tez-dr/dz (Timoshenko and Goodier, 
1970). We assume that the waveguide is sufficiently long so as 
to render end conditions unimportant. The solution presented 
will be valid away from the waveguide's ends. 

3 Perturbation Solution for Nonresonant Condition 
Since an exact solution to this problem is unlikely, we resort 

to approximate, perturbative analysis. To this end, we expand 
the displacement u into a power series in terms of e: 

u(r, z,e) = u0{r, z) + eul(r, z)+e2u2(r, z) + 0(e3). (4) 

Such an expansion allows us to specify the boundary conditions 
at 6 = 0 (i.e., Van Dyke, 1975). Next, we substitute (4) into 
equations (l)-(3), equate coefficients of like powers in e, and 
obtain an infinite set of differential equations which we solve 
recursively. 

3.1 0(t") Solution. To the leading order O(e0), we obtain 
the classical torsion problem, Lu0 = 0, with the boundary con
ditions B(l)ua = 0 and u0 finite at /- = 0. This problem admits 
the well-known solution (Kolsky, 1953): 

«o = U0F0i„ (r)exp[ik0,„z], (5) 

where i=\J -1; U0 is the wave amplitude which depends on 
initial conditions and k0,„ is the leading order approximation 
for the torsional wave number of the nth mode, k„, which we 
also expand into a power series in terms of e, 

kn = k0i„ + eki,n + e2k2t„ + OUi)- (6) 

For the fundamental (nondispersive) mode, 

Fo,o(r) = 2r and k0,0 = w, (7) 

while for the dispersive modes (n= 1,2,3,- • •)> 

F0,„(r)=^2Jl(p„r)/J2(p„) and £„,„= {o>2-p2„)i/2, (8) 

where Jk is a Bessel function of order k and pn ( ^ 0) is a zero 
of 

JdPn)-PnMPn)/2 = 0, (9) 

i.e., pi = 5A36, p 2 = 8.417, p3= 11.62, etc. In the above, the 
functions F0y„(r) were chosen so as to maintain orthonormality 
under the inner product 

<v(r),w(r)> = 1 rvwdr. 
•Jo 

That is, ]\F0,n(r)W2=<F0,„(r), F0 ,„(r)> = l and <F0 ,„(r) , 
Fo,m(>')> =0 for n^m, where 11-11 is the norm. 

To obtain higher order corrections, it is convenient to expand 
h (z) into its Fourier series 

Oo 

h(z) = ^]hjSmUkwz), 
y = i 

where hj are constant coefficients. For conciseness in the 
derivation below, we take h\ = l and hj = 0 f o r y > l . A similar 
derivation can be carried out for a more general n(z). 

3.2 O(e') Solution. To obtain the O(e') solution, we solve 
the boundary value problem: 

Lux =2ko,„kl,nU0F0in(r)exp[ik0i„z], (10) 

B (1)«! = U0exp[ik0,nz] {ik0 ,nkwFQ:„(\)cos{kwz) + Foin(l)sin(k„z)} 

= ̂ U0[k0inkwF0i„(l)+Fi'jn(l)]explik0,„ + kw)z] 

+ ~Uolk0,nkwF0,n(i)-Fi:„(l)]exp[i(ko,n-kw)z], (11) 

and W] is finite at r = 0, (12) 

where the primes (') in (11) indicate differentiation with respect 
to r. In order to. solve equations (10)-(12), we decompose ux 

into a sum of three terms, 

«i = Ga(r)exp[ik0t„z] + Gb(r)exp[i(k0i„ + k„)z] 

+ Gc(r)exp[i(k0t„-kw)z], (13) 

to obtain three boundary value problems (BVPs) for Gx(x = a, 
b, or c) with r being the only independent variable. The ho
mogeneous part of the BVP for Ga 

Lr,Ga=^ + -—-^ + u>2-kl„jGa = 2k0t„kli„U0F0i„(r), 

B(l)Ga = 0, and Ga(0) finite (14) 

is identical to the BVP for u0. The corresponding solvability 
condition requires that 

<L„Ga(r),F0,n(r)>=B(l)Ga-F0,n(l) (15) 

or 

2k0,„kUnU0<Fo,n(r),F0,n(r)>=F0,„(l)-B(l)Ga = 0. 

Since lli^_n(r)ll ^ 0 , we have k\ =0 . In order to obtain the first 
correction to the wave number, we will need to proceed to 
0(62). 

Before calculating the O(e0 approximation, we shall cal
culate Ui explicitly. After some straightforward algebra, we 
obtain 

Ga=U1F0in(r), Gb = i^binU0Ji(ab:nr), and Gc 

= itc,nU0Ji(aCinr), (16) 

where t/] is an unknown constant, 

al.n = " 2 - (Ar0,n + K)1, a\n = oi2- (k0,„ + k„)2, 

{b,n = -[ko,nkwF0j„(l) + Fi[n(l)]/[abi„J0(ab,„) -2/, («*,„)], 

and tc,„ = -[ko,„kwF0,n{l)-Fi',n(l)]/[cxc,nJ0(ao,„) -2Ji(ac,„)]. 

The arguments of the Bessel functions may be imaginary. That 
is, we may encounter combinations of frequency and wave 
number such that either al>n and/or a\n are negative. This 
should not cause any concern as one can replace the Bessel 
functions (J) with modified ones ( /) . 

Note that the solution ux does not exist when the denomi
nator of either ffcj„, or fc„ vanishes. This "singularity" occurs 
at specific wave numbers k0<n = kr such as a.bi„ or aCi„ equals 0 
orpm (wherepm is defined in equation (9)). This is not a physical 
singularity, but merely an indication that the perturbation ex
pansion (4) is not uniformly valid for k0i„ « kr. We shall refer 
to this circumstance as a resonant condition. In order to obtain 
a uniformly valid solution in the vicinity of resonance, we need 
to modify the perturbation expansion. We shall discuss this 
case in detail in Section 4. In the remaining part of this section, 
we focus on wave numbers away from resonance, i.e., ko,„ ^ kr. 

3.3 6>(e2) Solution. The BVP for u2 has the form: 

Lu2 = 2k0,nk2,„U0F0i„ (r)exp[^0,„z], (17) 
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*"2,o/ko,o 

60. 

Fig. 2 The fundamental mode phase speed correction k!y„/k0j„ depicted 
as a function of u for k„ = 50 

B{l)u2 = UnU0exp[iko,„zl + i%bi„Uiexp[i(k0i„ + kw)z] 

+ ^c,„UiCxp[Hk0,„ - k„)z] + UnU0exp[i(k0<n + 2k„)z] 

+ £ei„U0expli(k0i„-2kw)z], (18) 

where ad,„ = co2- (k0-n + 2kw)2, a€i„ = to2- (&0,„ - 2kw)2, 

1 2 

^a,n=-zh,nl-2ab,nJo(ab,n) ~ ( « M ~ 3)/ ! (ab>„) 

- (k0<„ + kw)kwJi(ab:„)]--ic„[ - 2ac,„J0(aCi„) 

- (ctin ~ 3)/i (aCi„) + (k0y„ - k„)kwJi (aCi„)] 

- ^ IFSln(1) -Fo**(1)], Un = ^ 0 % (1) + \K„kJF%n (1), 

£c,n= - r - P o ' n ( l ) + r^O,n^iv-fo,«(l)» 

1 2 

kd,n= ~ Z tb.nl-lcib,nJa(<Xb,n) ~ ( « M ~ 3)7] («/,,„) 

+ (&o,« + kw)kwJi (abi„)] 

1 
+ - F M ( 1 ) - ^ O % ( 1 ) + ^0,n^Hi?0,«(l). 

1 2 

?e,n = 2rc,n[-2o:c,„/o(ac,n) ~ (ac,« - 3)./i (aCj„) 

- (/r0,„ - *„)* w / , (ac, J ] + - [F$:„(1) -FS<n(1)] -^o,„Ar„Fo,«(D, 

and u2 is finite at r = 0. (19) 

The form of equations (17)-(18) suggests a solution of the 
form: 

"2 = #„ (r)exp[i*b.«z] + Hb(r)zxp[i(k0in + £ J z ] 

+ //c(r)exp[/(A:o,„-A:„)z]+JrYd(/-)exp[/'(A:o,„ + 2A:lv)z] 

+ i/e(r)exp[/(Ar0in-2A:w)z], (20) 

where we generate five BVPs for the functions Hx(x=a, b, c, 
d, and e). The correction k2,„ to the wave number is obtained 
from the solvability condition for the BVP for Ha: 

That is, 

<LnHa(r),F0,Ar)>=B(l)Ha-F0i„(l). 

2ko,nk2:„<Fo,n(r), F0_„(r)> = W v , ( l ) , 

oTk2,n = ^,„F0,„m/(.2k0,„). 
The functions Hx (x = a, b, c, d, and e) were calculated in 

a straightforward way. Due to space considerations, we do not 
include the calculations here. The interested reader is referred 
to Kim (1989). We note in passing, that the 0{e2) equations 
also give rise to resonant conditions. The functions Hx(r) in 
equation (20) contain, in their denominators, expressions of 
the form axJ0(ax)-2Jl(ax), where x = b, c, d, e. A singularity 
occurs when any of the aforementioned expressions vanishes. 
The disappearance of the last two expressions {x= d or e) leads 
to additional, weaker resonant conditions which occur when 
k0,„ ± &o,m = 2kw. In fact, each order of approximation will give 
rise to additional, weaker resonant conditions. 

3.4 Dispersion Relation. Next, based on the information 
we have gained thus far, we shall construct an approximation 
for the phase speed c„( =w/k„): 

2 k2,n | 

*0,n. 
(21) 

where c„ is the phase speed of the «th mode. Equation (21) 
suggests that there are no nondispersive modes in the modu
lated waveguide and that the modulation leads to a reduction 
in the phase speed compared to the case of the smooth cylinder. 
In Fig. 2, we depict the ratio k2i„/k0l„ as a function of the 
frequency OJ for the fundamental mode. We also calculated 
the group velocity but due to the length of the corresponding 
expressions, we do not reproduce them here. We found the 
group velocity to be slightly higher than the phase velocity (see 
Table 1 for a few examples). 

One would expect the phase speed to depend on the axial 
coordinate z. Such a dependence is not reflected in equation 
(21). In order to obtain such a dependence, we recast our 
perturbation series (4) into the form: 

u= U0F0i„(r)exp[A(r,z)]exp[iK(r, z)], (22) 

where A (r, z), which we do not reproduce here (see Kim (1989)), 
is a periodic function of z and depends on initial conditions, 
and 
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Table 1 Speed corrections for the torsional stress waves along the 
modulated waveguides. The theoretically predicted results are compared 
with the experimental observations. 

cross-

section 

solid 

solid 

hollow 

thread 

type 

NF-UNF 3-56 

NC-UNC 3-48 

NF-UNF 3-56 

measured speed 

c 

(m/s) 

2696 

2624 

2762 

c0 

(m/s) 

3015 

3009 

3019 

ca~c 

CO 

(%) 

10.6 

12.8 

8.5 

predicted speed 

& * e' (%) 
phase 

13.3 

11.6 

group 

13.2 

11.6 

K(r,z) = (k0:n + e2k2,„)z + e 
/ i ( o y ) Ji(acr) 

Fo,„(r) F0in(r) 
cos kwz 

+ e' 
Ji(adr) ti Ui(abr)} 

fV0,„(r) + 2 [F0,„(r)]2 

2 J i ( t y ) # [Jdacr)] 
he — . . + 

•JW'") 2 [F0,„(r)r 
sin 2^wz 

+ 0(e3). 

Note that JT(/-, z) is independent of any constants of integra
tion. We define the effective wave number as k(r, z) = dK/dz. 
Then, the local phase speed c{r,z) = o>/k(r, z), where c is a 
periodic function of the axial distance z. The mean of c over 
the axial distance z is identical to the expression given in (21). 

4 Resonant Modes 
When the denominators of uit oib>„[Ji(abin) - 2/ocbi„J0(,ab>„)] 

— O(e) or aCi„[Ji (aCj„) - 2/a&„^(a (V,)] -~ 0(e), the series ceases 
to be uniformly valid. We referred to these circumstances as 
resonant conditions. Similar resonant conditions (albeit weaker 
resonance) arise at higher-order terms of the perturbation ex
pansion. This unboundedness is not a physical singularity but 
rather a flaw in the perturbation scheme. Thus, the singularity 
can be removed by modifying the mathematical procedure. 

Resonance of order 0(e) occurs when kw = k0l„ =F Ar0,m, where 
*<y=(&> -pf)W2 (/= 0,1,2, and Po = 0)- That is, it occurs 
when the wavelength of the modulation (kw) is equal to the 
sum or the difference of two wave numbers. In order to make 
the perturbation expansion uniformly valid, following Nayfeh 
(1981), we introduce the detuning parameter a, so that 
kw = &o,n ^ ô,m + eo, and o«e~l. Consequently, we have two 
length scales of 0(l)and 0(e), respectively. This suggests the 
use of the method of multiple scales. We replace equation (4) 
with the expansion, 

u(r, z, zi;e) = u0{r, z, Zi) + eu{(r, z, Zi) 

+ e2u2(r,z,zi) + 0(e3), (23) 

where z\ = ez. z and Z\ are treated as two independent variables. 
Next, we introduce (23) into equations (l)-(3), and collect 
coefficients of like powers in e. For brevity's sake, we shall 
present the solution technique for k„ = k0<n-£0,m + eo (n<m). 
The case k„ = k0t„-k0<m + ea is described in Kim (1989). The 
zeroth-order problem is identical to the one presented in Sec
tion 3. But, now we take u0 to be the sum of two interacting 
modes: 

«o(r, z, Z\) =An(zi)F0i„(r)exp[iko,„z] 

+ Am{Zi)F0im(r)exp[ik0,mz]. (24) 

Since Z\ is a parameter in the O(e0) problem, the two integration 
constants are functions of z\. The reason for the superposition 
(24) becomes apparent when we inspect the form of the RHS 
of equation (25) below. 

To 0(e) we have 

Lui= -2ik0i„A^ (Zi)F0i„(r)ex.p[ik0<„z] 

- liko ,mAm 

(Zi)Fo,m{r)exp[ikQ,mz\ (25) 

£(l)«i=;re+^«(Zi)exp[/<JZi]exp[/(2£0 )Z] 

+ itn_A„(zi)exp[ - i<JZi]exp[ik0,mz] 

+ i£m+Am (zi)exp[iaz!]exp[ik0:„z] 

+ i?m_Am(zi)exp[- hzi] 

Xexp[i(-k0,n + 2kQ,m)z], (26) 
where f,± = l/2kwkQJF0i,(l)±l/2 FS,,(1) (l = m,n). Since the 
present analysis leads to the O(e) correction in the wave number 
expansion (equation (6)), we set, without loss of generality, 
ku„ = 0 in equations (25)-(26). (Retention of k, leads to iden
tical results.) Equation (26) suggests that we seek a solution 
in the form: 

" I = Va(r, Zi)exp[ik0tnz] + Vb{r, Zi)exp[ik0,mz]. (27) 
Of particular interest are the BVPs associated with Va(r, Z\) 
and Vb{r, z,), as the corresponding BVPs require that certain 
solvability conditions are satisfied. Upon invoking the solva
bility conditions (which are similar to equation (15)), we obtain 
two coupled ordinary differential equations for the functions 
^4„(Zi) and ^4m(zi) of the form: 

A'„ = iCiAmexp{iozl] and ^4^ = /C2y4„exp[-/'ffZi], (28) 

where C, = /fm+F0,„(l)/(2A:o,n) and C2 = /f„_F0,m(l)/(2A;o,„). 
Primes in (28) denote differentiation with respect to z\. We 
proceed to solve equations (28) by introducing a solution of 
the form A, = B,exp[iyiZ[](l=m,n) where B, are constants. Upon 
substitution in (28), we obtain: 

(29) 

(30) 

y„Bn = CiBmexp[i(a + ym-y„)zi], 

and ymBm = C2B„exp[i( - a + y„-ym)z{\. 

For consistency with the assumptions of Bt constants, we need 
o + ym — y„ = Q. Thus, we obtain two, homogeneous, algebraic 
equations for the coefficients Bt. The solvability condition 
requires that the determinant of the coefficients vanish. Upon 
solving the quadratic equation, we obtain 

7„± = l/2(a±\f<j2 + 4ClC2), 

a n d 7 m ± = l / 2 ( - < 7 ± V o 2 + 4(C,C2). (31) 

In Fig. 3, we depict, for example, y0± and yl± as functions 
of k„ for wave frequency oi = 10 and e = 0.2. 

We can now write the first approximation for the defor
mation field as 

u(rz)=Bm F0,„(r) + —F0,m(r)exp( - iaz) 
*-i 

xexp i(k0,„ + ey„.)z 

+ B„ Fo,m (r) + -^rF0i„ (T-)exp (iaz) 

xexp[/(^0,m + €7m+)z] + O(e ') , (32) 

which represents two interacting, dispersive modes. At reso
nance (cr = 0), both modes coincide and 7m = 7„= ±2\JCiC2. 
As we move away from the resonant conditions, ym+ and 7„_ 
go to zero (Fig. 3) so that the O(e) correction to the wave speed 
vanishes. This trend is expected since, as we move away from 
resonance, we expect the resonant and nonresonant solutions 
to match asymptotically. 
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Fig- 3 7„± and ym± depicted as functions of a for w = 10, e = 0.2, n = 0, 
and m = 1 

5 Experiments 
In this section, we describe a few experiments we conducted 

to check the trends predicted by the theory. Due to budget 
constraints, we were not able to employ waveguides with sin
usoidal modulation of the kind described in the theoretical 
model. Instead, we used threaded waveguides. 

In our experiments, we introduced torsional pulses (Fig. 1) 
in the cylinder (or waveguide) using a torsional-wave sensor, 
which was designed and manufactured by Lynnworth (1980 
and 1989). The pulses were conveniently induced utilizing the 
magnetostrictive phenomenon. Briefly, one end of a delay line, 
made of a magnetostrictive material, was soldered or glued to 
the waveguide while a coil was placed around its other end 
(Fig. 1). The delay line was electrically polarized so as to 
develop a circumferential, permanent magnetic field inside the 
magnetostrictive wire. The introduction of a current pulse in 
the coil caused a time varying axial magnetic field to develop. 
The interaction between the two aforementioned magnetic fields 
led to a twisting force on the magnetostrictive wire and the 
generation of a torsional pulse. This is known as the Wiede
mann effect (Tzannes, 1966). The resulting torsional stress 
wave traveled in the magnetostrictive wire. Part of the wave 
was reflected at the magnetostrictive wire-waveguide interface. 
The other part traveled through the waveguide and was re
flected from its other end. The reflected waves caused elec
tromotive forces in the coil which then acted as a receiver (the 
inverse Wiedemann effect). The signal was viewed on an os-
cillioscope's screen (see Kim and Bau (1989). By measuring 
the time which elasped between the two signals, we calculated 
the speed of the torsional stress wave in a waveguide of known 
length. In our experiments, the time span was measured peak 
to peak with a precision of 5 ns. The dominant frequency was 
estimated as 90 kHz. The delay line was made of Remendur 
(Fe-Co-V-Mn) of length about 1000 mm. The reflectivity of 
the delay line-waveguide interface was controlled by control
ling the mechanical impedance mismatch at the interface. This 
is typically done by soldering a small ring around the wave
guide. Our experiments suggest insensitivity to eccentric place
ment of the delay line with respect to the waveguide. 

In our experiments, we employed waveguides made of solid 
and hollow aluminum rods (nominal density p = 2.70 X 103 kg/ 
m3, and shear modulus G = 2.59 x 1010 N/m ). The outer radius 
of the solid and hollow waveguides r0 = 1.22 mm and their 
length L = 306 mm. The inner radius of the hollow waveguide 
/•, = 0.78 mm. The speed of the torsional stress wave in the 
smooth solid and hollow waveguides submerged in air at 25 °C 

was, respectively, 3014 m/s and 3019 m/s, which agrees within 
3 percent with the corresponding speed calculated from nom
inal material properties (G/p)l/2. 

Subsequently, we threaded the waveguides with standard 
thread dies; one is NF-UNF 3-56, where kw= 15.8, and another 
is NC-UNC 3-48, where kw= 13.6. The magnitude of e is com
monly 0.087 ±0.002. The frequency of the wave is 90 kHz, 
thus the dimensionless frequency co = 0.269. Since kw»oi, res
onant effects are not likely to be important. The data (with 
precision of 0.2 percent) of our experimental observations and 
the theoretical predictions are documented in Table 1. We 
observed that the wave speed in the threaded waveguides was 
8-12 percent slower than in the corresponding smooth wave
guides. 

6 Discussion and Conclusion 
In this paper, we described an approximate theory which 

allows us to obtain the dispersion relation for torsional stress 
waves transmitted in waveguides with modulated surfaces. The 
theory predicts that the phase speed in the modulated cylinder 
is smaller than in a smooth one. The analysis predicts the 
nonresonant and resonant modes will be slowed down, re
spectively, by a factor of 0(e2) and O(e), where e is the nor
malized amplitude of the modulation. 

In parallel, we also conducted a few experiments to measure 
the effect of modulation on wave speed. The experiments were 
conducted on a somewhat different geometry than the one 
employed in the analysis. Thus, we can discuss only qualitative 
verification of the theoretical results. The experiments verified 
that the phase speed in the modulated waveguide was lower 
than the one in the smooth cylinder. The reduction observed 
in the experiments was of 0(e2), which corresponds to the 
theoretical predictions for the nonresonant modes. 
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On Damping Mechanisms 
in Beams 
A partial differential equation model of a cantilevered beam with a tip mass at its 
free end is used to study damping in a composite. Four separate damping mechanisms 
consisting of air damping, strain rate damping, spatial hysteresis, and time hysteresis 
are considered experimentally. Dynamic tests were performed to produce time his
tories. The time history data is then used along with an approximate model to form 
a sequence of least squares problems. The solution of the least squares problem 
yields the estimated damping coefficients. The resulting experimentally determined 
analytical model is compared with the time histories via numerical simulation of the 
dynamic response. The procedure suggested here is compared with a standard modal 
damping ratio model commonly used in experimental modal analysis. 

I Introduction 
In this paper a variety of damping mechanisms for a quasi-

isotropic pultruded composite beam are examined. The ap
proach taken here is a physical one. The beam is modeled by 
a partial differential equation describing the transverse vibra
tion of a beam with tip mass. The damping mechanisms con
sidered are all physically based as opposed to the usual modal 
model. In total, four possible damping mechanisms are con
sidered, one external and three internal. They are: viscous 
damping (air damping); strain rate damping; spatial hysteresis; 
and time hysteresis. In addition, various combinations of these 
mechanisms are considered. 

These physical damping models are incorporated into the 
Euler-Bernoulli beam equation, with care taken to formulate 
boundary conditions that are compatible with the various 
damping models. The resulting partial differential equation 
(integro partial differential equation in the case of time hys
teresis damping) is approximated using cubic splines. The time 
histories of the measured experimental responses are then used 
to form a least squares fit-to-data parameter estimation prob
lem. The mathematical arguments underlying this procedure 
are complete and imply convergence of a sequence of parameter 
estimates obtained from finite dimensional models to a set of 
best fit coefficients of the partial differential equation model. 
The least squares estimates of the various different damping 
parameters are then used in the partial (integro partial) dif
ferential equation to numerically simulate the response of the 
system. This numerically generated time response of the es
timated system is then compared with the actual experimental 
time histories. These comparisons allow several conclusions to 
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be drawn regarding the physical damping mechanisms present 
in the composite beam. 

In particular, it is shown that the spatial hystereis model 
combined with a viscous air damping model results in the best 
quantitative agreement with the experimental time histories. 
The results also support the physically intuitive notion that air 
damping should play a more significant role in lower modes, 
while internal damping plays a more significant role for higher 
modes. It is also shown explicitly that the proposed damping 
models listed above cannot be modeled with any degree of 
success or consistency by using standard modal damping ratios, 
as the traditional modal analysis approach completely masks 
the physics of damping mechanisms. 

II Basic Beam Model 
The particular beam considered here is a pultruded quasi-

isotropic composite beam constructed for use in the proposed 
space station (Wilson and Miserentino, 1986). As such, the 
configuration of interest is a cantilevered beam with a mass 
attached to the free end. The beam is constructed of a biaxial 
(0 deg/90 deg) fiberglass roving held in place with knitted 
polyester yarn with an equal volume of fibre in both orien
tations. An isophtalic polyester resin system was used as the 
matrix. This material provides an alternative to aluminum 
which is lower in cost, has higher specific strength, but is 
dynamically similar. As is illustrated here, this material also 
has interesting damping properties, dissimilar to those of alu
minum. 

The equation of motion for the flexural vibration of a beam 
is easily calculated from consideration of the equilibrium of 
forces acting on a differential segment of beam (see, for in
stance, Clough and Penzien, 1975). In this formulation, damp
ing can easily be included by adding the appropriate force or 
moment to the equations of equilibrium. A partial differential 
equation model of the beam with general damping is of the 
form 
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u„(x,t) + Liu,(x,t) + L2u(x,t) 

dx2 
EI(x) 

Uxx(X,t) =f(x,t) (1) 

for xe(0,/),f>0, subject to the appropriate boundary condi
tions and the initial conditions (taken to be u = u, = Q at ^ = 0). 
Here, p is the linear mass density (mass per unit length) of the 
beam, EI{x) is the spatial varying flexural stiffness of the beam, 
the subscript indicates partial differentiation with respect to 
the indicated variable and u(x,t) is the beam displacement in 
the transverse direction at location x, time t. The function 
u(x,f) is assumed to be smooth enough so that all the appro
priate derivatives exist. The term Lxu,{x,t) + L2u{x,t) is the 
focus of attention in this paper. The nature of the operator 
L\ is usually determined by external damping mechanisms (al
though internal damping may contribute to this term—see the 
example involving spatial hysteresis modeled in (13)—(15) be
low) while the nature of term L2u {x,t) is most often determined 
by internal damping mechanisms. 

The boundary conditions of interest here are those for a 
beam clamped at the end x=0 and with a free end at x= I. In 
addition a mass of mass, mT, and rotational inertia, J, is 
attached at x=l. The fixed end requires that the displacement 
and the slope of the displacement both be zero. This yields: 

H(0,0 = 0 

ux(0,t) = 0. 

(2) 

(3) 
The free end requires that the sum of the moments at x-1 and 
the sum of the forces acting at x=l must each be zero. For 
the case of a tip mass at the free end, these boundary conditions 
become 

EI(l)Uxx(l,t)=-Juttx{l,t) (4) 

[EI(x)uxx(x,t)]x=mTu„(x,t), x=l (5) 
as long as only external damping is present. 

Equations (l)-(5) describe the transverse vibration of a beam 
satisfying the Bernoulli-Euler assumption that the bending wave 
length is several times larger than the cross-sectional dimen
sions of the beam, and that only lower frequency excitations 
are applied to the beam. It is assumed that rotary inertia of 
the beam, shear displacement of the beam and axial displace
ments are negligible. 

If the tip mass is not present, the boundary conditions of 
equations (4) and (5) change accordingly. In addition, the 
nature of the internal damping operator will effect the bound
ary conditions. For the case of L\ =L2 = 0, the vibration anal
ysis problem is very simple as is the inverse problem addressed 
here. The nature of the damping mechanisms drastically 
changes the nature of the solution to the vibration problem 
and hence controls the response of the beam. The following 
section discusses several possible choices for modeling the op
erators Li and L2 in equation (1) and hence the internal damp
ing mechanism in the beam. 

Ill Damping Models 
As mentioned in the Introduction, four models for the damp

ing mechanisms are examined. Two of these are time-inde
pendent proportional models lending themselves to modal 
expansions, the other two are nonproportional hysteretic 
models. Various combinations of these models are also con
sidered. 

Viscous Air Damping. The most straightforward method 
of modeling the damping of a beam (or other object) vibrating 
in air is to use a viscous model with damping force assumed 
proportional to velocity. In this case the operator Lx becomes 

where I0 is the identity operator and y is the viscous damping 
constant of proportionality. The physical basis of this ap
proach is a simple model of air resistance. As the beam vibrates 
it must displace air causing the force yut(x,t) to be applied to 
the beam. Mathematically, this form of damping is used be
cause it is proportional and easily treated using the same meth
ods of analysis used for undamped systems (see Inman, 1989, 
for instance). This form of damping is often called viscous 
external damping. 

Kelvin-Voig't Damping. Kelvin-Voigt damping, or strain-
rate damping as it is sometimes called, is damping of the form 

L2 = cdI dx*dt (7) 

where /is the moment of inertia and cd is the strain-rate damp
ing coefficient. This model also satisfies a proportional damp
ing criteria and hence is mathematically convenient. (We note 
that this form of damping could also be written in terms of 
Lx as Lx = cdI (d

4)/(3*4)- It is compatible with theoretical modal 
analysis and is also, along with viscous damping, widely used 
in finite element modeling. This form of damping is most often 
referred to as internal damping and represents energy dissi
pated by friction internal to the beam. 

Unlike viscous external damping, inclusion of this form of 
damping affects the free-end boundary conditions because it 
is strain dependent. The strain-rate dependence results in a 
damping moment MD of the form 

MD = cdI(x) 
dx'dt' 

(8) 

which is included in the derivation of the equation of motion 
(Clough and Penzien, 1975) and, hence, must also be included 
in any boundary conditions (such as a free-end condition) 
depending on the moment. 

The full equation of motion and boundary conditions for 
the case including linear viscous external damping and Kelvin-
Voigt internal damping can thus be written 

pu„(x,t) + ̂ -2[(EIuxx(x,t) +cdIux ,(x,t)} 

+ yut(x,t)=f(x,t),x€(0,l), t>0 

u(0,t)=ux(0,t)=0, t>0 

Elu^d^+Cdlu^il^^-Ju^iUt), t>0 
a 

— [EIuxx(x,t)+cdIuxxl(x,t)] = mTu„(x,t), x = l, t>0. (9) 
dx 

Here, note that the tip mass as well as the internal damping 
moment are represented in the boundary conditions. The total 
damping mechanism used in (9) is the analog to proportional 
damping (i.e., a linear combination of mass and stiffness op
erators). 

Time Hysteresis. Hysteretic damping terms are most com
monly associated with sinusoidal loadings. The generic idea 
of including a mechanism in the beam vibration constitutive 
equation indicating that stress is proportional to strain plus 
the past history of the strain can be accomplished by intro
ducing an integral term of the form 

g(s)uxx(x,t + s)ds (10) 

with the history kernel g(s) defined by 

g(s)=-F=exp(l3s) 
-s 

(11) 

Li=yl0 (6) where a and /3 are constants. Since the introduction of the 
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hereditary integral occurs in the stress strain relationship, the 
boundary conditions must also be modified. In this case the 
boundary value problem of interest becomes 

pu„(x,t) + a*2 EIu^x, - I g(s)uxx(x,t + s)ds 

=f(x,t), *e(0,o, t>o 
u(0,t) = ux(0,t) = 0 t>0 

d_ 
dx 

£ 7 w „ ( / , 0 - j g(s)uxx(I,t + s)ds = Juxll(!,t), t>0 

EIuxx(x,t) - \ g(s)uxx(x,t + s)ds 

= mTu„(x,t), x=l,t>0. (12) 

It is emphasized again that the inclusion of an internal damping 
moment in the equation of motion also affects the boundary 
condition. 

Spatial Hysteresis. Another type of damping (proposed by 
Russell, 1991) is based on interpreting the energy lost in the 
transverse vibration of a beam as resulting from differential 
rates of rotation of neighboring beam sections causing internal 
friction. This can be modeled by the damping expression 

d_ 

dx 
fi(x,Z){uAx,t) -uxl(U))d£ (13) 

where the kernel h(x,£) may be defined, for example, by 

/j (*,£) = 7 - 7 = exp[- (x-£) 2 /26 2 ] . (14) 
W 2 x 

Under these circumstances the model for the beam vibration 
becomes (including viscous external damping) 

pu„(x,i) + —p.[(EIuxx(x,t)]+yut{x,t) 

'dx 
\h(x,muxt(x,t)-uxt(Z,t))dt 

= / ( x , 0 , *€((),/), t>Q 

u(0,t) =MJC(0,?) = 0, t>0 

EIuxx{l,t)=-Juxtl(l,t) t>0 

— f (EIu„(x,t)] - h(x£)[ux (x,t)-uxt(t,t)}dx 

= mTu„(x,t), t>0, x=l (15) 

where, again, the internal damping mechanism is reflected in 
the boundary conditions. 

In total, the models described by systems (9), (12), and (15) 
represent four possible mechanisms of damping taken in var
ious combinations. The approach taken here is to attempt to 
fit each of the combinations of damping models listed above 
to experimentally measured data. By examining each model's 
numerical solution in comparison with measured data, a best 
model is chosen from these as being most representative of the 
cantilevered quasi-isotropic beam. As is discussed in Section 
V, these models all admit reasonable mathematical treatment. 

IV Problem Statement 
The various damping coefficients introduced in the preced

ing discussion cannot be measured by static experiments. Thus, 
the damping constants 7, cd, a, /3, a, and b must all be estimated 
based on measurements taken from dynamic experiments. The 
procedure suggested here is to estimate various groups of 
damping parameters such as indicated in the three models of 

(9), (12), and (15). Once these coefficients are estimated they 
can be used in the model to produce a numerical simulation 
of the response of the structure under consideration subjected 
to identical experimental inputs. The analytical time response 
(with the estimated coefficients) is then compared to the ex
perimentally measured time response. The model that best 
agrees with (predicts) the experimental response is then con
sidered to be a valid and desirable physical model. 

In particular, several vectors of parameters q are defined, 
one for each model of interest. For the three cases discussed 
here they are: 

q, = [EI,cdI,y] (16) 

which delineates the first damping model as defined by system 
(9). Here cd is the internal strain rate damping coefficient and 
7 is the linear air damping coefficient. The second model con
sidered, as defined by system (12), is characterized by the 
parameter vector 

q2=[EI,a,P] (17) 
where a and 0 characterize the time hysteretic damping term. 
The last model considered contains a combination of linear 
air damping, defined by the coefficient 7, and spatial hysteresis 
defined by the constants a and b. The parameter vector for 
the third system defined by (15) is 

q3 = [EI,y,a,b]- (18) 

Other combinations of the four damping mechanisms were 
considered but were dismissed as discussed in the later section 
on results. Even though the techniques (Spline.Inverse Pro
cedures) described below can readily be used to treat spatially 
varying coefficients EI and cdI, the experiments for the effort 
presented in this paper were performed on uniform beams. 
Thus, consideration in this paper will henceforth be restricted 
to constant EI and cdI. 

Note that in each case the parameter vector contains the 
flexural stiffness constant EI. For most common materials EI 
is tested, tabulated, and well known. However, in this case the 
material is a prototype composite with unknown material prop
erties. Thus, EI is also estimated. Because of the relative size 
of the strain rate damping coefficient cd, the term cdI is esti
mated. 

V Mathematical Foundation of the Estimation Prob
lem 

Two approaches to solving the problem of determining the 
coefficients in the vectors qi, q2, and q3 are formulated here. 
The first approach involves application of experimental modal 
analysis methods (see Ewins, 1988 or Inman, 1989) to a the
oretical modal analysis of equation (1). This procedure, sug
gested by Clough and Penzien (1975), can only be applied to 
the problem of estimating q! because modal analysis is not 
applicable to the hysteresis terms in q2 and q3. This modal 
approach is presented for comparison and because it represents 
a standard approach for measuring damping. However, modal 
approaches cannot be used to solve the inverse problem for 
general constitutive elements. The inverse procedures suggested 
as the second approach here do not have this limitation and 
can be applied to systems with spatially dependent physical 
parameters (EI, etc.) as well as exotic damping mechanisms. 

The second approach taken here is a nonmodal procedure 
applicable to all three estimation problems, and forms our 
proposed method. This method is based on a careful consid
eration of the distributed parameter nature of the test article. 
It consists of forming a sequence of finite dimensional ap
proximations (Galerkin-type approximation with cubic B-
splines) to equation (1) with an associated least squares fit-
to-data (see Banks and Kunisch, 1989, for a general discussion 
of these ideas.) For each of the damping models presented in 
this paper, a corresponding sequence of approximate estimates 
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qf can be shown to converge to a best-fit parameter q, for the 
original distributed parameter system (1) (or specifically for 
(9), (12), or (15)). Detailed convergence arguments are given 
in Banks et al. (1983, 1986, 1988, 1989), Banks and Ito (1988) 
for a variety of continuum models. The computational algo
rithms proposed here are based on these considerations of the 
distributed parameter nature of the estimation problem and is 
called the Spline-based Inverse Procedure (SIP). 

Modal Analysis (EMA). The typical experimental ap
proach to measuring the damping in a structure is to use ex
perimental modal analysis (EMA) to determine modal damping 
ratios and natural frequencies. These quantities can then be 
used to determine the physical parameters contained in the 
vector q t. In the case discussed here, the tip mass is removed 
(for ease in exposition) so that mT= / = 0, and the unit interval 
is used (i.e., /= 1). The damping operators Ly and L2 become 

I - ^ T -CdI 
• M — > J->2 — (19) 

p p dx dt 

which commute with the stiffness operator so that a modal 
representation is possible (Caughey and O'Kelley, 1965). Ac
cording to this theory (see, for instance, Inman, 1989), the 
solution of (9) can be written as a series of products of two 
functions, um(x,t)-am(t) <l>m(x), which satisfy (9) for each m 
and whose sequence of partial sums converges to the unique 
solution of (9). Here the normalized functions <t>m(x) are the 
eigenfunctions (mode shapes) of the stiffness operator 

dx'Kp dx2) 
(20) 

subject to the boundary conditions of system (9). These ei
genfunctions satisfy (for EI constant) 

a?^ (x) : •-MmM (21) 

where /3„ = i/m(p/Elf and the <f>m satisfy the orthogonality con
dition 

„0»W^W = s» (22) 

Here, 5„m is the Kronecker delta and wm are the undamped 
natural frequencies of the system. Substituting um{x,t) into 
equation (1), multiplying by 4>m(,x), and integrating with respect 
to x over the interval (0,1), one finds that each am(f) must 
satisfy 

am(t) + 
P P 

PI 

P 

f(x,t)4>m(x)dx,t>0 (23) 

for all m= 1,2,3,... . Equation (23) has a direct relationship 
to the frequency domain measured modal data available from 
EMA. The experimental modal analysis procedure assumes 
that the structure consist of some finite number of single de-
gree-of-freedom oscillators of the form: 

am (t) + 2fmc3m«,„ (t) + tfmam (t)=fm (24) 

where fm and com are measured damping ratios and natural 
frequencies, respectively. Comparing coefficients of a,„ and 
am in equations (23) and (24), one obtains 

fi» — = &, (25) 

and 

for each m. 

- +—/3m = 2f,„co„ 
P P 

(26) 

As outlined in Cudney and Inman (1989), the elastic modulus 
E may be estimated from equation (25) by a linear least squares 
fit by which one obtains 

K^I&J'" (27) 

where fm = co„,/2ir hertz with (tm, <bm), m = l,2,...K, a given 
measured set. Equation (26) can be written down once for each 
pair in this measured set (fm, um), m= 1,2,...K, to produce a 
least squares determination of the damping parameters of the 
form 

= Rt BJx. (28) 

Here, Bt denotes the generalized inverse (least square) of the 
2 x K matrix 

' i P\i~\ 
o4 

B = -
1 

1 fa 

(29) 

and z is the K x 1 vector z=[2f1ai1, 2f2w2, •••, 2lKCiK]T of 
measured modal information. The entries in B are calculated 
from the analytical solution of the eigenvalue problem for the 
stiffness operator above with appropriate boundary condi
tions. 

Equation (28) (and/or a weighted version of it) can be used 
to estimate the distributed damping parameters for the problem 
involving q!. While intuitively obvious and straightforward, 
this modal-based method requires that EI must be constant 
and that Pm must be known in closed form. In addition, this 
approach is not applicable to the noncommuting damping 
models involving q2 and q3 or to problems with spatially varying 
coefficients. This provides the motivation for the nonmodal 
approach developed next. 

Spline Inverse Procedure (SIP). An alternative to esti
mating q,- from measured modal data (frequency domain) is 
to formulate a parameter estimation problem based on meas
ured time histories of the test structure's response. Let ««(/,?;) 
denote the acceleration measurements at the tip of the beam 
{x = I) at various times f,-. The inverse problem of interest is 
then to find the vector of parameters q such that 

Aq)=S>,,(/,//,q)-0„(/,f/)lJ (30) 

is minimized where u(x,t,q) denotes the solution of equation 
(1) with the appropriate boundary and initial conditions cor
responding to parameter values q. Here, m is the number of 
tip acceleration measurements. 

This estimation problem cannot, of course, be solved ana
lytically. However, an iterative optimization scheme coupled 
with an approximation method for the infinite dimensional 
system of equation (1) may be used. The procedure suggested 
here is outlined as follows. First, equation (1) is approximated 
via Galerkin procedures using cubic spline elements (N is used 
to denote the approximation index) to yield an approximate 
finite dimensional version which is solved for i/^it). The ap
proximate accelerations i//, are then used in the cost function 
of equation (30) to define the finite dimensional estimation 
problem of minimizing 

Aq)= E l «£(M,<l)-MM) (31) 

The solution of this set of estimation problems yields a 
sequence of estimates, denoted (q^) , of best-fit parameters. 
Under appropriate assumptions, this sequence is then shown 
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Table 1 Theoreticai eigenvalues and experimentally measured modal 
data for a i m long clamped free beam 

Moment of inertia 

Mode Eigenvalue 
No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

P; 
1.875 

4.694 

7.855 

10.996 

14.137 

17.279 

20.420 

23.562 

26.704 

= 1.64x10-^4 

Theoretical 
Freq. (Hz.) 

-
23.096 

64.675 

126.740 

209.488 

312.955 

437.075 

581.475 

747.475 

linear mass 

Experimental 
Freq. (Hz.) 

-
22.8 

65.3 

127 

212 

314 

435 

580 

733 

density = 1.02 

Damping 
Ratio (%) 

-
.218 

.227 

.154 

.228 

.120 

.131 

.155 

.202 

kg/m 

Std. 
Dev. 

-
.015 

.016 

.003 

.023 

.008 

.021 

.010 

.015 

to converge to q*, a vector of parameters for the fully dis
tributed parameter model of equation (1) which minimizes J(q) 
of equation (30). The theoretical formulation of this approach 
is presented next. The required proofs are omitted but can be 
found in Banks and Ito (1988), Banks et al. (1983, 1986,1989), 
and Banks and Kunisch (1989). 

The SIP estimation algorithm is formulated in weak or var
iational form by multiplying equation (1) by \p(x) and inte
grating over the interval (0,1). This yields 

<u„, \j/> + <LiU„ \p> + <L2u,\//> 

+ <Dl\~Dlu\, f> = </, ^> (32) 

where D = d/dx and the inner product < •, • > for the Hilbert 
space H=L2 (0,1) is defined by 

<<Ai,</>2> = 4>i(x)4>i(x)dx. (33) 
Jo 

Equation (32) must hold in a generalized sense (this involves 
integration by parts in certain terms) for all \p in V, a Hilbert 
space continuously and densely imbedded in the Hilbert space 
H, containing the solution of (1) subject to the appropriate 
boundary conditions. (In this case V= {\[/£H2(Q,l): 
\p(0) = \p' (0) = 0} where H2 is the Sobolev space of functions 
possessing first and second derivatives in Z2(0,/)). The terms 
in equation (32) are now identified with elements ii(t\q), 
ii(t\q) and u(t;q) which evolve in time, and satisfy (in a gen
eralized or weak sense—see Banks and Ito (1988) and Banks 
and Kunisch (1989) the evolution equation 

«(f;q) + (B(q)M(/;q) + a(q) u(t;q)=fU), t>0 (34) 
subject to the appropriate initial conditions. Here, the explicit 
dependence on the parameter vector q is emphasized, while 
the solution of equation (34) is a function of time for each x 
(or, alternatively, is thought of as a function of x for each t, 
the function being an element of Kfor each /). The operators 
Q, and 03 can be appropriately defined using the corresponding 
terms in (32). 

The Galerkin approach employing cubic spline subspaces to 
solve (34) (or, equivalently (32)) approximately is explained 
next. Given a value of TV and a vector q, an approximate 
solution to (34) in ^A'=span (.Bf, ..., B%H] is sought of the 
form 

N+\ N+l 

uN(t;q)=Yl
wj'WB?=J]w?(t;q)B» (35) 

j=i y'=i 

where {itf} is the set of cubic spline basis functions appro
priately modified to be in the domain of definition of the 
operators in equation (34). More precisely, let AN= (*,]f=0 
with x, =///TV for / = 0, 1, ..., N, and let Sf,j= - 1, ...,/V+l 

Table 2 Estimates of damping based on using a successive number 
of modes (all values in kg/msec) 

Modes 

1-2 

1-3 
1-4 

1-5 

1-6 

1-7 

1-8 

1-9 

Viscous Only 

7 

.3619 

.8755 

1.2829 

2.2693 

2.6962 

• 3.3565 

4.3778 

6.0027 

Strain Only 
CrfxlO6 

.8024 

.3127 

.1179 

.0978 

.0451 

.0304 

.0251 

.0236 

Viscous and Strain 
y cdxl(fi 

.0724 

.2014 

.6053 

.6157 

1.3901 

1.6867 

1.8039 

1.7561 

.7092 

.2699 

.0873 

.0856 

.0323 

.0221 

.0199 

.0205 

denote the standard C^O,/) basis elements for the cubic B-
spline subspaces of dimension N+ 3 corresponding to the grid 
AA'(see Prenter, 1975). Here C^O.l) is the set of all continuous 
functions with continuous first and second derivatives on the 
interval (0,/). Then if is given by 

&?=&-, fory = 2 . . .NH 

BT=B%-2B?-2BN-l. 

Note then that A*=si(AN) = {<j>zS\AN): (j>(0) = <t>i(0) = 0] 
where S3(AN)= (^eC^O,/); </> is a cubic polynomial on each 
interval [xh x,+1] j . 

The approximate solutions to (34) are determined from re
quiring that for all functions z£XN 

<iiN(t),z> + <6i(q)uN(t), z> + 

<Q(q)uN(t),z> = <f(t),z> (36) 
with appropriate projected initial condition. Choosing 
z = iJ^and using equation (35) one may write this in an equiv
alent matrix form as 

MNwN(t)+DNwN(t)+KNyvN(t)=FN(t) (37) 
where w"is the (N+ 1) x 1 vector [w%, v/\, ..., H^]Tand where 
the (N+\)x(N+l) "mass," "damping," and "stiffness" 
matrices IvF, if, and KN are defined by 

7<=<Bf , J Bf> 

D%= <B?, (B(q)£f > 

Ky=<B?,a(fdB?>. 
Here, the subscript ij denotes the zyth element of the matrix 
and the vector F^ is defined as the /Vx 1 vector of elements 
i</= <f(t), Blj>. Each approximate identification problem 
now reduces to calculating qN that minimizes (31) subject to 
the vector differential equation (37). These calculations result 
in the sequence (qN) which, as mentioned above, converges 
to a q minimizing (30) subject to systems (9), (12), or (15), as 
appropriate. 

It is important to note here that this approximation differs 
from a standard finite element method in two fundamental 
ways. First, the damping mechanism produced by the matrix 
if converges to a physical damping model. Typical finite 
element models treat damping in an ad hoc fashion. Secondly, 
the entire model converges to a strength of materials/contin
uum mechanics model having more physical significance than 
the rather arbitrary node model produced by standard finite 
element approximations. 

VI Results 
The results of estimating the various damping parameters 

from experimental data using EMA are discussed first as it is 
limited to the problem defined by qi. In the EMA approach, 
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0.6 

EXP DPiTfi 

FIT DRTfl 

~ ~ 1 — 
7.0 6.0 9.0 

TIME IN SECONDS 
Fig. 1 A comparison of the experimentally measured time response 
and model using q,. Estimated values are £=2.75 x 1010 N/m2, c d = 1.357 
x 106 kg/m sec, 7 = .2025 kg/m sec. 

the correctness of a given estimate is judged by the ability of 
the solution to produce frequency-independent parameters 7 
and cd. Next, the results of the SIP approach are used to 
examine the damping mechanism. In this case the success of 
a given estimate is judged on the ability of the estimate to 
numerically simulate the experimental time history of the struc
ture's response, which is taken as the fundamental goal of a 
parameter identification procedure. 

Experimental Modal Analysis. The geometric values of the 
beam tested and the analytical values of @„ are given in Table 
1. The results of performing 15 modal tests, as outlined in 
Cudney and Inman (1989), are also listed in Table 1 for the 
system without a tip mass. Note the large damping ratios ex
hibited by this material when compared with calculated values 
of aluminum or steel. These data were first used in equation 
(27) to determine the values of the modulus (£) calculated to 
be 

£=2.68 X 1010N/m2 (38) 
with a variance of 0.6 N/m2. 

The excellent fit provided by the Bernoulli-Euler beam stiff
ness to the measured frequencies indicated that this is a suitable 
stiffness model for this particular composite with 0 deg/90 deg 
orientations. Some researchers have suggested that a Timosh-
enko model might be more appropriate for composites. How
ever, the inclusion of rotary inertia and shear effects did not 
provide a more convincing fit to the frequency data obtained 
here. 

It has been shown by Cudney and Inman (1988) that at
tempting to use just air damping, 7, or just strain rate damping, 
cd, alone fails to match the measured modal data. In each case 
the attempt to fit a single damping parameter is measured by 
the ability of the estimated values of 7 and cd, to reproduce 
the measured damping ratios fm. This situation is discussed 
later in the context of the SIP estimates. The significance of 
this result is that a single modal damping ratio cannot logically 
be used to model the damping mechanism of the composite 
beam. 

Next, the generalized inverse of the data matrix B defined 
by equation (29) and the theoretical values of the eigenvalues 
given in Table 1 are used to calculate the desired damping 

coefficients 7 and cd from equation (28) and the vector z. The 
vector z contains the experimentally determined modal data 
of Table 1. The results of 7 and cd are 

7 = 1.7561 kg/m sec, cd= 2.05 x 105 kg/m sec (39) 

for 9 modes of data. 
The effect of natural frequency on the measured modal 

damping ratio fm is seen by substituting the analytical expres
sion for |8m into equation (26). This yields that 

Cd 

2com IE I 
(40) 

This indicates clearly that the effect of air damping (8) de
creases with increasing mode number(a>m—00). Thus, for higher 
modes the strain rate damping makes a more significant con
tribution to the measured damping ratio. This agrees with the 
physically intuitive notion that the large-amplitude low-fre
quency modes are pushing more air than the higher-frequency 
lower-amplitude modes. In fact, for a free-free configuration, 
it is claimed by Vinson (1989) that the effect of air damping 
can be subtracted based on Blevins' equation (Blevins, 1977), 
which considers flow effects. 

To check the validity of this approach, the frequency de
pendence of the coefficients 7 and cd was examined by recal
culating them using a different number of modes. Successive 
least squares was performed using first 2 modes, then 3 modes, 
etc., up to the total of 9 modes. The result is illustrated in 
Table 2. Table 2 indicates that the estimates of 7 and cd depend 
somewhat on the frequency range of interest. This is incon
sistent with the physical model put forth in Section III for 
estimating q^ In the modal testing community an acceptable 
error is measured damping ratios is typically 20-30 percent 
(Ewins, 1988). In this sense the modal data obtained (see Table 
1) is valid because the damping ratios of modes 2 through 9 
are within 23 percent of their mean value. However, the re
sulting values of 7 and cd obtained with these damping ratios 
are not consistent and their average values do not provide a 
reasonable reproduction of the measured time response when 
used in the original equation of motion (9). In fact, as shown 
in the last two columns of Table 2, the lack of convergence 
of the solution of equation (28) as the number of modes in-
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0.0 

— EXP DRTR 

- - MODEL RES. 

0.0 0.4 0.8 

TIME 
1.2 

IN SECONDS 
1.6 2.0 

Fig. 2 A comparison of the experimentally measured time response 
and model. Estimated values are £=2.62 x 1010 N/m2, a = 20.02 
NmVsec, /3 = 6.54.108 sec"1. 

9.0 

4.5 

0.0 

EXP DflTfi 

MODEL RES. 

— i 1 — 
0.8 1.2 

TIME IN SECONDS 
o.o 0.4 1.6 2.0 

Fig. 3 A comparison of the experimentally measured time response 
using the spatial hysteresis model q3. Estimated values are E= 2.539 x 
1010 Nm2, a = 4.624 N sec, b = .0196m, <y = .5006 kg/m sec. 

creases (even when weighted) illustrates that the concept of 
modal damping has relatively little correlation with the physical 
damping mechanism of the structure under test and therefore 
traditional EMA cannot be used. Furthermore, this approach 
is not applicable to the problem of estimating q[ and q3. Hence, 
one must conclude that the modal approach is not satisfactory 
in attempting to model, in composite beams, any of the damp
ing mechanisms proposed in this paper. 

Spline Inverse Procedure. The use of the SIP provides a 

nonmodal approach appropriate for each of the problems of 
estimating q!, q2, and q3. The problem of estimating qt is solved 
first for comparison with the modal approach. The stiffness 
parameter (elastic modulus) E was estimated to be 2.75 X 10 
N/m2, in good agreement with the modal estimation results 
above. Estimates of air damping alone or strain rate alone as 
a damping model proved to be inadequate in reproducing time 
histories matching those of the experimental data, indicating 
a poor model. This is again in agreement with the results 
obtained by using the modal approach. 
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The time domain approach provided by SIP allows a con
venient comparison between the measured time response and 
the analytical time response generated by the model of equation 
(9) with the experimentally determined parameter vector q^ 
The difference between the numerical solution for the time 
history of the acceleration uu(Xj,t) for the analytical model 
with the estimated parameter q( and the experimentally meas
ured accelerations define the residual which is generally small 
(Banks et al., 1987). The analytical time response is plotted 
along with the measured time response versus time in Fig. 1. 
While the agreement in fair, the residual is larger for longer 
time intervals, warranting further modeling. 

Next, the temporal hysteresis model involving q2 was con
sidered as a possible candidate for modeling the damping in 
the composite. In this case, we used a slightly more complicated 
beam with tip mass. The estimation procedure produces a good 
value for E (i.e., consistent with our previous methods for 
estimating qi) but drives the air damping coefficient to zero. 
The residual, however, is better than that for the model with 
qi. Figure 2 illustrates a plot of the measured velocity versus 
time as well as the velocity predicted by the model with the 
estimate q2. The difference between the measured and predicted 
value over the time interval of interest is almost negligible. 
Because this model drives the air damping coefficient to zero 
(violating physical intuition), a third model (q3) was consid
ered. 

The last model considered is based on a concept of spatial 
hysteresis as defined by the estimation problem for q3. Again 
(using the same beam with tip mass), the resulting estimate of 
the elastic modulus E is consistent with those estimated pre
viously. The values estimated for the spatial hysteresis param
eters (ff = 4.624 N sec, b=.0196m) and an air damping 
coefficient (7 =.5006 kg/m sec) produce an excellent match 
between predicted and measured response as indicated in Fig. 
3 (Banks et al. 1988). However, the external damping coef
ficient 7 differs from that estimated using the parameter vector 
q, (7= .2025 kg/m sec) emphasizing the fact that air damping 
should not be estimated independently whenever internal 
damping mechanisms are present. 

VII Conclusion and Discussion 
Three different models of damping have been presented to 

account for the experimentally observed dissipation in a pul-
truded composite beam. A spline-based inverse procedure 
(SIP), which relies on the distributed parameter nature of the 
damping mass and stiffness parameters, was proposed and used 
to estimate the form of each damping mechanism. External 
air damping, strain rate damping, spatial hysteresis, and time 
hysteresis models were considered. The spline-based method 
was also compared to a standard experimental modal analysis 
(EM A) approach. The EM A approach is not applicable to the 
various hysteresis models, nor is it applicable to systems with 
spatially varying parameters in general. Both the SIP and EM A 
approaches yield consistent values for the elastic modulus (E) 
for all three estimation models. This is consistent with the fact 
that frequencies are much more robust to estimates than are 
damping quantities. 

Both hysteresis models produce better results than the strain 
rate damping model. However, the spatial hysteresis model 
permits a nonzero air damping term while time hysteresis does 
not. Since air damping is obviously present, the time hysteresis 
result is less satisfying. A comparison of the hysteresis models 
is given in Banks et al. (1988). As indicated in that presentation, 
further analysis and modeling is required before a conclusive 
decision can be made about a best model. It is clear from the 
results presented here that hysteretic damping is able to re
produce experimental time responses with more accuracy than 
the standard Kelvin-Voigt model. It is also clear that the stand

ard method of measuring damping, EMA, does not provide 
an accurate method for investigating the energy dissipation in 
the composite beam tested here. 

In summary, a new method of determining damping mech
anisms in a distributed parameter model has been proposed 
and applied to a beam. The SIP method proposed here also 
yields estimates of the stiffness parameters. This method has 
been compared to the standard method of determining damp
ing in structures using modal methods. When compared on 
the same experimental test data, the SIP approach produces 
more consistent estimates of the Kelvin-Voigt damping param
eter than those obtained by using modal methods. In addition, 
the proposed procedure is applicable to hysteretic damping 
models and to systems with spatially varying parameters that 
cannot be treated by modal methods. 
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Vibrations of Moderately Elliptic 
Clamped Plates: A Perturbation 
Scheme for Eigenvalues1 

Frequencies of vibration of an elliptic plate, clamped along the edge, are determined 
by means of a perturbation scheme based on a boundary perturbation method 
(B.P.M.). Eigenvalues are obtained corresponding to higher modes of vibration 
containing elliptic nodes, in addition to the fundamental mode. Comparison with 
previously derived values in the fundamental mode reveals that the present scheme 
leads to accurate results for moderately elliptic plates. 

Introduction 
Frequencies of vibration of elastic plates, even according to 

classical simplified theories, have been determined analytically 
only for a limited class of plate geometries. An extensive survey 
and detailed review of this subject is given in a monograph by 
Leissa (1969). Vibrations of circular plates were first studied 
over a century ago by Lord Rayleigh (1945). Frequencies of 
vibration for circular plates subject to classical boundary con
ditions (i.e., fully constrained or free displacements at the outer 
edge) were obtained by Airey (1911), Carrington (1925), and 
others; corresponding cases for plates with elastic edge re
straints were considered by Kantham (1958) and Parnes (1970). 
Thus, while circular plates have been extensively studied for 
a wide variety of boundary conditions, in the case of elliptic 
plates, very few results appear in the literature. 

McLachlan (1947) investigated a number of vibrational 
problems in an elliptic domain using elliptic coordinates. How
ever, while he obtained general solutions, no numerical results 
were presented. The major difficulty encountered with the use 
of this coordinate system evidently is due to the nature of the 
solution which, expressed in terms of Mathieu functions, gives 
rise to frequency equations represented in the form of infinite 
determinants. Using this coordinate system, Shibaoka (1956) 
determined an exact value (to four significant figures) for the 
fundamental frequency of clamped plates by evaluating zeros 
of truncated determinants of successively higher order. Eigen
values which converged numerically, were thus obtained by 

'Major portions of this work were performed while the author was Visiting 
Professor at Laboratoire de M6canique Thiorique, Universite Pierre et Marie 
Curie, Paris VI, and at Laboratoire de Mecanique des Solides, Ecole Polytech-
nique, Palaiseau, France. 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED M E 

CHANICS. 

Discussion on this paper should be addressed to the Technical Editor, Prof. 
Leon M. Keer, The Technological Institute, Northwestern University, Evanston, 
IL 60208, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by the 
ASME Applied Mechanics Division, Nov. 24, 1987; final revision, Nov. 22, 
1988. 

means of this truncation technique. However, the method, 
while rather complex, did not lead to eigenvalues for higher 
modes of vibration. McNitt (1962) treated the same problem 
using the Galerkin method and a two-term deflection function 
expressed in terms of Cartesian coordinates. While this treat
ment resulted treasonably accurate approximate eigenvalues 
for the first mode, the second mode results clearly are ques
tionable , since the effect of ellipticity appears to be independent 
of the mode. 

In this paper, we investigate the vibrations of a moderately 
elliptic clamped plate by means of a perturbation scheme. 
Boundary perturbation methods first appeared a number of 
years ago; an early exposition is given by Morse and Feshbach 
(1953). Recently, a higher-order boundary perturbation method 
(B.P.M.) was developed by Parnes and Beltzer (1986) to treat, 
among others, problems existing in an elliptic domain when 
the boundary conditions are of the Dirichlet or Neumann type. 
Considering the ellipse to be a perturbation of a circumscribing 
circle, it was shown that problems in the elliptic domain can 
be treated by solving a sequence of problems in the corre
sponding circular domain for which equivalent boundary con
ditions are prescribed. Explicit higher-order expressions for 
these boundary conditions were presented. Based on these re
sults, we apply the B.P.M. to extract the eigenvalues for mod
erately elliptic plates. The technique yields simple analytic 
expressions in terms of the ellipticity for the eigenvalues of 
elliptic plates. Comparisons with results given by Shibaoka 
(1956) and McNitt (1962) for the fundamental mode show that 
the present scheme leads to highly accurate results for moderate 
ellipticities. Moreover, a significant feature of this method is 
the capability to extract eigenvalues in higher modes containing 
nodal ellipses in addition to the fundamental mode. 

2 General Formulation and Solution 

2.1 Formulation. We consider an elastic elliptic plate of 
thickness h with semi-major and minor radii a and b, respec-
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Fig.1 Geometry of problem 

' e-a/b-1 

Fig. 2 Perturbed geometry 

tively, clamped along the boundary Ce. Using a polar coor
dinate system (r, i/0 with center at 0 (Fig. 1), and denoting the 
transverse displacement by W(r, \j/, t), the equation governing 
free vibrations of the plate, W(r, i/<, t) 

( V 4 - £ V ( / - , ^ ) = 0 

w(r, W', is 
(1) 

where 

with 

k* = mw2/D (2a) 

D = E h3/12(l-v2). (2b) 

In the above, V4 is the bi-harmonic operator, E and v are 
the modulus of elasticity and Poisson ratio of the plate ma
terial, respectively, m is the mass of the plate per unit area, 
and o> is the frequency. 

Equation (1) is to be solved subject to the boundary con
ditions on Ce, 

dw 
= 0 , — =0, (3a,b) 

dn „ 

where n is the unit normal to Ce. 
Mathematically, equations (l)-(3) represent a boundary value 

problem in an elliptic domain containing Dirichlet or Neu
mann-type boundary conditions. The system clearly does not 
lend itself in the given elliptic domain to a direct analytic and 
tractable solution yielding the required eigenvalues. We pro
ceed, therefore, with a perturbation scheme, adopting the 
boundary perturbation method (B.P.M.) presented by Parnes 
and Beltzer (1986) for this class of boundary conditions. In 
accordance with the B.P.M., for moderately elliptic plates, we 
consider the boundary Ce as a perturbation of a circumscribing 
circle C0 of radius a (Fig. 2), and define the ellipticity parameter 

- I - 1 - (4) 

We assume w(r, \j/) to be analytic throughout the x-y plane 
and let w(r, i/<) be expandable in the ellipticity parameter e: 

w(/\iW = £ w 
y = 0 

U)ej (5) 

The functions w{U))(r, ^),y' = 0, 1,. . . ,n, must then satisfy 
equivalent boundary conditions on the boundary C0(r = a); 
explicit expressions for these boundary conditions, derived in 
the above-referenced paper for a second-order scheme, are as 
follows: 

w ,u ']c0=w]Ce, wl ,(0) 

CO 

dw 

Ce 

w<1>]Co=-o*](
1

0), <>] C 0 =-«*<°> 

w<2)]Co=-o*<
1

1)-o*f 
„(2) ?)]Q,= - « * ! 1 , - « * ? ) 

where, for / = 0 , 1 , 

o * { " = - a s i n V < > 

o * < ; ) = p i n 2 ^ (2 sin \p - cosV) w(,) + a sin \j/ w (0 

n\j/\''= -a s in> w;; + 
sin 2i/< .,«') 

(6a, b)2 

(6c, d) 

(6e) 

(6/) 

da) 

(lb) 

(7c) 

a2 

2 
n^ = -sm^w%-"2 (cosV - 2 sin V) sinV vv; (/) 

- - (sin 2i/02 w*/' - sin V sin 2 $ w $ + — sin 4 \/,w§. (Id) 

Invoking a procedure suggested by Millman and Keller (1969) 
in their study of nonlinear boundary value problems, we ex
pand k* similarly in terms of the ellipticity, 

(8) 

so as to be able to satisfy appropriate solvability conditions 
which appear below. Substituting equations (5) and (8) in (1), 
leads to a set of equations for wu) (r, \p) 

(V4-A:4)w(u, = 0 J = Q 

J-i 

(V4-kt)w^ = J]kliwii)J^L 

(9a) 

(9b) 

We observe that for any j > 1, a sequential solution of 
equation (9b) is possible since the inhomogeneous terms / = 
1,. . . ( / - I ) are then known. In the following development 
we proceed with a second-order scheme. 

2.2 The axisymmetric case, j = 0. The governing equation, 
(9a), with boundary conditions given by (6a, b) where w]c<, = 

dw 
— = 0, is recognized as that for the free vibration of 
dn ce 

a circular plate of radius a. 
This problem admits the solution (Leissa, 1969) 

w{O)(r)=Ao[Jo(kor)+<XoIo(k0r)] (10a) 

(Mb) 

where 

«o= -^o( \>) /^o( \ ) ) 

and where the eigenvalues, 

Xo„s=£o,s a 

represent the 5 roots (s = 0, 1,2,...) of the frequency equation 

/o(X0)/1(Xo)+/i(Xo)/o(Xo)=0. (11) 

In the foregoing equations J„ and /„ denote, respectively, the 
Bessel and modified Bessel functions of order n. 

For use in the treatment that follows, it is noted that 

v^>(r) = ,W- . / 1 (A :o r ) + a0/1(fc0 /•)] (12a) 

w^(r)=A0k
2
0l-J0(k0r) + a0I0(k0 r)} - - <>(/•)• (12b) 

2In these, and all subsequent equations, a comma followed by a subscripted 
r or ^ denotes derivatives with respect to the variable. 
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Hence, by equation (10ft), 

< ' ( « ) = - ^ ^ o ( X o ) . (12c) 

Making use of the standard relations for the Bessel functions, 
we note that 

Kr < « ) = - " Kr'(«) + 2^0*5 -M \>) • 

Hence*, we may write 

<;(«)= 
C 

O) 
where 

c = - [ i + M , ( V , ) / / o M ] . 

(13a) 

(13ft) 

(13c) 

2.3 Perturbed solutions; j > 1. We observe that the gov
erning equations, equation (9ft), contain inhomogeneous terms 
which may be interpreted physically as "forcing" terms. Since 
we are concerned here with free vibrations, we shall seek, by 
means of appropriate transformations, to find (while still sat
isfying the required boundary conditions) related auxiliary 
functions which are governed by corresponding homogeneous 
equations. This physical reasoning will be seen to be consistent 
with the required solvability conditions on the explicit equa
tions derived as follows. 

2.3.1. Case j = 1: The explicit governing equation on w(1) 

(r, \p), from (9ft), is 

(V4-A:4) wil)(r,V) = k\w{0){r) (14) 

subject to the boundary conditions, (6c,d). Upon noting that 
vf(°'(a) = w ,̂0) («) = 0, these yield the simpler expressions 

(15a) w(1)(a) = r (1-cos 2i/<) w ( ; ' (a) = 0 

<>(«) = - ( ! - c o s 2./-) w{°'(a) (15ft) 

We now define the function Vt>(1) by means of the transfor
mation 

It is observed that equations (15) are satisfied if 

M> ( 1 W) = 0 

^ W ) = - - M ^ ( a ) c o s 2 ^ . 

Substituting equation (16) in (14), 

(V4-*:4,) w 
(o) =ky°\ 

(16) 

(17a) 

(17ft) 

(18) 

(19) 

(20) 

Now, using equation (12a), it is seen that 

( V 4 - $ [ r w < . 0 ) ] = 4*Jw (0). 

Hence, equation (18) becomes 

( V 4 - A: 4 ) t f 'W) = {k\- 2k4
0) w

(0> (r). 

The solvability conditions for possible solutions of equation 
(20) subject to the boundary conditions of equation (17) re1 

quires that the right-hand side of equation (20) be made to 
vanish3. (This condition is evident, in this particular case upon 
recognizing that equation (17) contain a ^-dependency while 

3It is noted that this mathematical condition is compatible with the physical 
argument given above. 

the right-hand side of equation (20) is ^-independent.) Thus, 
we are led to the condition 

k* = 2k4
0. (21) 

The function wm, satisfying the corresponding homogene
ous equation and consistent with the boundary conditions (17), 
is 

w(1)(r,./') = x ( 1 ) W c o s 2 ^ (22a) 

where 

• xl\)=AilMkBr) + aMk0r)]. (22ft) 

From equation (17), 

where 

x(V) = o, x(>)=-«, 

K = -2w]°\a). 

Hence, the constants are readily determined: 

. K I2(\0) 

(23a, ft) 

(23c) 

(24a) 

(24ft) 

1 4 a / , ( X 0 ) / 1 (Xo) 

a, = J2(Xo)//2(X0). 

Thus, finally we obtain 

w(1)(r,i/<) = x ( lV) cos 2 i+r- wl0)(r). (25) 

Using standard expressions for derivatives of the Bessel func
tions and recurrence relations, and making use of equation 
(11), we find the following relation (necessary in the subsequent 
treatment) 

X | » = * < ' ( « ) 

where 

B = 
XQ/2(XO)/2(XQ) 

4 / 1 (X 0 ) / 1 (X 0 ) ' 
(26ft) 

2.3.2 Case j=2: Combining equations (9b), (16), and 
(21), the explicit governing equation for w(2) becomes 

(V4-A:4)w<2)(r,V')=[2 ww(r,^) + r w(0)(r)]A:4 + A:4w(0)(r). 

(27) 

Substituting equation (25) in the appropriate boundary con
ditions, (6e, / ) , we obtain explicitly 

2 

w(2)(a,i£) = — (3 - 4 cos 2^ + cos 4 ^) w[°r
}(a) (28a) 

W £ W ) = TT ([3 y>^\a) + a w (
r °>(a)-4 x

( >)] 
lb 

(28ft) 
+ 8 x | > ) cos 2^ - [3w(°> (a) + 4 x ^(a) + a vv(°»(a)] cos 4 ^ ) . 

Making use of the relations given by equations (13) and (26), 
(28ft) can be written alternatively as 

w!? («,*) = £ [2U-2B-Q w^(a)+2aw%l(a) 

+ 2A0k\a 7, (X0) + 8x^(a) cos 2f (28ft') 

- [ 3 + 4 f i + q w (
r ° , ( a ) c o s 4 ^ ) . 

Taking note of equation (12c), we define the auxiliary func
tion w (r, \p) via the transformation 

w(2) (r.tf) = w(2,(/-,^) + T0(r) + r2(r) cos 2* (29) 

where 
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Fo(r) = l 

r2W = 7 

with 

S w%\r) - 8A r w><°> -A0 X2 J0 (*„ r) 

(1 - 2 7 ) r w<;> (r) - 4 7 x
(1 V) + 2r x ! > ) 

A(Xo) = i ( l+2B+-C) 

(30a) 

(306) 

(30c) 

and where 7 is an arbitrary constant. 
By direct substitution, we find that equations (28a) and 

(28b') are satisfied for all values of 7 provided that w(2) satisfy 
the boundary conditions 

„2 
(31a) w(2)(a,</') = 77 w ( ° ' ( a ) cos 4 ^ 

16 

>v;2) (a,tf) = - — [3 w(°»(a) + 4 X , (
r > ) + « < > ( « ) ] cos 4 ^. 

(316) 

Substituting equation (29) in (27) and making use of (22a), we 
obtain 

( V ' 1 - < ) [w(2)(I-,*) + T0(r) + r 2 ( r ) cos 2 tf 

= [2x
( 1V)cos 2 ^ + r w<;\r)] k* + k* w $ . (32) 

From equation (126) and equation (19) we can show that 

( V 4 - kl) \P- w(°>•(/•)] = 12 k\ w ( 0 ) (/•) + 8 £4r w<;' (/•). (33) 

Hence, 

(V4-*J)ro(r) = *J ^ - 4 A ^ w < 0 ) ( r ) + / - w ( ; ) ( r ) (34) 

Similarly, upon letting the arbitrary constant 7 take the con

venient value 7 = - (thus simplifying T2 by the elimination of 

the vv(
r
0) term) and using the recurrence relations for Bessel 

functions, equation (306) leads to 

( V 4 - *J). [r2(r)cos 2 fl = 2 Ar4w(1)(r, W- (35) 

Equations (34)-(35), when substituted in equation (32), then 
yield 

(V«-/Q ww(r,t) = <H) *; + Ar w ( 0 ,(/-) . (36) 

As with the casey = 1 [(equation 20)], the solvability condition 
for solutions of equation (36) consistent with the boundary 
conditions on w(2) (r, \p), equation (31), requires that the in-
homogeneous term be made to vanish. Thus , we are led to the 
condition 

* 4 = ( | - 4 A ) * 4 

yielding the solution 

ww(r^) = A2[JA(k0 f) + a2 h{k0 r)] cos 4 ^ 

(37) 

(38) 

where A2 and a2 are constants which can be determined by 
equation (31).4 

3 Eigenvalues: Numerica l Results and Discuss ion 
From equations (21) and (37), the required second-order 

expansion for the eigenvalues A = (ka)4, according to equation 
(8), is 

"It is noted that the present second-order scheme does not require evaluation 
of these constants. 

s 

P(s) 

0 

2.9499 

1 

9.4352 

Table 1 
2 

20.959 

3 

37.429 

4 

58.840 

5 

85.188 

Fig. 3 Frequency ratios versus ellipliclty 

X4 = X 4 ( l + 2 e + 2-4A(X 0 ) (39) 

Substituting equations (13c), and (266) in the definition of 
A, equation (30c), and again making use of the recurrence 
relations for the Bessel functions, yields 

X4 = X 4
s [ l + 2e + 0(s)e2] (40) 

where 18(5) = 3/2 - 4 A(X0.,) is given explicitly by 

0(s) = 2 - A 
•A (A) / p ( X ) / 0 ( X ) 

Vo(X) 2 7 , ( X ) / 1 ( X ) 
(41) 

>>=>>o, s 

In the foregoing equation we note that the coefficient of the 
quadratic term e2 depends explicitly on the 5th root X0is of the 
frequency equation of the circular plate, equation (11). Values 
of /3(5) corresponding to the first six modes (s = 0, 1,. . . , 5) 
are given in Table 1. 

Realizing that the ellipticity does not result merely in a trans
lation of the spectrum of frequencies of the circular plate, it 
is evident that the ellipticity should affect each mode differently 
as shown here. This result is in contradistinction with that 
given by McNitt (1962) where the ellipticity is presented as 
affecting the first two modes equally. 

The effect of ellipticity on the eigenvalues is presented nu
merically in Fig. 3, where the family of curves, (X/Xn,j)2 = 

-—:——, is plotted as a function of e for e < 0.4 for the first 
a) circle 
six modes, s = 0, 1,. . . ,5 . It is seen that the ellipticity has 
an increasingly greater effect upon the higher modes. For ex-

a 
ample, for an ellipse with - = 1.4, the fundamental frequency 

6 
increases by 50 percent while the frequency corresponding to 
the fourth mode (s = 3) increases b y a f a c t o r of 2.8. Aplausible 
interpretation for the increased effect of ellipticity on the higher 
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Table 2 
a 

~b 

1.25 
1.5 
2.0 

BPM 

1.2978 
1.655 
2.439 

Shibaoka 

1.2824 
1.61* 
2.692 

A(%) 

1.2 
3.0 
9.4 

a 

1 

1.1 
1.2 
1.5 

(rj 
BPM 
1.1088 
1.232 
1.655 

McNitt 

1.1074 
1.2299 
1.6663 

A(%) 

0.13 
0.17 
0.68 

'Value taken from Fig. 4 of Shibaoka (1956) 

modes of vibration may be given as follows: We first note 
that with increasing ellipticity, the wavelengths in the higher 
modes, because of the greater number of nodes, become in
creasingly smaller, particularly along the minor axis. More
over, we recall, for example, as in the case of circular plates, 
that the sensitivity of eigenvalues corresponding to higher s-
modes increases with the wave number ((Leissa, 1969)), i.e., 
as the wavelengths in the higher modes diminish, the corre
sponding eigenvalues increase at a faster rate. By analogy with 
these results, we may conclude that in elliptic plates the re
sulting smaller wavelengths in the higher modes, due to in
creased ellipticity, correspond to larger eigenvalues which 
increase even more rapidly with s. 

For the fundamental mode, it is possible to compare the 
results obtained here with the exact frequencies given by Shi
baoka (1956) and the approximate frequencies derived by 
McNitt (1962); these are shown in Table 2, together with the 
percent differences. 

We note that for - < 1.5, the results are in agreement to 
b 

within 3 percent, and moreover even for a relatively large 

ellipticity, - = 2.0, the solutions differ by less than 10 percent. 
b 

We may thus conclude that the perturbation scheme presented 
here leads to results of acceptable accuracy for moderate el-
lipticities in the range e < 0.6. 

Finally, we observe that the perturbation scheme, while being 
a relatively simple technique, possesses a distinct advantage 
over previous solutions, namely the capability of yielding ei
genvalues for higher modes of vibration. 
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Inhomogeneous Clamped Circular 
Plates With Standard Vibration 
Spectra 

Theory 
In this paper, we extend a method of special conformal maps 

developed by the author (Gottlieb, 1988) for circular mem
branes and discover a family of inhomogeneous clamped cir
cular plates having the same vibration spectrum as for a 
homogeneous plate. 

Let h(x, y) = g(u, v) where u + iv = f(x + iy), where 
f(z) is a one-to-one analytic mapping of complex variables 
from the z = x + iy plane to the u + iv plane. Then (c.f., 
Gottlieb, 1988) V2h = \f (z) \2V2g where V2 = (dVdx2) + 
(d2/dy2), V2 = (d2/du2) + (d2/dv2). A repeated application 
gives V4g = \f (z) | - 2V 2[ l f (z)\-2V2h(x, y)]. 

Suppose that in Cartesian u, v coordinates, gis the amplitude 
of small vibrations of a thin homogeneous plate. Then (c.f., 
Meirovitch, 1967) 

D0V
4g = oi2a0g(u,v) (1) 

where o is the radian frequency of the modal vibration, and 
D0 = EoHl/[\2(l - u2,)], with standard definitions of the sym
bols. Substitution gives 

V2[(DQ\f'(z)\-2)V2h] = J(ao\f'(z)\2)h(x,y). (2) 
The equation governing the small transverse vibrations of 

amplitude W(x, y) with radian frequency w for a thin inhom
ogeneous elastic plate has been given by Lang and Nemat-
Nasser (1978) in terms of a (x, y), the mass density per unit 
area, v(x, y), the Poisson's ratio, and the flexural rigidity of 
the plate given by D(x, y) = EH3/[l2(l - v2)] where H(x, 
y) is the plate thickness and E(x, y) is Young's modulus. If 
we impose the condition 

D{\ — v) = c, constant (positive), (3) 
then we may show that it becomes a "conditional" plate equa
tion 

V2[DV2W\ = o>2oW. (4) 

Now, equation (2) is precisely of this form, with 

D(x,y)=D0\f'(z)\-2, a(x,y)=ao\f'(z)\2. (5a, b) 
(Thus, a(x, y) D(x, y) = aoD0.) By (3) and (5a), 
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v(x,y) = \-c\f'(z)\2/D0, 

EH3 = 12c[2-c\f {z)\2/D0). 
(6) 

(7) 
For a physical theory, 0 < v(x, y) < 1/2. From (3), this 

implies D(MAX)/2 < c < Z>(MIN) where Z>(MAX) (MIN) is the 
maximum (minimum) value attained by D (x, y) over the phys
ical region of the plate coordinates. From (5a), this yields the 
condition on f(z): I/' (z) 1 (MAX) < V21/' (z) I (MIN). 

A vibrating plate will be subject to certain boundary con
ditions. For a clamped plate 

W=Q = bW/dn (8) 
on the boundary, where n is measured along the normal to the 
bounding curve. Now, if g(u, v) satisfies the conditions (8) 
on the boundary of a region in the {u, v) plane, then h(x, y) 
satisfies (8) on the corresponding boundary in the (x,y) plane 
mapped by/(Saff and Snider, 1976). Thus, our theory allows 
us to relate certain inhomogeneous clamped plates to homo
geneous clamped plates via the complex mapping function / . 

Clamped Circular Plates 
For our mapping function, we take the bilinear (Mobius) 

transformations 

f{z)=R(z-aR)/(R-oLZ), 0 < a < l . (9) 
Up to rotations of coordinates, these are the only one-to-one 
analytic mappings of the disk of radius R onto itself (c.f., Saff 
and Snider, 1976), with perimeter mapped onto perimeter: 
\z\=R#\f(z)\=R. 

Then from u + iv = pexp(/</>)=/(z), corresponding to (9), 
(c.f., Gottlieb, 1988) 

p cos4> = R[(x-aR)(R-ax)-ay2]/[d(x,y))2, (10a) 
p sm<t> = R2(l-a2)y/[d(x,y)]2, (106) 

[d(x,y)]2=(R-ooc)2 + a2y2; (10c) 
\f'(z)\=R\l-a2)/[d(x,y)]2. (11) 

The corresponding material properties for these plates are 
now given by 

D(x,y) =D0ld(x,y)]4W-a2)2R4], 

o(x,y)=o0[D0/D(x,y)], 

v(x,y) = \-[c/D(x,y)], 

E(x,y) [H(x,y)f = 12c{2 - [c/D(x,y)]}. 

(12) 

(13) 

(14) 

(15) 
In terms of the inhomogeneous plate, polar coordinates x = 
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rcos0, y = rsind, then [d]2 = R2 + a2r2 -IRarcosd, where 
d has the physical meaning of the distance from the point on 
the rim (r = R, 6 = 0) to the internal, scaled point (ur, 6). 
Thus, this resulting inhomogeneous plate is, unexpectedly, not 
axisymmetric. 

The previous inequality involving I/ ' I (so that Poisson's 
ratio is physical) imposes a stricter condition on the parameter 
a in (9). Using (11), l + 2 a + 2a2 < V 2 ( l - a ) 2 , i.e., 

0 < a < [(17 +13V2)1/2 + 3 + 2V2]~' = 0.08491. (16) 

Then the constant c introduced in the special condition (3), 
and appearing in (14), (1-5), must satisfy, for any a chosen in 
the range (16), the condition 

[1 + 2a + 2a2]2/[2(l - a2)2] < c/D0< (1 - a)2 /(l + a)2. (17) 

The angular frequencies for (1) with clamped boundary con
ditions (8) are given by co"' = (y'Z)2(DQ/<j0)

1/2/R2 where y% is 
the mth root of the characteristic equation J„(y)I„-i(y) -
Jn-i(.y)In(y) = 0 where Jn and /„ (n = 0, 1, 2, ...) are, re
spectively, the ordinary and modified Bessel functions of the 
first kind. The natural mode functions g(u,v) = G>ftp, 4>) are 
given, for example, in Meirovitch (1967) (Sect. 5-12(b), with 
change of notation). By expressing p, <j> in terms of r, 6 using 
(10a, b), these become the mode functions for our inhomo
geneous plate, which therefore has different mode shapes. 

By equations (1) and (8), the modal frequency spectrum of 
our inhomogeneous circular plate of equations (2), (3), (4) with 
material properties given by (12)—(15) with any parameters a, 
c in the ranges (16), (17), is identical with the spectrum of the 
vibrations of the standard clamped homogeneous circular plate 
given above. 

Discussion 

We have shown that there is a family of inhomogeneous 
circular plates with exactly the same complete vibration spec
trum as a standard clamped circular homogeneous thin plate. 
This is in itself an interesting phenomenon. The explicit for
mulae also provide a benchmark against which various nu
merical schemes for analysing inhomogeneous plate vibrations 
might be checked. 

It is worth noting that the first (theory) section of this paper 
remains valid for any one-to-one complex analytic function. 
Thus one may, in general, map a (u, v) region of a standard 
homogeneous clamped plate into the resulting (x, y) region 
to obtain a differently shaped inhomogeneous plate (the con
dition (3) with 0 < v < 1/2 must hold) with the same vibration 
frequency spectrum. 
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Effect of Pleural Membrane on the 
Propagation of Rayleigh-Type 
Surface Waves in Inflated Lungs 
We model the lung parenchyma as an elastic half-space and the pleura as a taut 
elastic membrane in smooth or in welded contact with the half-space. In each instance 
we deduce that the presence of a sufficiently high surface tension T in the pleural 
membrane will lead to the existence of a cutoff frequency f0 for the Rayleigh-type 
surface waves, and we derive an equation which gives T in terms o/f0 and parameters 
that characterize the layered medium. We performed experiments on four inflated 
horse lungs at transpulmonary pressures of 5, 10, and 15 cmH20. A comparison of 
the experimental results and the theoretical predictions provides an empirical test 
to the validity of the modeling. 

1 Introduction 
In a recent study, Jahed et al. (1989) measured speeds of 

stress waves propagated along the surface of inflated sheep 
lungs. They observed that signals were transmitted by two 
waves, which they called the "fast" and the "slow" wave, 
respectively. Both waves, however, were much slower than 
those reported in several other studies (Rice, 1983; Kraman, 
1983; Yen et al., 1986) on stress waves in lungs, although Butler 
et al. (1987) did measure a wave speed compatible with that 
of the "fast" wave. Since the transmitted signals in the ex
periments of Jahed et al. had frequencies substantially lower 
than those in the studies that reported higher wave speeds, 
they conjectured that "[t]he frequency content of the source 
may be an important determinant of the type of wave trans
mitted and is probably responsible for the difference in wave 
velocities measured." 

An inflated lung is covered by the taut pleural membrane. 
This membrane and the lung parenchyma form a layered me
dium. It is well known that surface waves in layered elastic 
media are dispersive; moreover, a mode of propagation may 
have cutoff frequencies beyond which transmission by that 
mode is no longer possible. In this paper we shall treat the 
inflated lung as a layered elastic medium, study the propagation 
of Rayleigh-type waves along its surface, and explore whether 
the cutoff of Rayleigh-type waves could shed new light on the 
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question about the speeds of stress waves in lungs. The Ray
leigh-type surface waves included in this study are straight-
crested, and have real frequencies but possibly complex phase 
velocities. Since the conditions of contact between the pleura 
and the lung parenchyma could play an essential role, we shall 
examine two cases, namely those of smooth contact and welded 
contact. It turns out that in both instances the presence of a 
sufficiently high tension T in the pleural membrane will lead 
to the existence of a cutoff frequency /0; no Rayleigh-type 
wave that has a frequency />/o and has a real phase velocity 
c may propagate along the surface of the inflated lung; at 
cutoff, c = cs, where cs is the velocity of shear waves in the 
lung parenchyma. For both models of smooth contact and 
welded contact, we derive an equation which gives Tin terms 
of /o and parameters (i.e., the densities and elastic constants) 
that characterize the layered medium. Measurement of/0 will 
deliver an estimate of T if the values of the other parameters 
are known. Rayleigh-type surface waves are thus potentially 
useful as a means for the nondestructive evaluation of the 
tension Tin the pleural membrane. 

Cutoff of a wave whose speed roughly approximated cs was 
indeed observed in the experiments that we performed on four 
inflated horse lungs at transpulmonary pressures (Ptp) of 5, 
10, and 15 cmH20. Assuming that this wave was the Rayleigh-
type surface wave under study, we used the measured values 
of /o to predict the membrane tension T at Ptp of 5 and 15 
cmHzO, both for the conditions of smooth contact and for 
those of welded contact. We stripped the pleura from three 
horse lungs and used indentation tests to measure the mem
brane tension at those transpulmonary pressures. A compar
ison of the results of these measurements and the predicted 
values of T provides an empirical test to the validity of our 
modeling. 

2 Theory 
We consider small-amplitude stress waves superimposed on 
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an inflated lung at a given transpulmonary pressure. We model 
the lung parenchyma as an elastic half-space and the pleura 
as a taut elastic membrane. We choose a Cartesian coordinate 
system under which the material points of the pleura and of 
the lung parenchyma have in their reference configuration 
coordinates (x, y, 0) and (x, y, z) with z > 0 , respectively. We 
assume that both the elastic surface and elastic half-space are 
homogeneous and are isotropic at their reference configura
tion. This assumption of homogeneity and isotropy for the 
elastic surface entails that its residual stress is a constant surface 
tension. 

Remark 1. Justification of these idealizations will ulti
mately come from the corroboration between theoretical pre
dictions and experiments. While inflated lungs respond 
inelastically to slower deformations (see, for example, Hil-
debrandt, 1969), it may still be a good approximation to treat 
superimposed small-amplitude stress waves of sufficiently high 
frequencies as elastic. In experiments we measured stress waves 
with wavelengths of 4-13 cm which are much longer than the 
diameter (~ 100 (xxn) of alveoli, the unit cells comprising the 
lung parenchyma. For the scale of deformation pertaining to 
such waves, past experience suggests that we may indeed treat 
the lung parenchyma as homogeneous and isotropic (Ardila 
et al., 1974). 

In our model the small displacements U=(u, v, w) super
imposed on the reference configuration of the pleura obey the 
following constitutive equation (cf., Gurtin and Murdoch 
(1975), equation (8.7)): 

0) 

/ = 

"1 0" 

0 1 

0 0_ 

, vu= 

S=TI+TvU+ a(tr£)/+ 2(3/ E, 

du/dx du/dy 

dv/dx dv/dy 

dw/dx dw/dy 

E= (2) 
du/dx (du/dy+ dv/dx)/2 

(du/dy+ dv/dx)/2 dv/dy 

here S is the Piola-Kirchhoff surface stress; Tis the constant 
surface tension; E is the infinitesimal surface strain; a and /3 
are elastic constants. In referential coordinates the equations 
of motion that govern (u, v, w) are 

dLu d2v 
(oc + W+T)—-2 + (a + P) 

dx dxdy 

d2u 
+ (P+T)—2 + bi-dy 

d^u 

dt2 

d2v d2u 
W+T)—2 + (a + /3) 

dx dxdy 
+ (a + 2l3+T)—2 

dy 
+ b2 = *-2 

32w d2w 
3 dt2 (3) 

Kdx* dy 

Here, b = (bu b2, 63) is the force per unit area acted upon the 
membrane by its environment, and a is the mass per unit area 
of the membrane in the reference configuration. It follows 
from our assumptions about the lung parenchyma that the 
Piola-Kirchhoff stress S in the reference configuration is re
lated to the infinitesimal strain E through the familiar con
stitutive equation 

S = X(trE)l + 2/*E, (4) 

where X and (i are the Lame constants, and I is the identity 
tensor. In referential coordinates the equation of motion that 
governs the infinitesimal displacements U = (H, v, w) of the 
lung parenchyma is 

DivS + b = pd2u/9f2 (5) 

where p is the density and b the body force per unit volume 
at the reference configuration. 

The phenomena that we shall study result from the inter
action between the taut elastic membrane and the elastic half-
space; the conditions of contact between the two are crucial. 

In this paper we consider two simple instances, namely, smooth 
contact and welded contact. We ignore gravitation and assume 
that the membrane is subjected to no external forces other 
than that acted upon it by the elastic half-space. The conditions 
of smooth contact are: 

at z = 0, w=w, S33 = &3, SI3 = S23 = 0; (6) 

those of welded contact are: 

at z = 0, u = U, S e3 = 6. (7) 

We may regard equation (6) or (7) as boundary conditions to 
be imposed on u and S, which should satisfy equations (4) and 
(5); on the other hand, U and b must observe equation (3). 

Henceforth, we assume that the body force b = 0. We study 
the possibility of free Rayleigh-type waves propagating along 
the surface of an inflated lung. It has been shown (see, for 
example, Achenbach and Epstein, 1967) that displacements 
given by the real part of 

u = (Ae"kqz-sBe~ -ksz\J{wt + kx) 

y = 0, 

w = (iqAe~kqz - iBe-ksz)eii0"+kx), (8) 

satisfy the equation of motion (5), provided that the parameters 
q and 5 satisfy 

q2=l-pc2/(k + 2ix), s2=l-pc2/ix; (9) 
here, A and B are arbitrary complex constants; 01, which we 
take to be real, is the angular frequency; k, which we allow 
to be complex, is the wave number; c — w/k is the phase ve
locity. Without loss of generality, we consider only waves that 
propagate in the negative x-direction; hence we impose the 
condition 

R e £ > 0 . (10) 

Equation (8) will not describe a Rayleigh-type surface wave 
unless 

RefA:[l-pc2/(X + 2Ai)]1/2)>0, 

Re[A:(l-pc2/V)1/2]>0, and Im k<0. (11) 

The first two conditions in (11) guarantee that u—0 as z— 00; 
the last condition says that the amplitude does not grow as the 
wave propagates. 

Finally, the boundary conditions (6) or (7) must be observed. 
We investigate the cases of smooth contact and welded contact 
in turn. In what follows, when the variable W'VO ranges over 
the complex plane, Wxn denotes the doubled-valued square 
root function. When W is real, \/W stands for the positive 
square root. 

(a) Smooth Contact. Equation (3)3 and the conditions 
that w=w and S33 = 63 at z = 0 lead to the equation 

(~k2qT-k(\+ s2)ix + qaw2)A + (k2T+ 2ksix - aw2)B = 0. 

(12) 

From equations (4), (8), and the condition Si3 (x, y, 0, t) = 0, 
we obtain the equation 

-2qA + (\+s2)B = 0. (13) 

In order that equations (12) and (13) have a nontrivial so
lution for A and B, we deduce that the phase velocity c of a 
Rayleigh-type surface wave must satisfy the dispersion equa
tion 

(2 - Pc2/fx)2 - 4[1 - pc2/(\ + 2/x)] 1/2(1 - pc2/V)1/2 

- (puc/>2)[l - pc2/(\ + 2ix)]'/2(T- ffc2) = 0. (14) 

Let Z = pc2/fi, and le t /= w/2ir be the frequency. Let us recast 
equation (14) as a relation between/and Z, namely: 

(2-Z)2-4(l-Z)W2[\-liZ/(\ + 2fi)]
[/2 lixZV" 

/ = : 
2TT[1 - /^Z/(X + 2li)Y'\T/n - aZ/p)Z 

(15) 
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Henceforth, we assume that 

T/fx > a/p, and X + 2/* > n; (16) 

the second inequality will follow if both the shear modulus 
and the bulk modulus of the elastic half-space are positive. 
Let 

R(Z) = (2 - Z)2 - 4(1 - Z)1/2[l - tiZ/(\ + 2/x)]1/2. (17) 

It is well known (see, for example, Achenbach, 1973, p. 191) 
that R has a zero at Z = ZR = pcR/p. < 1, where cR is the Rayleigh 
wave velocity pertaining to the elastic half-space. Moreover, 
« (Z)>0 for real values of Z in the range ZR<Z< 1, if (-)1/2 

is replaced by V(») in equation (17). Restricting our attention 
to this range of Z and taking the positive root of all the square 
roots in equation (15), we obtain a positive real value o f / fo r 
each value of c = -j(nZ/p). Each such pair o f / a n d c satisfies 
equation (14) and the conditions (10) and (11). Thence, such 
pairs of / and c define the dispersion curve of a branch of 
free, straight-crested, Rayleigh-type waves (cf., equation (8)) 
that may propagate along the surface of the inflated lung. 

As Z=pc2/fi — 1, we see from equation (15) that/approaches 
the value 

/ „= (27r(7'/ /x-ff/p)V[l-^/(X + 2 / i)]j- |V( / , /p); (18) 

We call /o the cutoff frequency, because condition (11)2, 
namely Re[/t(l - Z ) 1 / 2 ] > 0 , cannot be satisfied for any real 
Z > 1 . As/—/o, the phase velocity c—-VOu/p), which delivers 
the shear modulus of the half-space, if the density p is known. 
Furthermore, if the parameters X, p, a, and p are given, meas
urement of/o will give an estimate of the surface tension T. 

It will be interesting to ascertain whether the aforementioned 
branch exhausts all the possible Rayleigh-type surface waves 
of the form (8). We can easily show that there are no more 
waves with real phase velocity. It suffices to examine the range 
0<Z<ZR. Conditions (10) and (11) dictate that we must take 
positive square roots in equation (15). It follows that7?(Z)<0 
for 0<Z<ZR. Hence, equation (15) does not give a positive 

/• 
The possibility of waves with complex c (Im c^O) remains 

to be investigated. Pending a more thorough mathematical 
study, we examined this problem numerically for a specific 
choice of material parameters typical of an inflated lung. 

Example 1. Let T/u= 1/2 cm, y.(k + 2p)=l/6, /* = 4,000 
dynes/cm2, u = 3 x 10"' gm/cm2, and p = 0.2 gm/cm3. These 
values are typical of those of dog lungs at Ptp of 5 cmH20. 
Figure 1 depicts the dispersion curve obtained by the procedure 
described above. The cutoff frequency/0 is 51 Hz. We sought 
complex solutions c of equation (14) for the following fre
quencies f=\ Hz, 10 Hz, 20 Hz, 30 Hz, ..., (and by 10 Hz 
increments up to) 200 Hz. We used the double precision IMSL 
(International Mathematical and Statistical Library) subrou
tine DZANLY (Muller's method). For each complex solution 
c thus found, we checked whether it satisfies also the conditions 
(10) and (11). In all instances considered we found no complex 
c (Im c^0) that satisfies all the conditions which a Rayleigh-
type surface wave should observe. 

(b) Welded Contact. The case of welded contact with real 
c was analyzed previously by Murdoch (1976). (Cf., also Tier-
sten, 1969, for the special instance where T=0.) 

From the conditions of welded contact, namely equation 
(7), we deduce from equations (3), (4), and (8) the following 
dispersion equation 

A0k
2 + Alk + A2 = 0; (19) 

here 

A0 = (77/1 - aZ/p){y/n - aZ/p) {1 - (1 - Z) ' / 2 

X[l-/xZ/(X + 2^)]1/2], 

1-02 "1 

1 .00 -

0.98" / 

o / 
o / 

0.96- / / 

1/ 

0.94-

0.92 H 1 1 1 1 1 1 
0 10 20 30 40 50 60 

Frequency, Hz 

Fig. 1 Dispersion curves pertaining to Example 1 (smooth contact, full 
line) and Example 2 (welded contact, dashed line) 

Ai = Z{ (7//X - oZ/p)(l - Z)1/2 + (T/p. - aZ/p) 

X [ l - ^ Z / ( X + 2M)]1/2j, 

A2= -R(Z), (20) 

where y = a. + 2/3 + T and R{Z) is defined in equation (17). For 
a displacement of the form U=(u(x, t), 0, w(x, /)), we see 
from equation (1) that y = (Sn- T)/Eu-

In addition to the inequalities (16), henceforth we assume 
also that 

y/p,>o/p. (21) 

For real values of Z in the range ZR < Z< 1, if we take positive 
square roots in (20), we have AQ>Q, A\>Q, and A2<Q. The 
quadratic equation (19) delivers one positive real root k, which 
gives a positive real frequency 

± m l - A l + ^(4\-AA^] t {ZR<Z<1) ( 2 2 ) 

27r 2A0 

for each value of c = ^{\iZ/p). Such pairs of (/, c) satisfy the 
conditions (10) and (11), so they define the dispersion curve 
of a branch of Rayleigh-type surface waves. 

For real values of Z in the range 0<Z<ZR, all the coeffi
cients A0, Au and A2 are positive, so equation (19) has no 
solution k that is both real and positive. Hence, pairs of (f, 
c) given by equation (22) deliver all Rayleigh-type surface waves 
of the form (8) that have a real phase velocity. 

As Z = pc2//i— 1, equation (19) approaches the limiting form 

(77/i - o/p)(y/n - a/p)k2 + [ {T/y. - a/p)V[l 
-li/(\ + 2n)])k-l=0. (23) 

Hence, the cutoff frequency f0 is given by 

/ 0 = (V27r)V(^/p), (24) 

where k0 is the positive root of equation (23). Since the k2 term 
in equation (23) is positive, we have 

T/,x<a/p+ {k<rJ[l-ix/{\ + 2ix)}}-\ (25) 

Given a measured value of k0 or / 0 , we see from equation 
(18) that the right-hand side of (25) is nothing but the value 
of T/pL predicted by the model of smooth contact. Thus, for 
a measured value of/0 and a given set of parameters p., X, a, 
and p, the model of welded contact gives a lower value of T 
than that predicted by the model of smooth contact. 

Following what we did for the case of smooth contact, we 
investigated numerically the possibility of Rayleigh-type waves 
with complex c. 

Example 2. We took the same numerical values for 77/x, 
/i/(X + 2/i), n, a, and p as in Example 1. As an example, the 
dispersion curve pertaining to Rayleigh-type surface waves with 
real c for the case y = 8000 dynes/cm is shown in Fig. 1. For 
7 = 2500, 5000, 7500, and 10,000 dyne/cm, we sought complex 
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solutions c of equation (19) for the following frequen
cies: / = 1 Hz, 10 Hz, 20 Hz, 30 Hz, (and by 10 Hz increments 
up to) 200 Hz. Again, we used the IMSL subroutine DZANLY 
(Muller's method). In all instances considered we found no 
complex c (Im c?s0) that satisfies all the conditions, namely 
equations (10), (11), and (19), which a Rayleigh-type surface 
wave should observe. 

Remark 2. Examples 1,2, and our analysis about/0 suggest 
the following assertion: For both the models of smooth and 
welded contact, there is a range of frequencies immediately 
above/o for which no Rayleigh-type wave of the form (8) could 
propagate along the surface of an inflated lung. As we shall 
see below, our experiments on inflated horse lungs did indicate 
the existence of a frequency above which transmission of Ray
leigh-type surface waves was not observed. 

Remark 3. For both cases of smooth and welded contact 
it is the presence of a sufficiently high surface tension in the 
pleural membrane, viz., T>a\>./p, that accounts for the exist
ence of a finite cutoff frequency f0. For either case, if we have 
0<T<ofi/p instead of (16)i, an elementary analysis of equa
tion (15) or equation (19) reveals that there is, for each fre
quency/, a Rayleigh-type surface wave with real phase velocity, 
c<V0*/p). 

Remark 4. The wave speeds that we measured in our ex
periments were group velocities. The group velocity cg is related 
to the phase velocity c and the frequency / by the formula 

c/cg=\-(f/c){dc/df). (26) 

For the case of smooth contact, by equation (15), df/dZ~ + oo 
as Z— 1 ~; in other words, dc/df—0+ as/—-/o. For the case of 
welded contact, by using implicit differentiation, we deduce 
from equations (19) and (20) that dk/dZ-~+<x> as Z - l " ; 
hence, we again have dc/df-'O* as /—/ 0 . In either case, since 
c— cs = \f(n/p) as/—/o, equation (26) dictates that cg also ap
proaches cs as/—/0 ; thus, measurement of cg just before cutoff 
will deliver cs. A glance at Fig. 1 reveals that the dispersion 
will typically be small. Indeed, for Examples 1 and 2, numerical 
calculations show that cg>c, but the difference is within a few 
percent of c. Such a difference is well within the margin of 
error in our experiments. 

3 Experimental Method 
To see how well our modeling would fare in practice, we 

performed experiments on horse lungs, which were chosen for 
their size. Compared with the lungs of smaller animals, horse 
lungs would allow a greater distance between the source and 
the receivers. Since the Rayleigh-type waves that we looked 
for should suffer significantly less geometrical attenuation than 
the dilatational and the shear waves, larger lungs would work 
better for our present purpose. 

We obtained isolated lungs from horses post mortem. The 
procedure used by Jahed et al. (1989) was followed. We injected 
isopreterenol (2 mg/10 ml saline) into the bronchus of each 
lung to reduce bronchoconstriction and to minimize gas trap
ping. After degassing, the lung was inflated to a transpul-
monary pressure (Ptp) of 40 cmH20 and then deflated to a 
test Ptp of 15 cmH20. The group velocities of stress waves 
propagated along the surface of the lung were measured at 
test Ptp values of 15, 10 and 5 cmH20 by the procedure de
scribed below. After the stress wave measurements, the col
lapsed lung was weighed and displaced in water to determine 
its residual volume. The air volume withdrawn between the 
test Ptp values was noted. Lung density was calculated by 
dividing lung mass by the total lung volume (air plus tissue 
volume) at each Ptp. 

The procedure used to distort the lung surface to produce 
stress waves was as follows: The lung was oriented with its 
dorsal surface superior and horizontal. An electromagnetic 

vibrator (Ling Dynamic Systems, Inc.; Model No. 102A) was 
used to distort the lung surface. We used two types of input 
distortions. One was a 3-cycle sinusoidal displacement. The 
amplitude of distortion was ~ 1 mm. The frequency of dis
tortion was varied between 30 and 120 Hz-in 10 Hz increments. 
The other input distortion was an impulse displacement (fre
quency content, 0-200 Hz). In one lung at a Ptp of 5 cmH20, 
we used both methods of distortion and compared the velocities 
of the resulting stress waves as a function of frequency. 

The input signal was generated by a computer (IBM PC-
AT), amplified and sent to the vibrator via an A/D converter. 
The input distortion into the lung surface was measured by a 
linear variable differential transducer (LVDT, Trans-Tek, 
Model No. 240, 3 db response: 0-300 Hz). The core (1.5 mm 
radius) of the LVDT was connected rigidly to the shaft of the 
vibrator and used to distort the lung. The magnetic coil of the 
LVDT surrounding the core was fixed to the casing of the 
vibrator. 

The stress waves propagated along the surface of the inflated 
lung were measured by a microphone (Realistic condenser-
type; 0.75 cm diameter; ± 6 db response: 20-15000 Hz) located 
at 35-40 cm from the vibrator. The vibrator and the micro
phone were situated along the dorsal surface of the lung. The 
length of the dorsal surface was ~ 50 cm and the height of the 
lung was —20 cm. The microphone was embedded —1 mm 
into the lung parenchyma. The signals received by the micro
phone and recorded by the LVDT were amplified, digitized, 
and stored on the computer. The sampling rate was 2 KHz 
and the record length was 0.5-1 second. 

We used an indentation test to measure the shear modulus 
of lung parenchyma in three horse lungs at 5,10, and 15 cmH20 
Ptp (cf., Lai-Fook et al., 1976). In brief, at a fixed Ptp a rod 
(2.5-cm diameter) was pressed into the surface of the lung in 
1-mm increments. The force of indentation was measured by 
a load cell. We allowed one minute to elapse between two 
consecutive displacement increments. The force at one minute 
after each increment was used to construct the force-displace
ment curve. The slope of the force-displacement curve was 
used to estimate the shear modulus of the lung parenchyma. 

The pleural membrane tension at 5 and 15 cmH20 Ptp, 
respectively, was measured in three horse lungs by the following 
procedures (cf., Hajji et al., 1979). In brief, the rim of a tube 
(1.85-cm radius, thickness 0.2 cm) was coated with a dye. 
Concentric circles were marked on the dorsal surface of the 
lung at 15 and 5 cmH20 Ptp by using the tube. The pleural 
membrane surrounding the marked area was stripped from the 
lung. The membrane was stretched over the rim of the tube 
so that the circle marked at 5 cmH20 Ptp coincided with the 
rim; it was then fixed in position by a rubber band. A rod 
(0.35-cm radius) was used to indent the center of the stretched 
membrane by 0.5-mm increments. The force of indentation 
was measured by a load cell. The indentation test was repeated 
after stretching the membrane to the circle marked at 15 cmH20 
Ptp. The slope of the force-displacement curve was used to 
estimate the pleural membrane tension. The thickness of the 
pleural membrane was estimated by weighing the membrane 
enclosed by a marked circle and by dividing its volume by the 
surface area. The tissue density was assumed to be 1 g/cm3. 

4 Analysis and Results 
The input sinusoidal signal of three cycles had a bandwidth 

of ± 10 percent of its center frequency. Therefore, the micro
phone signal was filtered at the input center frequency with 
the same bandwidth. This was repeated for each input center 
frequency. Figure 2 shows an example of the filtered signals 
received by the microphone 35 cm from the vibrator at 30, 40, 
50, 60, 70, and 80 Hz input frequency. The transit time at each 
frequency was the difference between the peak of the envelope 
of the filtered microphone signal and that of the input signal. 
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Fig. 2 Microphone signals (full line) measured 35 cm from input sinusoidal 
distortion for sample H1 at 5 cmH20 Ptp. Dotted line is the 3-cycle input 
signal. Frames A through F show responses to input signal frequencies 
from 30 Hz through 80 Hz in 10 Hz increments. The responses have been 
filtered to within a bandwidth of ±10 percent of the input center frequency 
and have undergone the same factor of amplification. 

The group velocity of the wave packet was calculated by di
viding the distance between the vibrator and the microphone 
by the transit time. 

Above an input frequency of 50 Hz, a definitive interpre
tation of the transit time of the propagated signal at the center 
frequency was sometimes not possible (for example, sample 
HI, at 5 cmH20 Ptp; see Frame D, Fig. 2). This was due to 
the presence of signals propagated at frequencies lower than 
the input frequency or signals of waves of velocities greater 
than the Rayleigh-type surface waves. The presence of these 
waves often prevented a clear-cut determination of the cutoff 
frequency by looking at the filtered signals in the time domain. 
When this occurred we used a power spectrum analysis of the 
unfiltered signal to determine whether there was any signal 
transmitted at the input frequency. Figure 3 shows the nor
malized power spectrum of the microphone signal given in 
Frame E of Fig. 2; the input frequency of the signal was 70 

Hz. In the transmitted signal there was no significant power 
in the frequencies above 50 Hz. Thus, we decided that the 
Rayleigh-type surface wave was not transmitted at 70 Hz. Since 
we found by the same method that there was transmission at 
50 Hz and no transmission at 60 Hz, we took the cutoff fre
quency as 55 Hz for sample HI at Ptp of 5 cmH20. 

To obtain the group velocity of the propagated signal as a 
function of frequency from the response to an impulse dis
tortion, we filtered the propagated signal at center frequencies 
between 30 and 150 Hz in 20 Hz increments with a bandwidth 
of ± 10 percent center frequency. 

Table 1 summarizes the group velocities versus frequency 
measured in four horse lungs at Ptp of 5, 10, and 15 cmH20. 
In the experiment HI at 5 cmH20 Ptp, similar results were 
obtained from the method of single-frequency distortions and 
that of impulse distortion. The cutoff frequency averaged 59 ± 5 
(SD) Hz, 70±9 Hz, 83±20 Hz at Ptp of 5, 10, 15 cmH20, 
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respectively. A linear regression analysis indicated a significant 
increase in cutoff frequency with Ptp: / 0 = 2.38 Ptp + 46.7 
(r2 = 0.422, P<0.05); here, /„ is in Hz and Ptp is in cmH20. 

From theoretical considerations, the group velocity of Ray-
leigh-type surface waves at the cutoff frequency is equal to the 
shear wave velocity of the lung parenchyma. The shear wave 
velocity cs predicted in this way averaged 233 ±22 (SD) cm/s, 
300±59 cm/s, 425±18 cm/s at Ptp of 5, 10, 15 cmH20, 
respectively. 

The shear modulus of the lung parenchyma measured by 
indentation tests in three inflated horse lungs averaged 5.3 ±1.6 
(SD), 8.7±2.7, 12.9±3.8 cmH20 at Ptp of 5, 10, and 15 
cmH20, respectively. To'calculate the shear modulus from the 
force-displacement data, we used a Poisson ratio of 0.4 in the 
elasticity solution of the indentation of an elastic half-space 
by a rigid rod (cf., Lai-Fook et al., 1976). Pleural membrane 
tension measured by indentation tests on stripped pleura from 
three horse lungs averaged 4530 ±960 (SD) dynes/cm and 
11,100±4,370 dynes/cm at Ptp of 5 and 15 cmH20, respec
tively . The thickness of the pleural membrane averaged 81 ± 15 
(SD) iim at 5 cmH20 Ptp and 64± 12 ^m at 15 cmH20 Ptp. 
The density of the horse lungs averaged 0.165±0.013 (SD), 
0.129±0.010, and 0.117±0.008 g/ml at Ptp of 5, 10, 15 
cmH20. 

By substituting in the formula ii = pcj these values of the 
density p and the corresponding values of cs predicted from 
the velocity of the Rayleigh-type surface wave at cutoff, the 
shear modulus p of the lung parenchyma was calculated to be 
8.9, 11.6, and 21.1 cmH20, respectively. These values for the 
shear modulus are 30-70 percent greater than the values de
livered by the quasi-static indentation tests. 

Equations (18) and (24) can be used to give a prediction of 
the tension Tin the pleural membrane for the models of smooth 
contact and welded contact, respectively. To calculate T, we 
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Fig. 3 Normalized power spectrum of unfiltered microphone signal 
from 70 Hz input distortion for sample H1 at 5 cmH20 Ptp (cf., Frame E 
of Fig. 2) 

need the values of/0, p, a, fx,, and X for the instance of smooth 
contact; we require in addition the value of y for the case of 
welded contact. The measured values of p and a, and the values 
of/o and ix as obtained from the cutoff of the Rayleigh-type 
surface wave have already been reported above. We assumed 
a value of four Ptp (cf., Lai-Fook et al., 1976) for X. For the 
model of smooth contact, the predicted values of T were 6900 
and 21,000 dynes/cm at 5 and 15 cmH20 Ptp, respectively. 
These values are 50-90 percent greater than the values obtained 
from the indentation tests on ablated strips of pleura. The 
value of y raises a problem for the model of welded contact. 
While there are experimental studies on the elastic properties 
of canine pleura, we do not know of any work on the equine 
pleural membrane that we can call upon. Here, we are content 
to tabulate the predicted values of T as y range from Tto 6T. 
See Table 2. 

5 Discussion 

The first question one might ask is: How did we know that 
the particular wave which we took note of was the Rayleigh-
type surface wave at issue? Our judgement was based on (i) 
the existence of a cutoff frequency, (ii) the wavelength and 
speed of the wave just before cutoff, and (iii) the agreement 
between the predicted and measured values of the membrane 
tension. We have already presented the empirical evidence that 
indicates the existence of a cutoff frequency for the wave in 
question (see Fig. 2 and the related discussion). Items (ii) and 
(iii), however, call for further comments. 

According to our theory (see Remark 4), both the phase 
velocity c and the group velocity cg of the Rayleigh-type surface 
wave should approach cs = V(/u/p) as /—/0; thence, by meas
uring cg just before cutoff, we obtain an estimate of the shear 
modulus of the lung parenchyma if p is ascertained by an 
independent measurement. The values of cs and /* thus deliv
ered were 15-30 percent and 30-70 percent higher than the 
corresponding values we predicted from the quasi-static in
dentation tests, respectively. We believe that the wave whose 
speed we measured was not the dilatational wave, because 
signals were transmitted by another wave with a higher velocity 
(see Fig. 2, Frames E and F). In fact, the discrepancy between 
the predicted values of fx. can be understood if we examine the 
results of the quasi-static tests more closely. Figure 4 shows a 
typical force versus time curve when the force required to 
maintain a fixed indentation was recorded. It is clear that 
significant stress relaxation occurred during the quasi-static 
indentation tests. Since the pleural membrane shows little stress 
relaxation in the indentation tests to measure membrane ten
sion, the stress relaxation observed here must represent a pa
renchymal effect. This conclusion is not at all surprising, since 
the lung parenchyma is known to exhibit viscoelastic behavior 
(see, for example, Hildebrandt, 1969). The quasi-static tests, 
by the procedure they were performed, should deliver a value 
of n much lower than that which pertains to the instantaneous 

Table 1 
surface 

Group velocity versus frequency for Rayleigh-type waves propagated along lung 

Freq 

(Hz) 

30 
40 
50 
60 
70 
80 
90 

100 
110 

Ptp = 5 cmH20 

H1A 

212+ 

205 
208 
* 

H2 H3 H4 

148 227 239 
255 199 
255 221 250 
253 
* * 

Ptp=10cmH 2 O 

HI H2 

320 222 
— 228 
332 238 
—- 238 
* * 

H3 

314 
333 
345 
307 
264 
* 

H4 

346 
.... 
361 
— 
365 
— 
* 

HI 

396 
.... 
414 
— 
429 
— 
* 

Ptp = 15 cmH20 

H2 

355 
370 
285 
342 
349 
403 
408 
* 

H3 H4 

640 410 
572 
422 436 
* — 

447 
— 
466 
— 
* 

Ptp, transpulmonary pressure; Horse number; + velocity in cm/s 
—No data from pulse input distortion; signal was filtered at 20 Hz increments. 
•Lowest frequency at which no transmission occurred. 
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Table 2 Pleural membrane tension for 7 between T and 6T 
7=7" y = 2T y = 3T y = 4T y = 5T y = 6T 

Ptp = 5A 4.1* 33 IS Z6 1A 2~2~ 
Ptp=15 12.3 9.9 8.6 7.5 7.1 6.6 
•Tension, 103 dynes/cm, APtp, transpulmonary pressure, cmH20 

0 -

w 
c 

•a ^ _ 

o 10 - _ • " " 

Fig. 4 Time dependency of force required to maintain a 1-mm step 
indentation of lung surface 

elastic response of the lung parenchyma. The wave propagation 
experiments, on the other hand, might give a value of /x that 
closely approximates the value pertaining to the instantaneous 
elastic response. While the foregoing interpretation of the ex
perimental results sounds plausible, further studies are required 
to determine whether the viscoelasticity of the lung parenchyma 
could indeed provide a valid explanation for the discrepancy 
in the predicted values of p. 

In our experiments the wave in question had a wavelength 
of 4-5 cm just before cutoff, while the horse lungs measured 
approximately 20 cm in height along the wave paths. We deem 
that the horse lungs were thick enough for the waves we ob
served to be Rayleigh-type surface waves. 

The model of smooth contact gave a prediction of T that 
was 50-90 percent greater than the values measured by inden
tation tests on ablated strips of pleura in the present study. 
Since we are dealing with biological samples, we can say that 
the agreement is good. The predicted values of T are com
parable to the values estimated by Hajji et al. (1979) from 
indentation tests on inflated horse lungs under similar as
sumptions concerning smooth contact. However, the values 
of Tmeasured by Hajji et al. were larger than those measured 
in the present indentation experiments probably because the 
lungs used by Hajji et al. were bigger. 

Physically, the pleura seems to be rigidly attached to the 
lung parenchyma; from this standpoint, smooth contact will 
not be an acceptable model. Should 7 fall in the range T< y<6T 
for the values of Ptp in question, the model of welded contact 
would provide good predictions of r(see Table 2). If the studies 
of Stamenovic (1984) and Humphrey et al. (1986, 1987) on the 
canine pleura could be used as a guide, then 7 would typically 
assume a value of ~ 5 Tin the range of Ptp under consideration, 
and the model of welded contact would be credible. Never
theless, we cannot lay claim to a corroboration of the model 
of welded contact without verification of the elastic constant 
7 for horse pleura. 

In spite of the uncertainties that remain to be clarified, the 
empirical evidence gathered above indicates that the wave with 
the cutoff frequency, which we observed in our experiments, 
was indeed the Rayleigh-type surface wave in question. More
over, as far as propagation of Rayleigh-type surface wave is 
concerned, our experimental results strongly suggest that our 
modeling of the inflated lung as a layered elastic medium has 
fared well, and the effect of the taut pleural membrane cannot 
be ignored. 

During quiet breathing the pleural tension may contribute 
as much as 20 percent of the transpulmonary pressure (Hajji 
et al., 1979). The present study suggests that stress surface 
waves could be a promising means for the nondestructive eval
uation of the tension in the pleural membrane. 

If we reexamine the work of Jahed et al. (1989), it seems 
likely that their "slow" wave is the Rayleigh-type surface wave 
studied here. Not only does the speed of the "slow" wave 
match that of the Rayleigh wave, but the frequency content 
(below 70 Hz) of the transmitted signals is also consistent with 
the existence of-a cutoff frequency f0 whose value lies in the 
expected range. The existence of a low cutoff frequency ex
plains why the "slow" wave of Jahed et al. was not observed 
by other researchers who used sources that excited waves of 
higher frequencies. 
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The Effect of Plasticity on 
Resonant Pipe Vibration 
An understanding of the response of pipework systems to high levels of seismic 
excitation is required to enable aseismic design methods to be securely based. The
oretical and experimental modeling of simple systems and components demonstrate 
that plasticity in the pipe wall controls the vibration response level and that, because 
of an unexpected level of material strain hardening, in pressurized pipes, simple 
elastic modal and frequency analysis are satisfactory. Given the correct material 
properties an energy balance approach correctly predicts the steady. 

1 Introduction 
There is clear evidence, both from experimental work and 

from systems which have been subjected to earthquakes, that 
pipework only fails in exceptional circumstances due to seismic 
excitation. Current design codes appear to be overconservative 
and their use requires excessive numbers of undesirable seismic 
restraints. With the eventual aim of producing improved but 
simple design procedures, a series of experimental tests with 
related theoretical studies are underway within the Central 
Electricity Generating Board (CEGB) to investigate the effects 
of high amplitude vibration excitation on lengths of pipework. 
The objectives of this work are to: 
(/) study the performance of a very simple single span system 
to facilitate a basic understanding, 
(ii) mathematically model its performance, 
(Hi) extend the system, both experimentally and theoretically, 
by introducing components such as bends, nozzles and tees, 
and 
(iv) develop the model to cover multiple spans. 

So far the response of single spans of pipework with and 
without internal pressure and with some nozzle-like compo
nents have been studied. 

There are two distinct problems in aseismic design; first the 
correct prediction of the level of response and second, but 
equally important, the mode of failure. Although the program 
of work encompasses both aspects, this paper concentrates on 
the prediction of response and the overriding effect that plas
ticity in the pipe wall has on the level of vibration. 

2 Experimental Work 
Lengths of straight pipe, pinned at each end have been 

shaken, at or near their fundamental resonant frequencies, 
using sinusoidal excitation, in the rig shown in Fig. 1. The 
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hydraulic actuators, which are displacement controlled, have 
a range of ±50 mm and at frequencies up to 5 Hz a load 
capacity of 15 KN. Due to hydraulic limitations above 5 Hz 
the maximum displacement falls linearly with frequency. The 
pipe can be pressurized with air up to a maximum pressure of 
770 bar and can be shaken in either a vertical or horizontal 
plane. The pressure, in the pressurized pipes, was chosen to 
give the normal ASMEIII design hoop stress in the pipe wall. 

The instrumentation is used to record pressure, actuator load 
and displacement, acceleration at the center of the pipe span 
and hoop, and axial strains at three locations in the pipe wall. 
Provision is made to record up to 16 channels of data at a 
maximum rate of 100 scans/second, digitize the data using 12-
bit conversion, and store it directly onto a disk. Once digitized 
and stored onto a disk, the data can be converted into engi
neering units and presented in a reduced form by means of a 
local microprocessor. 

The pipes tested so far have been made of two types of 
material: first, of a carbon steel ferritic material which, as 
shown in Fig. 2, exhibits almost perfectly elastic/plastic tensile 
properties with no measurable hardening with strains of less 
than about two percent, and second, 316 austenitic stainless 
steel which shows marked strain hardening. Pipe geometries 
tested have been in the range diameter: wall thickness ratio 
from 7 to 68 and lengths from about 3000 to 6000 mm but 
the majority of the results are based on pipes with an outside 
diameter of 25.4 mm and a wall thickness of 2.64 mm. The 
lengths of the pipes were chosen to give fundamental resonant 
frequencies, in the range of 5-10 Hz. 

3 Acceleration Response 
The most striking feature of the response of a length of pipe 

shaken at resonance is the way in which plasticity in the pipe 
wall limits the level of response. As can be seen in Fig. 3, when 
the pipe is shaken with small inputs, the low level response 
rises linearly with input and its level is controlled by the small 
inherent system damping of typically one percent of critical 
measured in these tests. 

When the input level reaches about 0.2 g yielding starts to 
occur in the pipe wall. This plasticity absorbs the input energy, 
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and hence increases the effective damping of the system so 
much, that the level of vibration in any of the tests never 
exceeded twice that at first yield for input acceleration levels 
in excess of 1 g. Since it is the onset of yielding which controls 
the response, all the accelerations plotted in Fig. 3 have been 
normalized by dividing by the acceleration level at first yield. 
First yield is taken as static yield for the ferritic material and 
the 0.2 percent proof stress for the austenitic material reduced, 
to take account of the pressure stress, using the von Mises 
yield criterion. 

This self-limiting effect is common to all the pipes irre
spective of the geometry and material properties, although 
there is a difference between the pressurized and unpressurized 
pipes. As the input is increased beyond that which causes yield, 
the unpressurized pipes tend to reach a response plateau. This 
plateau appears to be associated with large local plastic strains 
as the limit moment for the pipe is approached. The pressurized 
pipes do not show this same tendency, and the post-yield re
sponse continues to rise slowly with increasing input. 

This self-limiting effect of pipework vibration is clearly of 
great importance since, if it occurs in more general pipework 
systems, it puts an upper bound on the level of vibration of 
the system, at realistic inputs, and hence the level of loads 
applied to components and equipment. 

4 Theoretical Response Prediction 
Since it appears that plastic work absorbed by the pipe wall 

material controls the level of response, it seems reasonable that 
the most attractive way of theoretically modeling response is 
an energy balance approach equating the input energy at the 
supports to the energy absorbed in plasticity. This approach 
is best suited to steady-state excitation but should be most 
useful in highlighting the important parameters which dictate 
the level of response. 

By making two major assumptions, namely that the mode 
shape is unaltered by plasticity and that the material properties 
can be approximated to the bilinear elastic/plastic relationship 
shown in Fig. 2, Beaney (1989) has shown that the system 
response k is related to the input acceleration by: 

4a2 

g 
V 16 " "a2 + b-

-2G{k,m) (1) 
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2(1 -m) 
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A = support displacement amplitude 
a = external pipe radius 
b = internal pipe radius 
E = Young's Modulus 
g = acceleration due to gravity 
k = response level ratio = displacement: displacement at 

yield 
m = strain-hardening ratio = plastic modulus: elastic mod

ulus 
y = distance from neutral axis 
(8 = integration variable 
t\ = proportion of critical damping 

<7C = dynamic elastic stress amplitude 
og = deadweight stress 
o)0 = system natural frequency 

This expression is for a single span pipe pin jointed at its 
ends and applies to a particularly simple system with a sinu
soidal deflected shape. More recent experimental and theo
retical work indicates, however, that the response equation is 
little different for two equal spans of pipework vibrating in 
its second mode of vibration. Since the mode shape of this 
mode of vibration is very different, in that the peak/mean 
strain is larger and also there are multiple areas where yielding 
occurs, it is quite likely that the response level depends pri
marily on yield and strain hardening and, to a much lesser 
extent, on the complexity of the system. 

5 Comparison Between Theory and Experiment 
In equation (2) all the parameters except the bilinear material 

properties ac and m are known or measured. The most obvious 
choice of these variables for the ferritic material would be to 
take <rc equal to first yield, since for modest strains no static 
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strain-hardening occurs to take m = 0. However, these values 
do not give a reasonable response prediction. Similarly, the 
bilinear model for the strain-hardening austenitic material based 
on the static tensile properties, Fig. 2, with w? = 0.02, gives a 
poor response prediction. 

By taking a range of values for ac and m and fitting the 
theoretical response to the measured acceleration response, 
very good agreement is obtained if a reasonable value of ac of 
10 percent less than static yield is used, together with very high 
strain-hardening m of 0.6 for the pressurized ferritic pipe. This 
strain hardening was clearly not expected, but the same value 
was required for several different ferritic materials, and cor
rectly modeled the results for a wide range of pipe geometries 
and input levels. 

For the austenitic material, the required value of <JC was 
reasonable being ten percent less than the 0.2 percent proof 
stress, but the strain hardening was even higher at 0.75 and 
compares badly with the static data in Fig. 4. As with the 
ferritic materials, these same values were required for a wide 
range of geometries and input levels. 

From both pipes it appeared that the dynamic material prop
erties were unexpectedly different from the static uniaxial data. 

6 Material Strain-Hardening 

6.1 Measurement of Strain Hardening. Beaney (1987) 
showed that on pressurized pipes hoopwise ratcheting occurs 
associated with the dynamic axial yielding of the pipe wall and 
the sustained pressure stress. By extending the work of Ed
munds and Beer (1961) he showed that no axial strain accu
mulation occurs, and that the hoop increments depend upon 
the amount of axial plastic strain and the level of hoop stress. 
On all the pressurized pipes this accumulation of hoop strain 
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was very rapid up to a strain of about five percent, and it was 
thought that this might be the cause of the strain hardening. 

To enable a direct measurement of strain hardening, the 
axial and hoop strains, measured in exactly the same position 
using stacked strain gauges, were plotted against each other 
for successive vibration cycles, as shown in Fig. 5. The hoop-
wise ratchet can clearly be seen from this figure, but more 
importantly, from the strain-hardening standpoint, so too can 
the extent of the elastic strain. Fortuitously, there is a marked 
difference in the ratio of hoop to axial strains in the elastic 
and plastic parts of the compressive half-cycle. Thus, for each 
cycle both total axial strain range and elastic axial strain range 
can be obtained from these plots as well as the total accu
mulated hoop strain. 

Large numbers of elastic strain ranges were obtained in this 
way for both the ferritic and austenitic materials. Hoop pres
sure stress will affect this range. In order that pipes of differing 
pressure could be compared, the elastic strain range was ad
justed using the von Mises yield criterion to obtain an equiv
alent uniaxial elastic stress range. Since the original hypothesis 
was that accumulated strain caused hardening, the elastic stress 
range is plotted against hoop strain in Fig. 6. Clearly, there is 
some connection between strain hardening and accumulated 
strain but the large spread of data indicates that some other 
parameter is also affecting the elastic range. 

6.2 Dependence of Strain Hardening on Strain 
Rate. According to a literature survey, typical strain rates of 
about 0.2/sec should have little effect on strain hardening. 
However, a regression analysis, relating strain hardening to 
both accumulated strain and either strain rate or strain range, 
effected a large reduction in scatter of the data. The most 
suitable analysis appeared to be using an accumulated strain 
polynomial of order three and a strain rate or range of order 
two. The correlation between strain rate and hardening was 
slightly better than for strain range and hardening but, as all 
the tests were at approximately the same frequency, the two 
were linearly related and their relative effects inseparable. 

In Fig. 7, the equivalent elastic yield stress, adjusted using 
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the regression constants to a representative strain rate of 0.2/ 
sec, is plotted against accumulated strain. For this austenitic 
material it appears that accumulated strain is not the predom
inant parameter in controlling hardening, as it only increases 
the elastic stress range by about 40 percent. The majority of 
this hardening appears to take place with accumulated strains 
of less than 10 percent. 

In Fig. 8, equivalent stress, adjusted to an accumulated strain 
of five percent, is plotted against strain rate. Strain rate, or 
perhaps strain range, clearly has a predominant role in strain 
hardening although it is noticeable that, in the absence of 
accumulated strain on the unpressurized pipe, it has virtually 
no effect. Herein, perhaps, lies the reason why the literature 
survey showed no strain-rate effects since all the data available 
were from uniaxial specimens similar to that in the unpres
surized pipes. The only materials data for biaxially loaded 
materials appear to be that by Hancell and Harvey (1979), but 
unfortunately, their strain rates are very low. 

It is interesting to note the scale of the strain hardening 
which appears to occur. The 0.2 percent proof stress of the 
material is 240 MN/m2 compared with the measured dynamic 
elastic stresses of up to 1000 MN/m2, a fourfold increase. This 
elastic stress is much greater than the UTS of the material 
which was measured as 590 MN/m2. 

The results for the ferritic material were similar. Hardening 
of about 40 percent due to accumulated strain and strain rate 
or strain range effects accounted for the majority of hardening. 
As with the austenitic material, strain rate gave a better quality 
fit to the data than strain range, but more controlled materials 
testing is required to differentiate between the two. 

6.3 Comparison of Inferred and Directly Measured Hard
ening. As seen previously, to obtain a reasonable fit between 
the measured and calculated responses, values of m of 0.6 and 
0.75 were required for ferritic and austenitic materials, re

spectively. As can be seen in Fig. 9 for both materials, this 
inferred level of strain hardening agrees quite well with the 
directly measured regression analysis results. During the re
sponse measurements the pipes were ratcheting, and attained 
maximum accumulated hoop strains of typically five percent 
for the austenitic pipes and a little more for the ferritic pipes. 
Also, the axial strain amplitude, and hence strain rate and 
hardness, varies both along and around the pipe. Thus, the 
bilinear hardening in the response model is some sort of average 
result for the materials with various amounts of strain hard
ening. Bearing this in mind, the inferred and directly measured 
material properties are very similar. 

7 Effect of Strain Hardening on Response 
There are two major effects that strain hardening has on 

response, first, it reduces plasticity with a consequent increase 
in response and, second, it suppresses the influence of stress 
raising features by stopping the formation of plastic hinges. 

In Fig. 3, the theoretical response level for the same pipe 
for various hardening factors m are plotted. From this it is 
clear that the greater m the larger the response level. 

Since yielding first occurs at stress concentration compo
nents such as bends, it is reasonable to expect these features 
to dictate system response. If plasticity is limited to these areas, 
not only will they locally absorb the input energy, but plastic 
hinges will tend to occur altering the mode of vibration. Strain 
hardening suppresses both of these effects forcing plasticity 
along the pipe. For example, if the strain rate at a component 
with a stress concentration of 1.6 were 0.15/sec, then the strain 
rate in the adjacent pipe would be 0.15/0.16 = 0.094/sec. The 
accumulated strain would also be higher at the concentration. 
Putting these strain rates and reasonable values of accumulated 
strain into the regression analysis formula gives the ratio of 
elastic range at the stress concentration to that in the main 
pipe at 1.6:1. This is the same as the stress concentration and 
hence the amount of plastic strain is similar in the component 
to that in the adjacent pipe. 

This result is confirmed by the measured strains at a stress 
concentration compared with the elastically calculated strains 
in Fig. 10. The amount of plastic strain is the difference be
tween the measured and calculated elastic strains and, as can 
be seen in the figure, this is relatively modest even though first 
yield has been exceeded by a factor of 3. 

The implications for the prediction of response are that 
because plastic hinges are not formed, the mode shape and 
frequency of the vibration are relatively unchanged from the 
elastic values, and that because plastic strain is not concen
trated at components, it spreads along large sections of the 
pipe. Thus, it is a "thin smear" of plasticity along large lengths 
of the pipe that controls the energy absorption rather than 
concentrated pockets of plasticity at stress concentrations. 
Hence, apart from changing the elastic stiffness and mass of 
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the system, pipework components do not greatly affect the 
level of vibration. This is ultimately controlled by the straight 
pipes, and it is the straight pipe performance which will dictate 
the loadings on components, equipment, and supports. 

This result has only been verified for pressurized pipes with 
a sustained static hoop stress, normal to the applied dynamic 
stress, equal to or greater than the normal design level, and it 
is not applicable to unpressurized pipes. It is possible that there 
could be a threshold static stress below which hardening does 
not occur, or alternatively, it could be that hardening pro
gressively increases with increasing normal static stress. Where 
hardening does not oqcur, then clearly high-plastic strains will 
concentrate at components. The effect of these higher local 
strains is somewhat nullified however, since, in the absence of 
pressure, fatigue is the mode of ultimate failure, which is a 
much slower mechanism for failure than ratcheting or fatigue/ 
ratcheting which occurs in pressurized components. 

8 Conclusions 

Plasticity controls the high-level dynamic response of pipe
work by absorbing large amounts of energy in plastically de
forming the pipe wall material. 

Very large material strain hardening occurs in pressurized 
pipes under the influence of a biaxial stress field consisting of 
the pressure hoop stress and the dynamic axial bending stress. 
Since plasticity limits the response and strain hardening con
trols the amount of plasticity, the hardening also has an ov
erriding influence on response. Its effects are manifest in three 
ways. First, it stops the formation of plastic hinges at stress 

concentrations, thus the elastic frequency and mode shape of 
the vibration are maintained. Second, since it limits plasticity 
at stress concentrations, it forces the majority of system energy 
absorption into the straight lengths of pipe, thus these dictate 
system response. Third, the greater the strain hardening, the 
higher the level of response. Given the strain-hardening prop
erties of the pipe wall material, the steady-state response of 
the straight pipe sections can be predicted using an energy 
balance approach. Since, in the presence of strain hardening, 
it is these straight sections which control the response, this 
method of response prediction should be adaptable to pre
dicting the response of complete systems. 
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Dynamic Pulse Buckling of 
Imperfection-Sensitive Shells 
The theoretical basis of two related but distinctly different dynamic buckling criteria 
are summarized with the objective of demonstrating the range of applicability of 
each, so that together they cover the entire range of dynamic pulse loads from nearly 
impulsive loads to step loads of infinite duration. The example chosen is a cylindrical 
shell under elastic axial loads but the approach is applicable more generally. A 
critical amplification-of-imperfections criterion with a linear shell theory is shown 
to be applicable for short duration loads, for which a threshold nonlinear divergence 
criterion gives loads an order of magnitude too conservative. Conversely, the linear 
theory is inapplicable for long duration loads, for which critical loads are lower 
than the linear static buckling load because of imperfection sensitivity. In this range 
the threshold nonlinear divergence criterion is used. For loads of intermediate du
ration, an extended critical amplification criterion is used with equations that con
servatively assume zero static buckling load but give an unchanged formula for 
critical load amplitude-duration combinations. 

Introduction 
A critical amplification criterion has been successfully ap

plied to calculate dynamic pulse-buckling loads in a wide va
riety of structural elements (Lindberg and Florence, 1987), in 
each case with quite reasonable agreement with experimental 
loads for thresholds of dynamic buckling. In particular, critical 
loads for cylindrical shells under axial impact have been pre
dicted for constant elastic axial stresses (Lindberg and Herbert, 
1966), sustained constant axial plastic flow (Florence and 
Goodier, 1968), and oscillating elastic axial stresses (Lindberg, 
Rubin and Schwer, 1987). Buckling of cylindrical shells at 
elastic axial levels is very sensitive to initial imperfections. 
Under static loads, this sensitivity causes large changes in crit
ical buckling stresses for almost imperceptible imperfections. 
In the present paper it is demonstrated that, under dynamic 
pulse loads, imperfection sensitivity does not strongly affect 
critical stress-duration combinations for buckling, but instead 
affects the range of stresses over which the theory can be 
applied. 

Imperfection sensitivity under static axial loading has an 
extensive literature of research on the source of this sensitivity 
and methods of analysis. With the objective of avoiding du
plication of this research for dynamic loads of long duration 
(step loads), Budiansky and Hutchinson (1964) developed a 
theory to relate critical dynamic loads to static buckling loads 
of imperfect shells, without specific reference to the imper
fections themselves. They found expressions for the ratio of 
dynamic-to-static buckling loads as a function of the ratio of 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED ME

CHANICS. 

Discussion on this paper should be sent to the Technical Editor, Prof. Leon 
M. Keer, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by the 
ASME Applied Mechanics Division, Dec. 12, 1989; final revision, May 18, 1990. 

the static buckling load of the imperfect shell to the classical 
static buckling load of the perfect shell. They then extended 
this idea to pulse loads of finite duration (Hutchinson and 
Budiansky, 1966). 

The buckling criterion used by Budiansky and Hutchinson 
is the transition from oscillatory motion under subcritical loads 
to divergent motion under buckling loads. For typical imper
fect shells (static buckling loads about one fourth the classical 
loads), they found that critical step loads are about three fourths 
the slowly applied static load. For rectangular pulse loads of 
finite duration, their results were more complex, but toward 
the limit of short durations the critical condition reduces, of 
course, to a critical loading impulse. This is the same condition 
found by Lindberg and Herbert (1966), but the impulses from 
the critical amplification criterion are an order of magnitude 
larger than from the divergence criterion used by Budiansky 
and Hutchinson. 

Roth and Klosner (1964) also found critical loads for cylin
drical shells under axial rectangular pulse loads, based on a 
criterion of a sudden increase in nonlinear response amplitude, 
used by Budiansky and Roth (1960) for shallow spherical shells. 
Roth and Klosner's critical impulse for a cylindrical shell under 
short duration loads was only slightly larger than that given 
by Lindberg and Herbert, suggesting that, for short duration 
loads, their nonlinear response amplitude change criterion was 
similar to the critical amplification criterion. 

In the present paper it is shown that the critical amplification 
criterion is the more appropriate for pulse loads, while the 
threshold divergence criterion is appropriate for step loads. 
An interpolation method is given for loads of intermediate 
duration. It is further suggested that, with the general source 
of imperfection sensitivity identified, the critical amplification 
criterion can be applied by knowing only the ratio of imperfect-
to-perfect static buckling loads, just as for the threshold di
vergence criterion. 
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Critical Amplification Theory 
Equations of Motion. Both the threshold divergence and 

critical amplification criteria are applied to cylindrical shells 
by means of Donnell's equations, which in linear form are: 

DV w + Nx—2 (w+w,) + ph - T - J -
a2w 1 d2F 

dx d r a dx-
= 0 

V 4F= - : Eh d2w 

a dx2 

where 

dx2 + a2dd2 

(1) 

(2) 

(3) 

In these equations, x is axial coordinate, 9 is circumferential 
coordinate, w is radial displacement, positive inward and meas
ured from an unstressed initial displacement wh p is material 
density, E is Young's modulus, h is shell wall thickness, a is 
shell radius, D = Eh3/12(1 -v2) is shell bending stiffness, v is 
Poisson's ratio, F is Airy's stress function for in-plane force 
resultants produced by the buckling deformation, and Nx is 
the part of the axial force resultant from the applied axial load. 

With dimensionless variables defined by 

N\U2 (N^U2 Nx 

KD) ' \D 

Donnell's equations become 

{phDf 

1 d2F 

-,'t 

V W + — j (Vf+W/)+W--==-TT2 = 0 
9? aNx d? 

V % = ^ 
Eh D dzw 

aNx d? 

where now 

( b2 d2 

oT2+^ 
and dots indicate differentiation with respect to T. 

With simple-support boundary conditions 

w=d2w/dx2 = 0 atx=0,L 

(4) 

(5) 

(6) 

(7) 

(8) 

dynamic motion following sudden application of Nx can be 
expressed by the Fourier series 

w(£, r), T)= 2 YJ wmn(r) sin am£ sin /J„ij 
m= l / i = l 

00 CO 

F(£,V>T)=^] 2 Fmn(j) sin am£ sin /3„i; 

in which 

Nx 

' „ n ID 
a \NX 

(9) 

(10) 

(ID 

and the initial imperfections are also expanded into the Fourier 
series 

w,(£, n)= 2 S Qmn sin am^ sin P" n- (12) 

A similar set of equations results for imperfections of the form 
bmn sin a,„ £ cos /3„?/. With these expansions substituted into 
Donnell's equations (5)-(7), the equations of motion for the 
modal amplitudes Wmn are 

Wmn + k(am, /3„) Wmn = a2
man 

where 

k(am, (3„) = (a2„ + $2f -al + - I - i , 2 | -2.2 

4 \aj (ot„, + P„) 

(13) 

(14) 

The form for the multiplier in the last term of equation (14) 
follows from the observation that 

EhD 1 (a\2 

m^^) . (15) 

where a is the axial stress from Nx and 

Eh 1 
a A / 3 ( 1 - " 2 ) 

(16) 

is the classical,static buckling stress, which can be found by 
setting k(a.m, /3„) = 0 and minimizing a with respect to <xm and 
i8„ treated as continuous variables. 

Imperfection Growth and Buckling. The solutions to modal 
equations of motion (13) are 

Wmn{j) 

k(um, ft,) 

cosh pr 

cos pr 

(17) 

in which 

p=\k(am,0n)\
l 

(18) 

The hyperbolic form is taken for k(am, |3„)<0 and the trigo
nometric form is taken for k(am, /3„) > 0. For k(am, /3„) = 0, the 
function multiplying a j , is replaced by r2/2, but this is seldom 
of concern because only in rare cases do am, /?„ make k precisely 
zero with integer values m and n. The quantity given by the 
right side of equation (17) is called the "amplification func
tion," since it defines the amount by which the imperfection 
coefficients amn are amplified by dynamic motion. 

If one were to use a threshold divergence criterion for this 
linear dynamic buckling motion, the dynamic buckling load 
would be simply the static buckling load, since it separates 
oscillatory motion from divergent motion. However, for finite 
duration pulse loads this criterion is far too conservative, as 
shown by the many examples of pulse buckling of structural 
elements in Lindberg and Florence (1987), and in particular 
for the cylindrical shell under axial loading (Lindberg and 
Herbert, 1966). With finite durations, loads with amplitudes 
far in excess of static buckling loads can be safely applied as 
long as the pulse duration is short enough that the magnitude 
of the motion remains acceptable. Experiments on a wide va
riety of structural elements have shown that motion is ac
ceptably small if the amplification is less than about 25. 

Lindberg and Herbert (1966) evaluated equation (17) over 
the range am, ($„ < 2 of significant amplifications, for T ranging 
from 0 to 12. The most amplified mode is an axisymmetric 
mode with axial half-wavelength /x«V2/0 , where l0=ir\fah/ 
[12(1 -v2)]m is the axisymmetric classical static buckle half-
wavelength. This mode achieves an amplification of 25 at r 
ranging only from 6 to 8 for a/ac ranging from 1.1 to oo. Also, 
substantial growth occurs in hundreds of modes for thin shells. 
A statistical analysis showed that with uniformly distributed 
initial imperfections am„, the most probable wavelengths in the 
buckled form have an axial half-wavelength lx^\fll0 and a 
circumferential-to-axial wavelength ratio of / s / / x «3 at these 
buckling times. Measurements of permanent buckled forms 
and high-speed motion pictures showed wavelengths in good 
agreement with these predictions, and that at r = 7 buckles 
were just perceptible. It was therefore suggested that T = 7 be 
taken as a conservative buckling criterion, based on an am
plification of about 25, essentially independent of a/ac but 
with a/ac > 1, Later in the present paper it is suggested that 
the latter condition can be relaxed to a/ads> 1, where ads is the 
dynamic buckling load of the imperfect shell under step load
ing, from the threshold divergence criterion, for which a J 
as<l and as is the static buckling stress of the imperfect shell. 

From the definition of T in equation (4), the critical condition 
T = 1 at t=Tgives 
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or 

NDT=l(phD)1 

adT=—== pch=* 2pch 
V12 

(19) 

(20) 

where c = \] E/p{\-v2) is the membrane wave speed in the 
shell, ND is the critical dynamic resultant force at duration T, 
and (7̂  is the corresponding dynamic stress. Thus, threshold 
buckling deformations occur at a critical impulse imparted by 
the axial load. Also, because of the insensitivity to a/ac noted 
previously, adT does not depend on a. 

Nonlinear Divergence Theory 
Equations of Motion. The initial work of Budiansky and 

Hutchinson (1964) focused on buckling from step loads, which 
is essentially a dynamic perturbation of static buckling since 
the load is maintained indefinitely. Thus, they used Koiter's 
(1963) theory of elastic stability and post-buckling behavior to 
capture the transition from small deformations at subcritical 
loads to large deformations when a critical buckling load is 
exceeded, just as for static buckling of imperfection sensitive 
shells. With a nonlinear form of Donnell's equations, they 
focused on analysis of motion in two modes, with ft taken as 
the amplitude of motion in the axisymmetric classical buckling 
mode and ft. taken as the amplitude of a nonaxisymmetric 
classical buckling mode with equal axial and circumferential 
wavelengths (half wavelengths lx = ls = 2l0; see, for example, 
Lindberg and Florence (1987) pp. 284-285). Experiments re
ported by Almroth, Holmes, and Brush (1964) demonstrate 
that initial buckling indeed occurs in this mode for step loading, 
produced in these experiments by a small lateral perturbation 
impulse applied to a statically loaded shell. (A suddenly in
troduced additional "imperfection" is not the same as a sud
denly applied load, but the resulting dominant response modes 
are the same.) 

With ft and ft expressed as fractions of the wall thickness, 
the equations of motion were found to be 

fr 
fc+ 1 - r - £ 

, M , . 36 -, X -

3& X -
" » S1S2 —, S2 

I Ac 

(21) 

(22) 

where X is the applied axial stress, Xc is the classical static 
buckling stress given by equation (16), b = [3(1 -v2)]wl, and 
f i and ft. are imperfections, also as fractions of the wall thick
ness. (The notation f and b is used here rather than £ and c 
as in the Budiansky and Hutchinson papers, because of other 
use of these symbols in the present paper.) Finally, here, dots 
now indicate differentiation with respect to r = u2t, where the 
vibration frequencies associated with the two modes in the 
unloaded shell are 

« i = \[2c/a and o>2 = c/as2 (23) 

which can be found from equation (13) with a = 0 and wave 
numbers am and Bn corresponding to the half wavelengths given 
above for these modes. 

Numerical analysis showed that minimum dynamic buckling 
loads based on a threshold divergence criterionjdiscussed more 
explicitly in the next subsection) occurred with f t = 0, but never
theless with ft ;*0 because of the nonlinear coupling. Solutions 
to a good approximation for this case were obtained by ne
glecting the inertia term ft/4 in equation (21), which allows ft 
to be expressed in terms of f2 from equation (21) and substi
tuted into equation (22) to obtain the single nonlinear equation 

9b Yz 
64(1-X/Xc) zl = \/\c 

(24) z2 + ( l - X / X c ) z 2 -

wherez2=f2/?2. 

Hinged-Rod Model. Budiansky and Hutchinson further 
observed that the form of equation (24) is very similar to that 
of the two rigid rod, three-hinge column model of von Karman, 
Dunn, and Tsien (1940), with a mass and lateral cubic-softening 
spring attached to the central hinge. The mass is M, the length 
of each rod is Lr, and the nonlinear spring force from lateral 
displacement u is 

(25) F=KLtf-Bf), B>0. 

With notation analogous to that for the shell, namely £"=«/ 
Lr, and P and Pc—KLr denoting axial force and zero-imper
fection buckling load, respectively, the equation of motion is 

z + (1 - P/Pc)z -B{2z3 = P/Pc (26) 

where z = f / f and dots now indicate differentiation with respect 
to fslK/M. 

For the imperfect structure, with f ^ 0 , the equilibrium dis
placement increases with increasing load to a maximum and 
then decreases with further increases in load. States beyond 
the maximum are therefore unstable, and the maximum is the 
buckling load Ps of the imperfect structure. This load is found 
by omitting the z term in equation (26) and setting dP/dz = 0, 
which yields 

{\-Ps/Pc)V2 = ~-B^ lS(Ps/Pc)- (27) 

The dynamic buckling load for step loading with z= z=0 
at t = 0 is found by first using the identity z= zdz/dz so that 
equation (26) can be integrated once to obtain 

zl + (1 - P/Pc)z' - - 5 f V = 2(P/PC)Z. (28) 

At loads below the dynamic buckling load, the steady-state 
motion is periodic and equation (28) defines its limit cycle in 
phase space z, z. The maximum value, zmax, of this limit cycle 
occurs when z = 0, which gives 

(1-P/Pc)zl -\B^z4
m!a = 2(P/Pc)zm (29) 

The dynamic buckling load PD is defined as the load for which 
the amplitude (and period) of this limit cycle is infinite, so the 
motion diverges rather than approaching a limit cycle. This 
occurs under the condition dP/dzmw = Q applied to equation 
(29), with the result 

( l - / V P c ) 3 / 2 = ^ 5 ' ' WVJ>c) . (30) 

A key feature of this simple model is that the imperfection 
parameter B1/2f2 can be eliminated between equations (27) and 
(30), giving a relationship between the static and dynamic buck
ling loads with no explicit dependence on the imperfections. 
The result is 

V2 fl-Pp/P, x 3/2 

2 U-Ps/Pc 
Pn/Ps = - (31) 

By a similar procedure, the static buckling load from equa
tion (24) for the cylindrical shell is given by 

_ 9 V I * lf,l (l-\s/\cY = 
16 

(VXc) 

and the dynamic buckling load is given by 

Xn/Xs —" 
•\/2 /l-Xfl/Xt 

(32) 

(33) 
2 \l-\s/\c) 

Plots in Budiansky and Hutchinson (1964) of PD/PS versus 
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To/T 
Fig. 1 Conservative dynamic buckling estimates (Xs/Xc = 0) from the 
threshold divergence theory, rectangular loading 

Ps/Pc from equation (31) and X /̂Xs versus X,s/Xc from equa
tion (33) are very similar, the only difference being slightly 
more curvature in the plot from equation (33) than from equa
tion (31) because of the larger exponent. Similar results were 
also found for the rigid-rod model with a quadratic rather than 
cubic-softening spring, which gives the same exponent as in 
equation (33) but a coefficient 3/4 = 0.75 in place of \[l/ 
2 = 0.707. 

Critical Finite Duration Loads. In Hutchinson and Bu-
diansky (1966), the equations of motion of the rigid-rod model 
for both the quadratic and cubic-softening springs were in
tegrated numerically for rectangular and triangular (sudden 
jump in load followed by linear decay to zero) finite-duration 
pulse loads. For each model and pulse shape, they again gave 
plots of X£/Xs versus Xs/Xc but with pulse duration as a pa
rameter, found by use of a divergence threshold criterion just 
as for step loads. These curves showed a rapid increase in finite 
duration critical loads with Xs/Xc increasing beyond about 0.2, 
suggesting a high sensitivity of critical dynamic loads to im
perfections. In the present paper it is shown that, with the 
more appropriate critical amplification criterion, critical short 
pulse loads are insensitive to imperfections for any value of 

For conservative practical application, curves were given of 
XD/XS versus T0/T for the limiting case of imperfect shells with 
Xs/Xc^0, based on the observation that for XS/XC< 0.2 critical 
dynamic load ratios X /̂Xs are weakly dependent on Xs/Xc-
The time T0 is the vibration period of the dynamic buckling 
mode in the absence of loading, and Tis the rectangular pulse 
duration. These are repeated here in Fig. 1. The curves ap
proach the static results of Budiansky and Hutchinson (1964) 
as T0/T—-0, and approach straight lines toward the impulsive 
loading limit T0/T~ oo. 

For the cubic model, which more closely approximates the 
behavior of the cylindrical shell equation (24), a straight line 
approximation \D/\S= T0/T can be used to good accuracy for 
T0/T>3. With T0 = 2ir/a>2, and co2 = c/a^fl from equation (23) 

and ac = Eh/(r\j3(l - v2) from equation (16), this line gives the 
following simple formula for critical dynamic axial buckling 
stress 

3/2 

(34) ffd=7T 
' pch as 

« — 
T Or 

o-dr= 1.71 pch{as/ac). (35) 
For a typical static buckling load ratio <js/oc*=Q.25, equation 
(35) gives crdT=0.43 pch. If one uses the symmetric mode 
period from &>i in equation (23) as the more conservative es
timate suggested by Hutchinson and Budiansky (1966), then 
the coefficient in equation (35) becomes 1.71/2 = 0.855. With 
this more conservative buckling mode period, <rrfT= 0.21 pch. 

These are in exactly the same form as given by equation (20) 
from the amplification criterion but with a coefficient an order 
of magnitude smaller. If one were to use for T0 the period 
from the most amplified mode, a symmetric mode with half 
wavelength lx = l0/y[2, the coefficient would be even smaller. 

Choices of Buckling Criteria 
The excellent agreement between experimental results and 

critical loads based on a critical amplification criterion suggests 
that for relatively short finite duration loads, this criterion is 
more appropriate than the threshold divergence criterion. Fur
thermore, the formula ad=2 pch is also the formula for a bar 
or flat plate, which corresponds to a—oo. Thus, there is no 
reason to suspect that the critical amplification formula is 
unconservative because of any peculiarity of complex nonlinear 
shell response; the finite radius of the shell makes the shell 
"stiffer" than the plate. In the physical buckling process, a 
sudden-jump dynamic load is applied by impact, and divergent 
flexural motion takes place only while the stress pulse is main
tained. If the shell has a free boundary condition at the opposite 
end, as in Lindberg and Herbert (1966), then following the 
compressive pulse the stress jumps to a tensile stress equal to 
the initial compression and not to zero as assumed in Hutch
inson and Budiansky (1966). 

Furthermore, as time proceeds, axial waves continue to re
verberate between one end of the shell and the other. For the 
case with one end impacted and fixed to a heavy mass and the 
other end free, these reverberations result in alternating com
pressive and tensile pulses near the impacted end of the shell, 
where the flexural motion is largest. Lindberg, Rubin, and 
Schwer (1987) showed that further buckling occurs during the 
first two or three compressive pulses, interspersed by oscilla
tory motion during the tensile pulses. Also, the corresponding 
change of the equations of motion between hyperbolic and 
elliptic forms results in buckle growth fixed in space during 
the compressive pulses and bending wave propagation away 
from the impacted end during the tensile pulses. This spread 
in bending energy during the tensile pulses, together with the 
finite membrane energy available in the initial compression 
wave, limits the amount of buckle growth from later com
pressive pulses such that the single-pulse formula in equation 
(20) still gives a reasonable estimate for critical impact loading, 
with T taken as the single round trip transit time of an axial 
stress wave. 

If the shell has an axially fixed boundary at the end opposite 
the impact, then the compressive stress increases with each 
axial stress wave reverberation between the impacted and fixed 
end, resulting eventually in long duration dynamic loading. 
This is closer to the situation analyzed in Budiansky and Hutch
inson (1964), but no attempt was made there to define how 
one would obtain a sudden increase in load to a fixed load of 
constant magnitude. The implicit assumption is that the analyst 
is seeking a conservative estimate for a dynamically applied 
load and that a step load is a conservative idealization of actual 
loading through a short series of axial wave reverberations. 
Thus, in these cases the threshold divergence criterion is ap
propriate. 

Criteria for Intermediate Pulse Durations 
In place of Fig. 1, the combined criteria scheme given in 

Fig. 2 is suggested. The short-dashed line (and the solid ex
tension superimposed on it) is from the critical amplification 
criterion, given in the form 

which is equation (20) with To taken as the free vibration period 
\[2ira/c of the axisymmetric classical buckling mode. (The 
extension of applicability to PD/PC< 1 is made with the con-
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Fig. 2 Dynamic buckling loads for cylindrical shells under rectangular 
pulse loads of duration T. (Here, T0 is the unloaded vibration period of 
the classical axisymmetric buckling mode.) 

servative assumption that for pulse buckling one can consider 
that l /a = 0, so that an effective Pcf-*0, as discussed more 
fully in the following paragraphs.) The long-dashed and dash-
dot curves are from the threshold divergence criterion for im
perfections such that P s / P c = 0 ' 2 5 and 0.50, respectively. These 
are essentially the cubic model curve from Fig. 1 with the T0/ 
T abscissa stretched out to the new abscissa definition in Fig. 
2, but with a slight increase in PD/PS because of the effect of 
Ps/Pc as given in Hutchinson and Budiansky (1966). 

The combined criteria curve is the solid curve, taken as the 
upper envelope of the two criteria because each criterion is 
conservative. This solid curve consists essentially of the critical 
amplification curve for PD greater than the step buckling load 
PD/PS = \f2/2 given by equation (31) (or equation (33)) for 
Ps/Pc~Q- For longer pulse durations (smaller T0/T), this 
straight line is terminated and the critical load is taken as the 
conservative value PD/Ps = \fl/2 from the step-load theory. 
For common shells in which Ps/Pc=*0.25, the corner of the 
resulting plot occurs at a pulse duration T~4T0 . For a 1-m 
diameter shell, r«4V27r(l m)/5000 m/s = 0.00355 s. 

For values of ToPc/TPs "near" but greater than the inter
section point 0.907, the dynamic-to-static classical buckling 
load ratio PD/PC={PD/PS)(PS/PC) is less than 1 but lies on 
the critical amplification portion of the plot in Fig. 2. For 
example, withP s /P c= 0.25, PD/PC< 1 for ToPc/TPs<5.2. In 
this range, the roots k(am, /3„) from equation (14) are positive 
and response is oscillatory rather than divergent. In this range 
we appeal to the nonlinear equations of motion (21) and (22) 
which, by definition of Ps/Pc in equation (32), give unstable 
motion for all points on the plot in Fig. 2. However, we con
tinue to use <jdT calculated on the basis of a critical amplifi
cation rather than threshold divergence, which has been shown 
to be too conservative. One method to visualize this approach 
is to conservatively take ac/a=0 in equation (14) which, as 
mentioned previously, leads to the same critical impulse for
mula odT=2 pch as for finite ac. 

Beyond this appeal to the nonlinear equations of motion, 
there are two other physical processes that result in divergent 
motion for a/ac<\. The first is the quasi-nonlinearity of an 
increase in the local radius of curvature a because of imper
fections in modes with wavelengths longer than for the dynamic 
modes of response. From equation (16), this increase results 
in a local decrease in ac over portions of the shell where im
perfections so combine. Calculations of curvature changes with 
imperfection amplitudes given in Arbocz (1982) give static 
buckling load reductions of 10 to 20 percent just from this 
effect. The basis of these calculations and comparisons of 
buckling load reductions from nonlinear effects (equation (32)) 
and from curvature changes are given in the Appendix. 

The second additional source of divergent motion for a/ 
ac<\ is from hoop stresses produced by the Poisson effect for 
dynamic loading. Even small hoop stresses result in divergent 

motion. For the shell with a/h = 500, L/2a= 1.62 in Lindberg, 
Rubin, and Schwer (1987), calculations there showed that the 
Poisson effect reduced the critical load separating oscillatory 
from divergent motion to acr/ac = 0.204, for the m = \, n = A 
mode. However, these hoop stresses are quickly relieved be
cause the shell is free to expand. The duration of the initial 
hoop stress pulse for impact loading is the quartenperiod -wa/ 
2c of the breathing mode. The value of r with Ng = i>Nx for 
this period and v = 0.3 is 0.98 o/ac, so initial growth from the 
Poisson effect is small. Nevertheless, for the multipulse loading 
in Lindberg, Rubin, and Schwer (1987), the duration of the 
next compressive swing of the hoop mode is the half period. 
Strain measurements for an impact load (x/<rc=0.87 showed 
both axial and circumferential flexural growth during the sec
ond circumferential compressive pulse. 

Summary and Conclusions 
A linear critical amplification criterion applied to dynamic 

buckling from pulse loads gives conservative estimates for com
binations of stress amplitude and duration that can be safely 
applied with only modest flexural motion. A nonlinear thresh
old divergence criterion applied to these same pulse loads gives 
amplitude-duration combinations an order of magnitude less 
than from the critical amplification criterion. The latter cri
terion is therefore overly conservative for these relatively short 
pulse loads. Conversely, for long duration loads, the linear 
critical amplification criterion is unconservative because linear 
divergence and hence buckle growth occurs only for a/ac> 1. 
For long duration loads, the nonlinear threshold divergence 
criterion is appropriate. For loads of intermediate duration, 
the linear critical amplification criterion is made conservative 
(but not as conservative as the nonlinear threshold divergence 
criterion) by letting ac = 0 in the equations of motion, which 
allows the formula from this criterion to be applied to all loads 
with a/ads>\, where ads is the dynamic buckling load from 
the nonlinear threshold divergence criterion for step loads. The 
two criteria then give dynamic buckling loads that are not 
overly conservative over the entire range of pulse durations 
for which critical stresses are elastic. Furthermore, no specific 
reference is made to imperfections in either dynamic theory, 
so imperfection sensitivity need be investigated in detail only 
for static buckling. 
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Fig. 3 Static buckling load reduction caused by nonlinear mode-cou
pling with imperfections in the square classical buckle mode 
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A P P E N D I X 

Static buckling loads are reduced by the combined effects 
of imperfections and nonlinearities, such as given by equation 
(32), and also by a direct change in the local curvature of the 
shell caused by imperfections. Since the latter allows straight
forward use of the critical amplification criterion for a< ac, it 
is useful to explore the magnitude of both mechanisms of static 
buckling load reduction. 

Figure 3 gives the static buckling load reduction from im
perfections in the square classical buckle mode, calculated from 
equation (32). The buckling load decreases abruptly for im
perfections only a few percent of the wall thickness, and then 
decreases more slowly for larger imperfections. A reduction 
to 30 percent of the classical buckling load would require an 
imperfection equal to the wall thickness for this limited theory. 

Reductions from curvature change are not as precipitous as 
for nonlinear response, but the reductions continue steadily 
with large imperfections rather than tapering off as for non
linear response, so if imperfections are a substantial fraction 
of the wall thickness (crudely made shells, or shells damaged 
in service) the curvature change could become the dominant 
effect of imperfections. 

The local curvature of the imperfect shell is given by 

1 1 w,-
= — T - - J + 

as(x, ff) a a 

d2Wj 

a2d62 (Al) 

For this purpose, it is convenient to express the initial imper
fections in the form 

w,{x, 0) = « 2 XW™5"1 micx 
sin (nd + <£„) (A2) 

where ymn = (a2
m„ + b 2

mn)
l/2 ,,„„ v_,„„ . _ ,„„, '/a and 4>„ is the phase angle of the 

nth-mode imperfection. With the w,/a term neglected as small, 
equation (Al) with equation (A2) gives 

1 1 1 - ^ ^% , . mirx . 
- = V V itymn sin —-— si as a a 

sin (n0+ <£„). (A3) 

Consider a specific location some distance from the end of the 
shell to avoid the complexity of summing over m, and then 
replace ymn by yn. Also, from equation (16), the local static 
buckling load is as/oc = a/as, so 

N/2 

-=1-J]n2yn cos (nd + <!>„). (A4) 

With static buckling in the square classical mode having 
n = N, imperfection modes up to only half this number are 
included in the final sum expression, to ensure that the local 

curvature encompasses a buckle. The half wavelength at n =N 
is 2/0, so 

^ = 27rVflA[12(l- .„*)]"« (A5) 

or, with i> = 0.3, 

N=0.91^/a/h. (A6) 

If one assumes that the imperfections are introduced by ran
dom processes, the phase angles 4>n can be taken as random, 
uncorrelated and uniformly distributed. The mean value of 
the curvature change is therefore the root-mean-square of the 
coefficients in equation (A4). Somewhere on the shell the cur
vature change will be as large as about three times this value, 
so 

1/2 
2— . 2 

= 1 - 3 j ] (" ?«) (A7) 

Data from Arbocz (1982) suggests that values for y„ can be 
approximated by y„ = A/n, where A is about 0.0015. The for
mula applies only for n > 8 , below which imperfections are 
nearly constant, but since y„ is multiplied by n2 in equation 
(A7) and N/2 » 8 for the thin shells discussed here, this cutoff 
is neglected for simplicity. Then, with y„=A/n, equation (A7) 
becomes 

• I -3A 
M(M+ 1)(2M+ 1) 

(A8) 

in which the expression under the root is the sum of n2 to 
M=N/2. For a/rt=1000, N=30 and <x/o-c = 0.84 for 
A = 0.0015. Thus, for shells of the type described in Arbocz 
(1982), reductions in buckling loads of about 10 to 20 percent 
are expected from local curvature changes. From equations 
(A6) and (A7), this reduction varies as (a/h)l/2. 

If imperfections are as large as required for substantial buck
ling load reduction in Fig. 3 from nonlinear effects, reductions 
from curvature changes are also substantial. This is shown in 
Fig. 4, which was constructed by again taking a 1/n variation 
of imperfection amplitudes and^ summing to N/2, but with 
A =NyN, where 7^= foh/a and f2 is the value of the abscissa 
wiN/h in Fig. 3. In evaluating equation (A8) for this plot, the 
3-sigma factor was omitted, to be reasonably consistent with 
the effective value of f2 in Fig. 3 being the highest local value 
for n = N, so f2 already contains such a factor. Although this 
necessarily is a crude comparison because of the vagaries of 
imperfections, it is reasonable to conclude that for large im
perfections curvature change effects must be considered in 
addition to nonlinear effects. 
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Structural Computation of an 
Assembly of Rigid Links, 
Frictionless Joints, and Elastic 
Springs 
The aim of the paper is to set up a scheme for efficient computation of the small-
displacement response of a plane assembly of rigid links, frictionless joints, and 
elastic springs to static external forces applied at the joints. The particular assembly 
of Fig. 1 is used as an example. The conventional "stiffness method"—which 
becomes singular when, as here, the links are rigid—is abandoned in favor of a 
method which describes the current state of the assembly in terms of the amplitudes 
of m (here = 3) independent infinitesimal modes of inextensional deformation of 
the assembly; and the calculation boils down to the solving of an mx m (here 3x3) 
set of algebraic equations. The method is particularly straightforward if the inex
tensional modes (as here) may be obtained by inspection; but a general algorithm 
is presented for obtaining the inextensional modes of an arbitrary assembly of the 
same general kind. A major advantage over the conventional stiffness method— 
which requires, of course, the replacement of rigid links by (stiff) elastic members— 
is that the number of variables may be reduced substantially. This can be very 
important for large assemblies. 

1 Introduction 
Figure 1 shows a plane structural assembly. It consists of 

rigid links which are freely hinged at their ends to each other 
and to a rigid foundation, and are restrained from relative 
rotation at the joints by linear-elastic rotational springs. In the 
configuration shown, the assembly is stress-free. We wish to 
compute its response to arbitrary static forces ("loads") ap
plied at the joints, under the general assumption that in the 
displaced configuration the rotations of the links are small. 
That is, we wish to compute the joint displacements, spring 
rotations, and moments of the assembly under an arbitrary 
loading. We are interested, of course, not only in this particular 
example but also in general assemblies of the same kind. 

At first glance, this problem may appear to be straightfor
ward. After all, practicing engineers use finite element pack
ages on a routine basis to solve structural problems of much 
greater complexity than this. 

A key feature of the assembly shown in Fig. 1 is that the 
links, or bar elements, are rigid. If, instead, these elements 
were elastic, so that they underwent small changes of length 
but no change of curvature when stressed, then more-or-less 
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ASME Applied Mechanics Division, Jan. 23,1990; final revision, June 20, 1990. 

Fig. 1 Layout of example assembly of rigid rods and rotational springs 
in its original, unstressed configuration. Joints are labelled by large 
Arabic numerals, bars by large Roman numerals and springs by small 
Roman numerals. Small Arabic numerals mark divisions on the x, y 
coordinate grid. 

standard finite element methods would indeed be satisfactory. 
Thus, two components of small displacement could be defined 
for each of the four joints not connected to the ground; the 
elongations of the five bars and the rotations of the six springs 
could be expressed by a compatibility matrix in terms of the 
eight nodal displacements variables; and the remainder of the 
usual "stiffness" method of structural analysis (Livesley, 1975) 
could be implemented. 

In the present example, however, the inextensibility of the 
bars stands in the way of progress along these lines (see Livesley 
and Charlton, 1955). The kinematic constraints provided by 
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the rigid links render the eight components of joint displace
ment nonindependent; and the resulting stiffness matrix be
comes singular. 

There is, of course, a well-known way around this difficulty, 
which has been available since the early days of structural 
computation. The stiffness method can be rescued by endowing 
the bars with elastic stiffness both high enough to simulate an 
almost-rigid bar and yet not so high as to render the final 
stiffness matrix badly ill conditioned. 

The aim of the present paper is to overcome this difficulty 
over rigid links in a more radical, and ultimately more satis
factory, way. If we look, at the present problem from the 
standpoint of classical kinematics, we see that the assembly, 
in the absence of the springs, has only three degrees-of-freedom 
as a mechanism. Thus, the state of the assembly can always 
be described completely in terms of three variables. Accord
ingly, it should be possible for us to solve this particular prob
lem by dealing with a 3 x 3 matrix, instead of the 8x8 matrix 
of the usual stiffness method. 

Our aim in this paper is to implement a computational scheme 
which exploits this idea, and which thus makes a virtue of that 
same rigidity of the links which proves a stumbling block for 
the usual method. 

Our presentation will be in general terms, but with frequent 
reference to the particular assembly of Fig. 1 as an illustrative 
example. In Section 3 it will be assumed that the details of the 
independent mechanisms are known, and the task will be to 
perform the subsequent computations. This would be entirely 
satisfactory for the present example, in which three independ
ent kinematic mechanisms may be found by inspection. In 
Section 4 we shall address the general problem of finding a 
set of kinematic mechanisms for a given assembly by a process 
of automatic computation. Again, we shall illustrate it with 
respect to the example of Fig. 1; but the real value of the 
algorithm, of course, lies in its power to deal with more com
plex assemblies, for which there is no simple intuitive way of 
establishing either the number of independent mechanisms or 
the details of them. 

Our main motivation in this work is a desire to set up the 
most efficient scheme of computation for assemblies of this 
general kind, by making full use of the methods of kinematics. 
In one sense, the method of Section 3 is an adaptation from 
the well-known scheme of analysis of the plastic collapse of 
structural frameworks by the "method of combination of el
ementary mechanisms" (see, e.g., Baker and Heyman, 1969). 
There are, of course, many differences between our method 
and that of plastic collapse analysis; but the two methods have 
the common feature of making a virtue of the inextensibility 
of the component members. Our approach is closely related 
to some recent studies of constrained dynamical systems, as 
discussed in Section 5. 

Part of our motivation in addressing the present problem 
lies in the possibility that the method may find a useful practical 
application in the field of molecular dynamics of long-chain 
molecules (McCammon and Harvey, 1987). In such calcula
tions one conventionally allocates three degrees-of-freedom to 
each atom of the assembly; but if one takes account of the 
practical extensional rigidity of the covalent backbone links, 
it should be possible to reduce substantially the total number 
of degrees-of-freedom in general. The present paper may there
fore be regarded as a first step in the process of producing a 
compaction of the degrees-of-freedom in a general calculation, , 
by considering a simple analog problem. 

2 Notation 
Italic lowercase letters denote scalars; boldface lowercase 

letters denote vectors; and boldface uppercase letters denote 
matrices. In the list that follows, and indeed elsewhere in the 

paper, remarks in parentheses refer to the particular assembly 
shown in Fig. 1. 
b = number of (rigid) bars (b = 5) 
j = number of joints, excluding those embedded into the 

foundation (J: = 4) 
m = number of degrees-of-freedom of the assembly as an 

inextensional mechanism {m = 3) 
5 = number of rotational springs (s = 6) 
d = nodal displacement vector, of size 2/( = 8): the joints 

are taken in numerical order, and with the x-component 
preceding the j>-component 

e = bar elongation vector, of size b(= 5): the bars are 
taken in numerical order, and the condition e = 0 cor
responds to an inextensional mechanism 

1 = nodal force vector, also of size 2/(= 8) and with same 
numbering scheme as for d 

q = spring-moment vector, of size s(= 6): the springs are 
taken in numerical order 

r = spring-rotation vector, of size s(= 6), and with the same 
numbering scheme as q 

</> = generalized mode-displacement vector, of size m( = 3) 
\p = generalized mode-force vector, also of size m(= 3) 
C = "compatibility" matrix which enables the elongations 

of the b bars to be computed for an arbitrary nodal 
displacement vector d by means of the equations Cd = 
e. The size of C is 2jxb( = 8x5). (The set of w-in-
dependent mechanisms of the assembly in M spans the 
null space of this matrix.) 

K = diagonal matrix of spring stiffnesses, of size sxs( = 
6x6) 

M = matrix of m{= 3) columns and 2/(= 8) rows, in which 
each column contains a set of joint-displacement com
ponents which constitute an independent inextensional 
mechanism 

R = matrix of m(= 3) columns and s(= 6) rows, in which 
each column contains a set of spring rotation angles for 
the corresponding mechanism in M 

S = generalized mxm stiffness matrix (= 3x3) 

3 Structural Computation When the Mechanisms are 
Known 

Figure 2 shows sketches of three inextensional modes of the 
assembly, which are clearly both independent and exhaustive. 
These modes (apart from a change of sign) were produced by 
the algorithm to be described below in Section 4; but in the 
present example they may be established by intuitive methods. 
The corresponding matrices M and R are given below. They 
contain details of the three independent mechanisms in terms 
of the eight components of joint displacement and the six 
components of rotation of the bars. In general, the magnitudes 
of the entries for a given mode are arbitrary; here one com
ponent of displacement has been assigned magnitude 1. Note 
that the bars have length 1 or \fl in this example: The ro
tations are calculated by small-displacement algorithms, which 
are given in detail in Section 4. The sign convention for spring 
rotation is as follows. Rotations of bars are reckoned positive 
when counterclockwise; and the rotation of a spring connected 

vf^~ -7#r -7ftz 
(b) 

Fig. 2 Three independent modes of inextensional deformation of the 
assembly, as described by the three columns of matrix M. The ampli' 
tudes shown are arbitrary. 
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to two bars is defined as the rotat ion of the higher-numbered 
bar less that of the lower-numbered bar . The foundation counts 

'bar 0 " for the purposes of this calculation. as 

MT= 

1 1 0 0 0 0 0 0' 

2 0 2 0 1 1 0 0 

1 0 1 0 1 0 1 0 

R ' = 

0 

2 

1 

0 1 

- 3 1 

- 1 0 

0 

- 2 

0 

0 

1 

- 1 

0 

0 

- 1 

(1) 

(2) 

(It is obvious by inspection that the three columns of M are 
linearly independent.) 

The most general kinematically admissible state of small 
displacement of the assembly is found by taking an arbitrary 
linear combination of the three mechanisms. Thus , we may 
write 

d = M<£ (3) 

where ^ is a "generalized displacement vec to r . " The corre
sponding spring rotat ions are then given by 

r = R<j>. (4) 

The external forces applied to the joints are defined by the 
load vector 1, and the bending moments in the springs are given 
by the moment vector q. Thus 1, q constitute an equilibrium 
set of external forces and internal moments , while d, r con
stitute a compatible set of external displacements and internal 
rotat ions. Thus , applying the principle of virtual work, we 
have 

r rq = d rl. (5) 

Substituting for d and r from (3) and (4) we find, since </> is 
arbitrary, 

R rq = M r l . (6) 

Now, the spring moments are given by the elastic law 

q = Kr. (7) 

Thus, using (4) and (7) we find that (6) may be written 

RrKR<A = M7'l. (8) 

It is convenient to define the generalized (symmetric) stiffness 
matrix S by 

S = RrKR, (9) 

and also the generalized load vector ^ by 

^ = M r l . (10) 

Our method of solution is as follows: Given M, ^ may be 
computed for any prescribed load vector 1. Having evaluated 
I h e m x m square matrix S by (9), we then solve 

S^ = \fr (11) 

for $. Then, finally, we calculate d by means of (3). If r and 
q are also required, we find them by use of (4) and (7). 

For example, suppose that we are required to find the com
ponents of joint displacement of the given assembly when 
loading is applied as shown in Fig. 3, and when all six rotational 
springs have equal stiffness k. 

First we evaluate 

S = R rKR = 

1 1 0 

1 19 4 

L0 4 4. 

From Fig. 3, we have 

l r = [ 0 - 2 0 0 3 - 1 

Hence, from (10) 

k. (12) 

1 0], 

-^7777 V7p7Z~ 

Fig. 3 System of loads applied to the joints in the worked example 

* = 

-2 

2 

2 

-2.143 

0.143 

0.357 

(14) 

(15) 

Solving (11) we find 

from which, by (3), 

d r = [ - 1 . 5 - 2 . 1 4 3 0.643 0 0.5 0.143 0.357 0]/k. 
(16) 

It is interesting to note that if the loading vector were to be 
replaced by, say, 

• [-2 0 0 0 5 1 - 1 0 ] , (17) 

\j/, tj>, and d would not be changed. This is because the difference 
between the two loading cases is a " b a l a n c e d " loading which 
may readily be shown to require, for equilibrium, tension in 
some bars , but no bending moments . 

4 Determination of the Inextensional Modes of an Ar

bitrary Assembly 

It is obvious that our intuitive ability to " s p o t " three in
dependent inextensional mechanisms greatly reduced the labor 
of computat ion for the example of Fig. 1. In general, for an 
arbitrary assembly, we must not expect to be able to obtain 
either the number or the details of the inextensional mecha
nisms by such methods . Thus we need, in general, an automatic 
procedure for generating the inextensional mechanisms of a 
given assembly. The following account of such a procedure is 
an adaptat ion of that which is described fully by Pellegrino 
and Calladine (1986). 

First we need to set up the compatibility matrix C which 
expresses the elongations e of the b( = 5) bars in terms of the 
2/'(= 8) components of displacement of the joints: 

Cd = e. (18) 

This equation is simply a collection of the small-displacement 
calculations of the elongation of each bar in turn , in terms of 
the components of displacement at its end. Figure 4 sets the 
scene for calculating the elongation of a typical bar which 
connects joint / to joint k. The initial coordinates of the joints 
and the components of small displacement are defined in the 
diagram. 

Suppose that the only nonzero displacement component were 
dxk. Then, by the geometry of small displacements the elon
gation of the bar would be given by 

(13) where 

e = rf^cosa 

cosa = (xk-Xj)/a 

(19) 

(20) 
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Fig. 4 Typical bar connecting joints / and k, showing original coordi
nates and components dxh etc., of small displacement 

and the length a is calculated by Pythagoras' theorem. Simi
larly, dyk alone would give 

e = dyksina. (21) 

In this way we find, in general, 

e= (dxk — dXi)cosa + (dyic- dyi)smct. (22) 

Expressions of this sort are written for all bars in order, and 
the resulting equations are collected as 

Cd = e. (23) 

For example, we may readily show that the assembly of Fig. 
1 has 

C = 

(24) 

Here, 0.7 stands for 0.7071 . . . = l/yfl. 
Now we are particularly interested in the circumstances in 

which d corresponds to e = 0. Such a displacement vector 
characterizes an inextensional mode. The first stage in the 
computation of the inextensional modes is to perform a Gaus
sian elimination on matrix C (see Strang, 1976). The aim is to 
combine rows in a linear fashion so that the matrix is trans
formed to the "echelon" form, with ones on the "leading 
diagonal" and zeros in the triangle below. In the present ex
ample it is easy to verify that the echelon form of the matrix 

(25) 

(1) (2) (3) (4) (5) (6) (7) (8) 

The zigzag line marks the upper extent of zeros in the lower 
left-hand corner. Note that this "descending staircase" is ir
regular, and that the columns without pivot, i.e., those columns 
where there is no descending step, have been distinguished by 
an asterisk. It is shown in Strang (1976) that the corresponding 
columns of the original matrix (24) are linearly dependent on 
the other columns, viz. 1, 3, 4, 5, 8, which are themselves 
linearly independent. This gives a partitioning of the eight 
variables into five independent and three dependent ones. Pre
cisely which emerge as which depends on the (arbitrary) num-

1 

0 

0 

0 

0 

- 1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

- 2 

- 2 

0 

- 1 

0 

- 1 

- 1 

0 

- 1 

0 

0 

0 

0 

0 

1 

bering system used to identify the bars and joints and also on 
the pivoting strategy; but the null space of the matrix C (see 
below) is unaffected. 

The three columns marked * have positions 2, 6, and 7. An 
empty 8 x 3 matrix M is prepared, into which the three required 
vectors will go. The entries are made in stages as follows: 

1 1 

0 
0 
0 

- 2 
0 

- 1 

- 1 
• 0 

- 1 

1 
0 
0 

0 
- 1 

0 

0 
0 

- 1 _ 
M = 

1 
1 
0 
0 
0 
0 
0 
0 

- 2 
0 

- 2 
0 

- 1 
- 1 

0 
0 

- 1 
0 

- 1 
0 

- 1 
0 

- 1 
0 

(a) (b) 
Fig. 5 

(c) 

First, rows number 2, 6, and 7—corresponding to *—are 
"blanked off," as shown by *** in Fig. 5(a). The five entries 
from each of the columns marked * in (25) are then entered, 
in the same order, into the spaces which are still vacant, as 
shown. 

Second, a 3 x 3 diagonal matrix—3 being the number of 
columns marked *—with all nonzero entries—1 is set up, as 
shown in Fig. 5(b). 

Finally, the 9 entries in Fig. 5(b) are fitted, in the same 
order, into the blanked-off spaces of Fig. 5(a). This gives the 
required matrix M, as shown in Fig. 5(c). 

What we have done here is to find three independent so
lutions of the equations Cd = 0. Each solution has been arrived 
at by giving zero values to two of the three dependent variables 
and the value—1 to the third. The remaining independent 
variables are then obtained by back substitution, which is trivial 
in this case. This strategy is the simplest way of generating a 
basis M for the null space of matrix C. In physical terms it 
can be seen that any linear combination of the three columns 
of M satisfies Cd = 0, and hence is an inextensional mode for 
the assembly. 

Returning to our particular example, we see that all of the 
entries in M are negative, and so the signs of M in (1) have 
been reversed. 

Having obtained the m columns of M, we must now find 
the corresponding columns of R. To do this, we must calculate 
the relative rotation of the two bars to which each spring is 
attached for each particular mechanism. This is straightfor
ward once we have an algorithm for calculating the rotation 
r of the typical bar shown in Fig. 4, in terms of the four 
components of displacement. 

Suppose that the only nonzero displacement component were 
dxk\ then the counterclockwise rotation of the bar would be 
given by 

r = -dxi$mct/a. (26) 

Similarly, dyk alone would give 

r = dykcosa/a. (27) 

In this way we find, in general, 

/ • = ( ( - dxk + dxi)sma + (dyk-dyi)cosa)/a. (28) 

5 Discussion 
A particular example, such as the one which we have used, 

has the advantage of providing a sense of definiteness to the 
calculations. But it has the disadvantage that it may conceal 
certain points which may occur in general application. 

Thus, in the present calculation we found that 

752 / Vol. 58, SEPTEMBER 1991 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



m = 2j-b (3 = 8-5); (29) 
and indeed this seems obvious, since the addition of each bar 
removes one degree-of-freedom from the set ofy isolated joints. 
However, relation (29) is not universally true for two-dimen
sional assemblies of this sort; in particular, it will be violated 
if the assembly contains one or more states of self-stress. In 
this case the matrix C will not be of full rank and the process 
of Gaussian elimination will "run out," leaving one or more 
zero rows at the bottom of the transformed matrix. Points of 
this sort have been dealt with fully by Pellegrino and Calladine 
(1986). They are revealed clearly by the process of Gaussian 
elimination. 

In this paper we have dealt exclusively with two-dimensional 
assemblies. The methods of the paper may be extended to 
assemblies in three-dimensional Euclidean space. We are cur
rently working on a scheme which will enable us to deal with 
assemblies which include, inter alia, rigid members containing 
"dog-leg" bends, and linear springs which connect arbitrary 
points. 

We have also considered in this paper only the analysis of 
assemblies in "small deflection" conditions. We believe that 
relatively simple iterative schemes will enable us to extend our 
work to "large deflection" conditions in cases where this is 
warranted. 

The present work has grown out of our earlier paper (Pel
legrino and Calladine, 1986). From a computational point of 
view the main difference is that here we compute a full set of 
independent mechanisms directly from the "compatibility" 
matrix C, whereas in the earlier paper we performed manip
ulations on the augmented matrix [Cr/I]. The present algo
rithm is somewhat more elaborate, requiring a few more steps 
and a few more lines of computer program; but since it operates 
with smaller matrices there is likely to be a net saving of 
computational effort and storage. The previous paper dealt 
with situations in which both the null space and the left null 
space (Strang, 1976) are required; but here only the null space 
is needed and so the computations can be curtailed. 

Ider and Amirouche (1988) have recently devised a method 
for reducing the number of degrees-of-freedom in the analysis 
of constrained dynamical systems. Their work was done quite 
independently of ours (Pellegrino and Calladine, 1986), but 
their method is in some respects rather similar to ours. For 
example, they use a method of Gaussian elimination on an 
augmented matrix [Cr/I]. 

Wehage and Haug (1982) have devised computational meth
ods for studying the dynamics of mechanical assemblies con
sisting of rigid bodies connected by a variety of undeformable 
links, elastic springs, and viscous dashpots. In the course of 
this work they separate the kinematic variables into dependent 

and independent kinds, by means of a Gauss-Jordan trans
formation. This separation of variables keeps the calculation 
well conditioned, but it does not directly make use of the 
inextensional modes. 

Orthogonal decomposition algorithms, including QR and 
SVD methods, have also been used in the study of constrained 
dynamical systems (see, eg., Kamman and Huston, 1984; Singh 
and Likins, 1985; Kim and Vanderploeg, 1986). These methods 
are more powerful and accurate than the Gaussian elimination 
scheme which we have described in Section 4. But in examples 
where rank deficiency is not likely to be a problem—as in 
linkages of the kind shown in Fig. 1—Gaussian elimination is 
satisfactory. The method also works in problems with rank 
deficiency, eg, involving prestressable linkages, as in Pellegrino 
and Calladine (1986); but if ambiguity over small pivots is 
likely to create difficulties, then, as Golub and Van Loan (1983) 
have advised, it would be better to use SVD. However, once 
the matrix M has been obtained—by whatever method—the 
calculations of Section 3 proceed unchanged. 
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Predicting Rebounds Using Rigid-
Body Dynamics 
The observation by Thomas Kane a few years ago, that long-used relationships for 
predicting post-collision motion of a system of rigid bodies can imply a significant 
increase in kinetic energy during collision, has revived interest in this type of problem. 
This paper is intended to clarify understanding of the sources of this difficulty, and 
to suggest an alternative to some of the previously used assumptions for making 
such predictions. An organization of the pertinent equations of kinetics is presented, 
which provides a more direct means of examining the aforementioned question and 
of obtaining rebound predictions. 

Introduction 
Collisions of bodies within mechanical systems often do not 

deform any of the bodies significantly, so that equations of 
rigid body mechanics have long been used for predicting post-
collision motion. Beyond the assumption of rigidity of com
ponents, further simplification is possible if the configuration 
may be expected to undergo little change while velocities 
undergo the changes necessary for separation at the point of 
collision. Thus, there are many situations in which the common 
assumption of constant configuration during contact would 
not be responsible for serious discrepancies in the prediction 
of the rebound. In the absence of detailed knowledge of the 
deformations induced by the impulsive reaction force where 
the bodies contact one another, additional assumptions about 
the nature of the reaction must be made, since the equations 
of rigid-body kinetics are three too few to predict the impulse 
and the velocity changes. These assumptions are based on 
speculations about such things as sliding with friction and the 
capacity of the bodies to return energy of deformation. Because 
the post-collision motion depends so heavily on the unknown 
impulse, the assumptions that form a "contact law," to sup
plement equations of rigid body mechanics, have a profound 
effect on the predicted motion. 

That the implied change of kinetic energy should be non-
positive provides a boundary for the impulse (or, equivalently, 
for the changes in velocities). However, a great deal of latitude 
remains within this boundary, so that satisfaction of the laws 
of thermodynamics and impulse-momentum relationships is 
not sufficient to assure an accurate prediction. 

In spite of this hazard, an alternative to previously used 
contact laws is offered here. For collisions of solid, elastic 
spheres, for which a fairly detailed study of the mechanics of 
local deformation and sliding has been made, the proposed 
assumption appears to lead to improvement in the prediction. 
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However, before it is accepted for a wide class of collisions, 
results need to be compared with those from experiments and 
analyses that model the transient behavior in sufficient detail. 

Impulse, Momentum, and Kinetic Energy 
Relationships to be used follow from those developed in 

Kane and Levinson (1985); for completeness, this development 
is outlined here. Two rigid bodies B and B' collide as the 
points P and P', on their respective surfaces, move into co
incidence. Denoting by ur (r= 1, 2, ..., ri) a set of generalized 
speeds for the system, the velocities of the contact points may 
be written as: 

vP=Yjy?Ur ^ ' = 2 ^ ' " ' 

It is convenient to deal with the difference between these ve
locities, defined as 

v A / - v p ' . 

With the additional definition \r A vf- v̂  , the velocity dif
ference may be expressed in terms of the generalized speeds 

' = ! > ' " ' • 
(1) 

With the impulse of the force exerted on B by B', denoted as 
g, and with changes in configuration and contributions from 
forces other than the action-reaction at the contact point ne
glected, the components of generalized impulse can be ex
pressed as 

By expressing the kinetic energy in terms of the selected gen
eralized speeds, the inertia coefficients mrs can be evaluated 
from1 

'Situations in which K contains terms that are linear in generalized speeds will 
not be considered here. 
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K=lTiTi
mrsU^ (3) 

r 5 

from which expressions for components of generalized mo
mentum can be written as 

Pr=Yjm^Us- (4) 

Under the aforementioned assumptions, the impulse-momen
tum laws can be expressed as 

Ir = &Pr = 2 mrs&Us (5f l) 

s 

wherein Aus denotes the change in us that occurs during contact. 

From here on, v will denote the value of v ^ - v ^ at the time 
contact begins, and w will denote the value of v ^ - v ^ at the 
time contact ends. Thus, 

w = v + Av (6) 

in which 
Av=2>rAMr. {la) 

r 

Three of the above relationships can be organized to our 
advantage using matrices defined as follows. Let m be the 
symmetric n x n matrix of inertia coefficients mrs and /, and 
Au be column matrices with elements Ir and Aur, respectively; 
introduce a set of mutually perpendicular, unit vectors e,-
(/= 1,2,3); let / be the « x 3 matrix having elements vr»e,; let 
Ay and g be column matrices with elements e,»Av and e,-g, 
respectively. Then, equations (2a), (5a), and {la) can be written 
as 

I=lg (26) 

I=mAu {5b) 

Av = lTAu {lb) 

and combined, with the result 

g = M-Av (8) 

in which M is the symmetric dyadic having components in the 
c, basis that are the elements in the matrix 

M={lTm-lf)~l. (9) 

The inertia operator M depends on the configuration of the 
system at the time of contact, but not on the motion. Also, if 
the configuration does not change significantly during impact, 
the small dynamic deformations during contact, and conse
quently g, may be expected to depend on v, but not on the 
particular set of generalized speeds that contribute to v. That 
is, all precontact motions having the approach velocity v and 
the same configuration at the initiation of contact will result 
in the same impulse and corresponding separation velocity w. 
Once Av has been determined, changes in the generalized speeds 
can be evaluated from 

Au = m~,lMAv, (10) 

and corresponding changes in velocities and angular velocities 
of interest can be evaluated using the appropriate partial ve
locities and partial angular velocities. 

The change in kinetic energy induced by the impulse is given 
by 

AK=- {u + Au)Tm{u + Au)-- uTmu 

and, with the help of the above equations, can be expressed 
also as follows: 

AK=g'\ + - g 'M~'-g (11a) 

v + w 
AK=g.— (116) 

Fig. 1 Impulse, velocities of approach and separation, and boundary 
for change in kinetic energy, for a typical collision 

AK=- ( w M ^ w - v M - v ) . ( l ie) 

Along with the last equation, the Cauchy quadric surface 
associated with M provides a convenient means for visualizing 
the constraint that the predicted change in kinetic energy should 
be nonpositive. With x denoting the position vector of a point 
on the surface, the equation for the quadric is 

/ (x) = x»M"X = r2 , 

Because / is positive definite (see equations (3) and (9)), the 
quadric is an ellipsoid. If the scaling factor r is chosen so that 
v, with its tail placed at the origin, has its head coincident with 
a point on the quadric surface, then w must lie within the 
ellipsoid if its tail is also placed at the origin. Equation (l ie) 
shows further that the largest possible loss of kinetic energy 
would occur for w = 0, i.e., if the impact ended with P and 
P' moving at the same velocity. For a given v and w, the 
ellipsoid also indicates the direction of the impulse, since g 
must be perpendicular to the surface where the line parallel to 
Av and through the origin intersects the surface. These prop
erties are illustrated in the two-dimensional section shown in 
Fig. 1. 

To facilitate formulation of a contact law, one of the basis 
vectors is chosen to be perpendicular to the surfaces at contact; 
specifically, let n be a unit vector perpendicular to the common 
tangent to the surfaces at P and P' and directed from B' into 
B, and let t( and t2 be unit vectors parallel to this tangent plane 
and satisfying n = ti x t2. Normal and tangential components 
of impulse will then be denoted as 

g„ = n.gn 

g( = n x ( g x n ) = g1t1+g2t2 
and those of v and w denoted similarly. 

Contact Assumptions 
Equation (8) provides three relationships among the six un

known components of g and Av. In the absence of detailed 
analysis of surface forces in the region of contact and related 
deformations, assumptions about impulse and relative motion 
are needed to provide the additional three equations from 
which g and w can be predicted. 

A common assumption is that the ratio e of the normal 
component of w to the normal component of v is known, so 
that 

w „ = - e v „ (12) 

can be used directly in the calculation. This ratio is related 
quite simply to the loss of kinetic energy in impacts in which 
the tangential component of impulse is absent, for example, 
when the surfaces are perfectly smooth. Equations (8) and (11) 
can be used to show that, in these cases, 
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AK=-
(1 -e2) v\ 

2n-M '«n 
(13) A # < - - l g „ l 

Thus, in the absence of tangential impulse, e2 cannot exceed 
1. Perhaps this relationship, or special cases, have led to the 
common belief that, in general, O s e < l.2 Although the lower 
bound must hold in the absence of penetration, the laws of 
thermodynamics do not preclude occurrence of a rebound with 
e> 1 when tangential impulse is possible, as Fig. 1 illustrates. 

Additional assumptions are usually made in terms of the 
coefficient of friction /J. between the contacting surfaces. An 
ingenious analysis of sliding and sticking, under the assumption 
that the tangential force obeys Coulomb's law of friction, is 
presented in Routh (1905). This analysis deals with two phases 
of the contact, a "compression" phase in which the normal 
velocity difference passes from v„ to 0, and a "restitution" 
phase in which the normal velocity difference passes from 0 
to w„. In this analysis Routh defines the coefficient of resti
tution as the ratio of normal impulse during restitution to 
normal impulse during compression. In some cases this is equal 
to e as defined previously, but in others it is not, despite the 
contrary statement in Brach (1989). An assumption implicit in 
Routh's analysis is that the tangential velocities are as given 
by rigid body kinematics, i.e., that sliding or the lack of sliding 
is unaffected by deformations. The importance of such de
formations is indicated in Maw et al. (1976). Keller (1986) has 
recast Routh's analysis in more modern nomenclature and 
divorced the procedure from the graphical guidance presented 
in Routh (1905). Avoiding much of the detail considered by 
Routh, Whittaker (1904) assumes that w, is zero if the mag
nitude of the tangential impulse is less than fi times the mag
nitude of the normal impulse, and that when w has a tangential 
component, the magnitude of the tangential impulse will equal 
H times the magnitude of the normal impulse. Kane and Lev-
inson (1985) use the same criteria, but distinguish between 
coefficients of static and kinetic friction and are more specific 
about direction, stating that if and only if 

then w, = 0, and if the inequality is violated, 

w, 
g< = ~^lg«l lw,l 

(14a) 

(146) 

in which ix0 is the coefficient of static friction and n is the 
coefficient of kinetic friction. 

These relationships determine the tangential impulse solely 
from the normal impulse and the separation velocity. However, 
if the tangential velocity undergoes a change in direction during 
contact, a more reasonable speculation would be that the tan
gential impulse would be proportional to some kind of average 
of the tangential components of approach and separation ve
locities. This line of thought leads to the following relationship, 
which will agree with the last equation above when the direc
tions of v, and w, are the same, but gives a more realistic 
estimate of the rebound when they differ. 

i Klv>+lw,lw, 
g ' = - " l 8 j lv, l2

+ lw, l2 (15) 

This, together with a reasonable estimate of the normal velocity 
ratio e, defined by equation (12), and the impulse-momentum 
relationship (8), permit estimation of the impulse and corre
sponding separation velocity. 

A bound on the loss of kinetic energy implied by (12) and 
(15) can be obtained by combining these equations with equa
tion (116). This leads to the relationship 

Brach (1989) indicates that the reasons for the limitations on e are kinematic, 
but does not explain. 

( l - e ) l v „ l + / i 
(lv,l + lw, l ) ( lv , l - lw, l ) 2 

lv, l2+lw,l2 

which shows that, with e< 1, these equations will not predict 
a gain in kinetic energy. Of course, it remains to be determined 
whether an improvement in the accuracy of the prediction can 
be expected. 

Collision of Two Unconstrained Spheres 

A collison between two spheres illustrates the use of the 
above relationships and, because a detailed analysis of elastic 
deformation and interface slipping has been carried out (Maw 
et al., 1976), provides an example to begin an evaluation of 
the proposed contact assumption (15). 

The masses, radii, and central radii of gyration of the spheres 
B and B' will be designated as tnB and mB>, b and b' and k 
and k', respectively. With the basis vectors defined as above, 
generalized speeds are introduced as follows, to specify the 
velocities of the centers C and C" and the angular velocities 
of the spheres. 

VC = t !«! + t2U2 + n« 3 UB = t i« 4 + t2H5 + HM6 

VC' = t\UT + t2U^ + nU9 <JiB' =t1W1o + t2Mii + nW12 

Then the velocity difference can be expressed as 

\ = tlu1 + t2u2 + nw3 + bt2u4 - btiU5 + 0w6 

- tiW7 - t2w8 - n«9 + b' t2«io - b'ixuXi + 0w12 

from which 

"1 0 0 0 -b 0 - 1 0 0 0 -b' 6 

0 1 0 b 0 0 0 - 1 0 b' 0 0 

0 0 1 0 0 0 0 0 - 1 0 0 0 

From the expression for kinetic energy, 

r= 

K=-mB[u2 + u2
2 + ul + k\u2

4 + u2
5 + ul)] 

+ -mB/[u2 + ul + u2
9 + k'2(u2o + u2

n + u2
2)] 

the matrix m is readily identified and, with the previous equa
tion, used to construct the matrix of the impulse-velocity change 
relationship (8): 

M = m 

' K 0 0" 

0 K 0 

- ° ° x. 
in which 

niA mBmB' 
mB + mB> 

and K A 
{mB + mBi)k2k'2 

mBk\k'2 + b'2) + mB<k'\k' + b') 

Two special cases may be of interest. When the spheres are 
identical, 7«= 1/2 mB, and as the ratio of the mass of B to 
that of B' approaches zero (as in the case of a tennis ball 
striking a court surface), m = mB. In both of these cases, K = k2/ 
(k2 + b2). 

The absence of coupling within the tangent plane permits 
reduction of the analysis of the impact to one of two dimen
sions, unless a friction or deformation characteristic implies 
an anisotropic contact law. To take advantage of this, ti and 
t2 can be replaced with a unit vector t, defined to be in the 
direction of v„ and s = t x n . With the angle between t2 and t 
denoted as 7, this change of basis may be expressed as 

ti = cos 7 s + sin 7 t 

t2 = - sin 7 s + cos 7 t 

and the approach velocity as 

756 / Vol. 58, SEPTEMBER 1991 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



/ / / Ig/ltl I 

Fran 
Eq.14 

From Maw et a!., 1976 
Fig. 2 Rebound predictions for colliding spheres 

TT- rTT-TTTT 
Fig. 3 Kane's example 

v = y,t+y„n, vt>0, vn<0. 

The impulse-velocity change law becomes 

"&" 

gl 

Sn_ 

= m 

" « 0 0" 

0 K 0 

0 0 1_ 

~ A y / 

Ay, 

_Ay„_ 

(16) 

and the first row will be satisfied by gs = Avs = 0, as will the 
contact law if it is isotropic within the tangent plane. Equations 
(12), (15), and the last two of (16) can then be combined to 
yield 

v,-wt v2 + I wt I w, 

Vt 

in which 

A 

2 , 2 VJ+W, 

K tan a 
(l+e)/» 

and a is the angle between v and - n . This can be solved to 
give the tangential component of separation velocity, as 

Wi j ^ [ l - V l + 4 « ( l - « ) ] 0<«<1 

v'~)l-- « > 1 . 
(17) 

If the criteria (14) are used instead of equation (15), the result 
is 

v,' 

0 < a < 

a fi 

Mo 

This, together with equation (12), gives the separation velocity 
in terms of e and the approach velocity. Other quantities of 
interest may be evaluated from equation (10), which gives the 
changes in motion of B as 

AM, 

A«2 

Au3 

Au4 

A«5 

Au6 

1 + mB> 

K 

0 

0 

0 
bK 

k2 

0 

0 

K 

0 
bK 

k2 

0 

0 

o] 
0 

1 

0 

0 

0_ 

1 I tan a sin 7 
v,) 

tan a cos 7 

1+e 

Judgement of the validity of the assumption (15) may be 
begun by comparison of (17) with the results of a detailed 
study of deformation and frictional sticking and sliding during 

contact of two elastic spheres (Maw et al., 1976). For this 
purpose, the above results are expressed in terms of /?, the 
angle between w and n: 

e K t an /3 u [ l - V I T 4 ^ r - « ) ] 0 < a < l 

(l + e)*i 
12 

\a-l a > l . 

Figure 2 permits comparison with the predictions resulting 
from the assumptions (14) and with the detailed study (Maw 
et al., 1976). All three predictions agree for a>ii.0/ji, where 
slipping at the end of contact is in the same direction as that 
at the beginning of contact. For values of between about 1/4 
and n0/ix, the prediction from (15) agrees better with that of 
(Maw et al., 1976) than does the prediction from (14). 

The result (17) can be combined with equation (11) to de
termine the implied loss of kinetic energy: 

1 — 1 AK=--mvl 1 — e2 + K tan2a 
vvf 

v2 

which, for a> 1, becomes 

1 
AK= --m v„{\+e)]\-e + ix 2 tan a -

(1+e)/* 

Kane's Example 
Figure 3 depicts two slender rods, connected together and 

to a fixed support with hinges, the system free to swing in the 
plane. The lower end strikes the rigid surface, inducing a sud
den change in motion of the system. This example was used 
by Professor Kane to point out the difficulty mentioned in the 
abstract above (see Kane and Levinson, 1985, p. 348). 

The rods are identical, each with mass mR and length b. 
Using 6\ and 02 as generalized speeds, the kinetic energy is 
written as 

K=\ mRb2 4 , 1 , 
- K I + C O S ( 0 2 - 0 I ) K I K 2 + - H ! 

and the velocity of the lower end as 

y = b{-cos(M + sin 0in)«i + b{-cos 02t + sin 02n)M2. 

From these, the matrices m and / are identified and the matrix 
of the impulse-velocity change dyadic constructed: 

M-- mR 

6s*6 

in which 

(2s2 + 8s2-6cdsts2) (2ci5i + 8c2s2-3c0^y 

(2ciSi + 8c2s2 - 3cds\j/) (2c 1 + 8c2 - 6c0c1c2) 

If K were replaced with 1, this result would agree with equation (19) of Brach 
(1984). For spheres, the largest possible value of K is 2/5, and for analogous 
planar collisions of disks, the largest possible value of K is 1/2. The error in 
Brach (1984) appears to stem from a peculiar concept of a particle. 
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(c„ sj) A (cos0„ sin ,̂) i = 1,2; 

Insertion of equation (12) into equation (8) leads to 

M„ M,„ 

Mnt Mnn 

wt—v, 

•(l+e)v„_ 

The criteria (14) then imply that if 
\M,„(l+e)-M„tan a\ 

^ ~ M„„(l+e)-M„,tan a ' 

the tangential velocity at separation is zero, and otherwise 
satisfies 

x+(Ax+B)—+C=0 
\x\ 

in which a is the angle between v and - n, and 

x = -
w, A = 

yMnt 

M„ 

B = £rlMm(l+e)-Mnltana] C = M f t , ( ' + g ) - t a n a. 
M„ M„ 

Alternatively, the proposed contact law (15) implies that w, 
must satisfy 

™ tan2a+ \x\x _ „ 
x + (Ax+B) 5 5-+C=0. 

tana + x 
The following configuration and motion at initiation of con

tact will be used to illustrate the implications of these two 
contact assumptions. 

01 = 18deg 02 = 30 deg di=-u 62=-2u 
With these values, 

"4.951312 7.214 469" 
M= 

7.214 469 11.471 051 mR 

and 
v = (2.683 107 t - 1.309 017 n)bw. 

If, in addition, n0<0.4489, /x = 0.4, and e = 0.7, the criteria 
(14) predict 

w = (-0.146t + 0.916n)Z?co 
g = (2.046 t + 5.116 n)mRbw 
AK= 1.591 mRb2u2 (an increase of 68.8 percent of the initial 

kinetic energy). 
With the same coefficient of kinetic friction and normal ve
locity ratio, the proposed contact law (15) predicts 

w = ( - 0.660 t + 0.916 n)bu 
g = ( - 0.499 t + 1.407 n)mRbw 
AK= -0.781 mRbW (a decrease of 33.8 percent of the 

initial kinetic energy). 
These results, along with the Cauchy quadric associated with 

M, are shown in Fig. 4. The difficulty with the criteria (14) is 
readily apparent from the figure: The tangential velocity re
verses direction during impact, driven by the normal impulse 
through the strong coupling expressed in M. The criteria (14) 
set the direction of tangential impulse based only on the tan
gential separation velocity, taking no account of the friction 
force that would be expected during the time the tangential 
velocity is brought from v, to zero. The difference between the 
two predicted values of separation velocity is modest, while 
the differences between predicted values of impulse and change 
in kinetic energy are both striking. 

Fig. 4 Impulse and rebound predictions for Kane's example 

Summary 
Equations of rigid-body mechanics provide a means by which 

rebounds may be predicted without recourse to highly complex, 
detailed analysis of deformations during contact. To retain the 
simplicity of the method, assumptions about the impulse and 
velocity change at the point of contact must be made to sup
plement the equations of kinetics. Equation (8) and the Cauchy 
ellipsoid associated with M provide a convenient vehicle with 
which implications of such contact assumptions can be ex
amined. Equations (8), (9), and (10) also suggest a better-
organized computational procedure than normally results from 
an unguided consideration of equations (2) through (7). 

The proposed assumption (15) permits retaining the sim
plicity of analysis based on rigid body kinetics, while leading 
to results that appear to be more reasonable than those from 
the use of the assumption (14). However, any such assumption 
will require validation through more extensive comparisons 
with results of experiments and of more detailed analysis, such 
as presented in Fig. 2. There appears to be a further need to 
examine the common assumption that e is a constant (inde
pendent of, for example, /*, v, and M), to make available better 
guidance for estimating its value. 
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Successive Synthesis of 
Substructure Modes 
A mode synthesis approach is presented to calculate the eigenproperties of a structure 
from the eigenproperties of its substructures. The approach consists of synthesizing 
the substructures sequentially, one degree-of-freedom at a time. At each coupling 
stage, the eigenvalue is obtained as the solution of a characteristic equation, defined 
in closed form in terms of the eigenproperties obtained in the preceding coupling 
stage. The roots of the characteristic equation can be obtained by a simple Newton-
Raphson root finding scheme. For each calculated eigenvalue, the eigenvector is 
defined by a simple closed-form expression. The eigenproperties obtained in the 
final coupling stage provide the desired eigenproperties of the coupled system. Thus, 
the approach avoids a conventional solution of the second eigenvalue problem. The 
approach can be implemented with the complete set or a truncated number of 
substructure modes; if the complete set of modes is used, the calculated eigen
properties would be exact. The approach can be used with any finite element dis
cretization of structures. It requires only the free interface eigenproperties of the 
substructures. Successful application of the approach to a moderate size problem 
(255 degrees-of-freedom) on a microcomputer is also demonstrated. 

Introduction 
For the dynamic analysis of large structures, the component 

mode synthesis approaches are now commonly used. In these 
approaches the modes or the eigenproperties of the components 
or substructures are synthesized to obtain the modes or eigen
properties of the complete system. This involves the imple
mentation of the following steps in a sequence (Craig, 1981): 
(1) division of the structure into two or more substructures, 
(2) calculation of the component modes of the individual sub
structures, (3) synthesis of a first few modes of the substruc
tures to obtain and solve a new reduced size (transformed) 
eigenvalue problem, and (4) back transformation of the cal
culated eigenproperties to obtain the original system eigen
properties. The first papers on this subject were by Gladwell 
(1964) and Hurty (1965) and since then several improvements 
have been proposed and the literature on this topic is quite 
rich now (Hurty et al., 1971; Engels and Harcrow, 1981). 

The currently used mode synthesis approaches are essentially 
matrix order reduction techniques. Invariably, they require the 
solution of a second eigenvalue problem of smaller size, which 
provides a first few eigenproperties of the combined system. 
The writers (Suarez and Singh, 1987) have developed an al-

Presently at the Department of General Engineering, University of Puerto 
Rico, Mayaguez, PR 00709. 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED ME

CHANICS. 

Discussion on this paper should be addressed to the Technical Editor, Prof. 
Leon M. Keer, The Technological Institute, Northwestern University, Evanston, 
IL 60208, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by the 
ASME Applied Mechanics Division, Aug. 17, 1987; final revision, Apr. 18, 
1990. 

ternative mode synthesis approach whereby exact and complete 
sets of eigenproperties of the combined system can be obtained 
without conventionally solving a second eigenvalue problem. 
The approach consists of sequentially coupling two subsys
tems, one degree-of-freedom at a time. But this approach has 
some limitations; in particular, it can be used only with spring, 
truss, or beam elements which couple the subsystems. That is, 
its application to generalized finite element models consisting 
of plate, shell, or solid elements is not possible. In this paper, 
we now generalize this approach by carrying out the sequential 
coupling procedure in the modal space. 

Eigenvalue Analysis 
The approach is formulated for the substructure eigenvalues 

obtained with free boundary conditions at the interfaces. Con
sider a system composed of two substructures that we will refer 
to as the/? and s structures, respectively, shown in Figs. 1 and 
2. The p structure is modeled as an np degree-of-freedom 
system described by the stiffness matrix [Kp] and mass matrix 
[Mp]. The s system is modeled as an ns degree-of-freedom 
system with the stiffness matrix [Ks] and mass matrix [Ms]. 
The equations of motion for the free vibration of the uncoupled 
system are 

Mp 0 
0 M, x + 

Kp 0 
0 K, 

x = 0. (1) 

The combined uncoupled system possesses n = np + ns 
degrees-of-freedom. These two subsystems are coupled at m 
degrees-of-freedom. The compatibility of displacements at the 
interface of the two systems can be represented by a set of 
holonomic constraints in the form: 
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+ 
s-SUBSTRUCTURE 

p-SUBSTRUCTURE 

Fig. 1 Free-free truss considered for numerical example 

s-SUBSTRUCTURE 

COMBINED STRUCTURE 

Fig. 2 Frame considered for numerical example 

[B]x = 0 (2) 

where [B] is an (m x ri) dimensional matrix. The equations 
of motion for the two subsystems subjected to the set of 
holonomic constraints can be obtained through Lagrange's 
equations (Meirovitch, 1970) with Lagrange multipliers t\k 

d_ / dLN 

dt \dXi) 

dL V R 
0 A ' * • = ! 

1 

where Bki are the elements of matrix [B], 
of the uncoupled system is defined as 

. . . , n (3) 

The Lagrangian L 

^ 
Mp 

0 
0 

Ms 
1 

0 
0 

Ks 
(4) 

from which we obtain the coupled equations of motion as 

M„ 
0 

0 
Ms x + 

KP 

0 
0 

Ks 

x"~2 ,?'b'=0 (5) 

where we have defined matrix [B] as 

[ 5 f = [ b , b2 b j . (6) 

Equation (5) is the equation of motion of the combined 
system with constraints. The last term of this equation rep
resents the effect of the constraints as free vibration constraint 
forces. There are m terms in the summation, each correspond
ing to the m constraints represented by equation (2). To solve 
the eigenvalue problem corresponding to this equation, we will 
couple the two substructures successively by considering in
creasing number of terms in the summation. That is, at the 
first coupling stage we consider only one term of the sum
mation, at the second stage two terms, and so on till all the 
terms are included. The development of the eigenvalue problem 
at these successive coupling stages is described next. 

First Coupling Stage 

Assuming that the subsystems are connected at only one 
degree-of-freedom, the holonomic constraints of equation (2) 
can be written as 

bfx = 0 (7) 

where bi is an «-dimensional vector with only two nonzero 
entries. The equations of motion for this ad hoc uncoupled 
system are 

Mp 

0 
0 

Ms x + 
KP 
0 

0. 
K 

X-77ib! = 0. (8) 

We introduce in this equation the following transformation 
of coordinates 

% 0 
0 * , 

q = [ t / ]q (9) 

where [*p] and [*J are the matrices of eigenvectors of the p 
and s systems, respectively, obtained with free interface co
ordinates. The eigenvector matrix of t hep system is assumed 
to be normalized such that 

[%f[Mp][%] = [I]. (10) 

A similar normalization scheme is adopted for the s system. 
Substituting equation (9) in (8) and premultiplying by [U]T we 
obtain the following transformed equation 

[/]q+[Ao]q-7nc = 0 (11) 

where 

[A0] 0 A, (12) 

in which [Ap] and [AJ are, respectively, the diagonal matrices 
containing the eigenvalues of the p and 5 systems. Vector c is 
defined as 

c=[U]%. (13) 

If, say, the uth degree-of-freedom of the p structure is con
nected to the uth degree-of-freedom of the 5 structure, the 
elements of vector c are simply defined as 

Ci=UUJ-Unp+vJ; i = l , . . . , n. (14) 

The compatibility condition in equation (7) is also trans
formed into 

c rq = 0 (15) 

which implies that one of the generalized coordinates q can be 
expressed in terms of the remaining coordinates. If qv is the 
dependent coordinate, we can write 

^ = - - e r q (16) 

where the vectors c and q are obtained by eliminating the uth 
elements from the vectors c and q; that is 

(17) 

In view of equation (17) we can also rewrite equation (11) 
as follows 

[/] 0' -yi = 0 (18) 

where [A0] contains the eigenvalues co0; of the uncoupled system 
with the exception of the uth eigenvalue. From the last row of 
the above set of equations we obtain 

1 
Vi = {gv + uovqv) (19) 

which, with the help of equation (16), can be also written 

Substituting equation (20) in equation (18) we obtain 

[ / ]+-
1 

q + [A0]+-2-cc ' q = 0. 

(20) 

(21) 
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The eigenvalue problem associated with the above system of 
equations is 

[ A j + ^ e e #>=x,» [ / ] + ^ e c r W (22) 

where the superscript (1) in equation (22) now associates the 
eigenproperties with the first coupling stage when the two 
substructures are coupled by only one degree-of-freedom. 

Instead of attempting to solve this eigenproblem by con
ventional methods, we will now develop a closed-form expres
sion for the characteristic equation of equation (22) and then 
solve it to obtain the eigenvalues. For each calculated eigen
value, the eigenvector can be obtained from a closed-form 
expression. First, however, we will assume here that neither 
the p nor the 5 structure possess any rigid body mode. The 
case of the free-free uncoupled subsystems with rigid body 
modes will be examined in a later section. 

Eigenvalues and Eigenvectors. By rearranging equation (22) 
in the following form 

^ L £ c ^ ( i ) ; ( 2 3 ) {[Ko\-\f{i\W=-1-

we can solve for ^ directly, as the matrix on the left is diag 
onal 

•2 - X ^ 

<t>) ,(') = 
c2 

c c ^ j " 

where 

8i = c4i-^n; / = ! , . . . , n - 1 . 

(24) 

(25) 

Multiplying by c r and realizing that the dot product (iT<t>jl)) 
is a scalar and thus it can be cancelled out, we obtain: 

1 = 
d 

Equation (26) can be expanded to obtain: 

"x^c? 

Si -X< i r = 0. 

(26) 

(27) 

Realizing that the elements of c are the same as the elements 
of c except for the element c„, the above expression can be 
written more simply as: 

/w = S r ° (28) 

where 5,- is defined by equation (25), but for all / between 1 
and /J. Equation (28) is the characteristic equation of order n 
— 1. It can be easily solved to obtain its roots by a simple 
Newton-Raphson scheme, as described later. 

Once the (72 - 1) eigenvalues of the system are obtained 
from the solution of equation (28), the elements of the eigen
vectors can be obtained directly from equation (24). We choose 
to normalize the eigenvectors fy with respect to the matrix on 
the right-hand side of equation (22). With some simplification, 
we obtain a simple expression for all n elements of the eigen
vector ^ j 1 ' as: 

4 ! ) = - f VI >=l n> y= 1, . . . , « - 1 (29a) 

where 

S (C<A)2 (296) 

The eigenvectors ^ j l ) of the original system, equation (8), 
are then obtained with: 

W^UtoP; j=\, 7 2 = 1 . (30) 

If the subsystems are connected at the «th degree-of-freedom 
of the/) system and the vth degree-of-freedom of the s system, 
it can be verified that the elements of the eigenvectors t/j1' do 
satisfy the following compatibility condition: 

VuJ— Yv+n (31) 

It can be shown from the following transformation that 

x=[* (1 )]z. (32) 

Utilizing the (n x « - 1) modal matrix, [^(1>], containing t/-]" 
in its columns, can indeed decouple equation (8) for the pur
poses of dynamical analysis as 

[7]i+[XJ1)]z = 0. (33) 

Subsequent Coupling Stages 
We now consider a generic case where the two systems are 

connected by, say / degrees-of-freedom. In such a case, the 
equations of motion can be written as follows: 

Mp 

0 
0 

x + 
KP 

0 
0 

x-]>]i|ib,-T„b, = 0. (34> 

For example, / = 2 for the second coupling stage. We introduce 
again the transformation of equation (9): 

x=[£/]q, (35) 

but now we define the transformation matrix [U] in terms of 
the eigenvectors obtained in the preceding coupling stage as 
follows: 

[t/] = [¥"-1>]. (36) 

Matrix [*""l)] is the eigenvector matrix of the system at the 
previous coupling stage, without its yth column; that is, [U] 
is an (n x 72 - / + 1) dimensional matrix. The transformation 
of equation (35) with premultiplication by [U]T leads to the 
following transformed system of equations: 

[U]T Mn 0 
0 M„ 

[U]q + [U]' 
K„ 0 
0 K, 

[U]q 

[Uf l^rnbi-rub, =0 . (37) 

Since [U] is the eigenvector matrix for the previous coupling 
stage, we can show that the first three terms of equation (37) 
reduce to the same decoupled form as equation (33), thereby 
simplifying it as follows: 

[7]q+[A /_1]q-ij,c = 0 (38) 

where [Az-J is a diagonal matrix of dimension (72 - / + 1) 
x (72 - / + 1) containing the eigenvalues obtained at the 
preceding coupling stage. Vector c is now defined as 

c=[U]Tb,. (39) 

Equation (38) is of the same form as equation (11). Thus, 
proceeding as before, we obtain again the characteristic equa
tion (28), except that the summation term is now for only (72 
- / + 1) terms. That is 

n-l+l J. 

/(\)= 2 T=° (4°) 
where c, are the elements of vector c defined in equation (39) 
and 

5, = Xf-'-XJ. (41) 

The roots of this (72 - /)th order polynomial will provide the 
eigenvalues for the /th coupling stage. The eigenvectors of the 
transformed system are still calculated with equation (29) ex
cept that the ranges of the indices are different as: 

•Tj\ ' = 1 . , 7 2 - / + 1 ; y = l , . . . , 72 - / . (42) 
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The eigenvectors of the original system of equation (34) are 
retrieved from the transformation of equation (35). We again 
redefine matrix [U] and vector c according to equations (36) 
and (39), respectively, for the next coupling stage. The process 
continues till the subsystems are coupled by all the m degrees-
of-freedom. 

Rigid Body Modes 
As it was mentioned before, the expressions obtained for 

the eigenvectors in the previous section are not valid for the 
rigid body modes of the combined system. Let's suppose that 
at a certain previous stage of coupling, the combined system 
has nr rigid body modes. Then at the current stage, the ei
genvalue problem in equation (22) for the case X,- = 0 becomes: 

2 

[<4A4>j = ~^f £ 9j\ J= 1 . nr- 1 (43) d 
where 

dj = C%: (44) 

<*W = 0, we cannot Because in this case woi = wo2 = . . 
solve for 0/ as we did previously. However, if we examine the 
first nr rows of equation (43) we observe that 

6j = tT4j=0; j=l, . . . ,nr-l (45) 

which when substituted in the remaining (« - nr) rows of 
equation (43), defines some elements of <j>j as 

4>ij = Q\ i = nr+\, . . . , n-l+1; j= 1, . . . , nr- 1. (46) 

The first nr elements of <j>j are still undefined. However, we 
know that they must satisfy the condition in equation (45). In 
addition, we normalize the eigenvectors with respect to the 
matrix on the right-hand side of equation (22) which, with due 
consideration of equation (45) and (46), requires that 

S w2 1. (47) 

It is straightforward to show that any rigid body mode that 
satisfies equation (45) is automatically orthogonal to the re
maining eigenvectors corresponding to the nonzero frequen
cies. 

In order to define the first nr elements of 4>j, j = 1, . . . , 
nr - 1, satisfying equations (45) and (47), we choose to define 
all but two elements as 

4 = 0; Z=l, . . . , nr-l; i*j; y = l , . . . , nr-l. (48) 

The condition in equation (45) then becomes 

2 £•<£(/ = $j& + $nr,jCm = 0 (49) 

which, with the normalization as in equation (47), provide the 
remaining two elements as 

<t>j,j = 

V^ + cl 
4>m,j = 

V^ :2 + c2 
(50) 

All the elements of the eigenvectors $>,• are now defined. 
However, these eigenvectors, although orthogonal to the re
maining eigenvectors with nonzero frequencies, are not or
thogonal to each other. In order to render these eigenvectors 
orthogonal, the Gram-Schmidt orthogonalization process 
(Meirovitch, 1980) can be easily implemented. Once the nr 
eigenvectors are calculated with equations (46), (48), and (50), 
the orthogonal eigenvectors, identified here as 0 ' , are obtained 
as follows: 

gonalized. Once the eigenvectors $j are computed, they need 
to be renormalized according to equation (47). 

Subsystems With Equal Frequencies 
When subsystems with the same properties, geometry and 

boundary conditions, or some particular subsystems with rigid 
body modes are being coupled for the first time, the eigenvalue 
problem from which the characteristic equation was derived, 
takes a special form that requires a different analysis than 
presented before. To examine this case, we will assume that 
two frequencies o)0i and o>02, in the diagonal matrix [A0] in 
equation (22), are equal. In such a case, the first two terms of 
the characteristic equation (28) will be the same. Thus, the 
characteristic polynomial will be of order (n - I - 1), thereby 
giving only (n - I - 1) roots or eigenvalues. The remaining 
eigenvalue cannot be obtained from this equation. To obtain 
this eigenvalue we subtract the vector cooif/ + l/cjcc7]^- from 
both sides of equation (22) written for the case of u0i = "02 
and rearrange the terms to obtain 

0 
0 
2 2 

O>03 — " 0 1 

2 
" O n " 

2 
" 0 1 

2 
""o i „ „ r 
5 CC +j 

= (X,--o>oi) [ / ] + ? c c r 
<S>, (52) 

The first two rows of the matrix on the left-hand side of the 
above equation are linearly dependent. Thus, the rank of this 
matrix will be less by one, meaning thereby that one of the 
eigenvalues of equation (52) must be zero. That is 

\j — a>oi = 0 or \j = o)0i • (53) 

Therefore, one of the two equal eigenvalues remains unchanged 
after coupling. 

Equation (37) can still be used to calculate the eigenvector 
except for the unchanged eigenvalue since 5t = 0. From equa
tion (52), with Xi = uoi, we obtain 

0 
0 
2 

"03" 
2 

" 0 1 

2 2 
"On — " 0 1 

2 
""oi - « r i 
2 CC </>!. 

(54) 

(55) 

Examining the first two rows we obtain 

£ ^ = 0 

and the remaining rows, in view of equation (55), give 

&,,=0; / = 3 , . . . , n-\ (56) 

The two remaining elements of <j>j have to satisfy the constraint 
conditions (55) 

cT^ = cl4>n + c2$2l=0. (57) 

With the condition of orthonormality of this eigenvector with 
respect to the matrix on the right-hand side of equation (52), 
we also have 

^ 1 ^ 1 = 0 1 , 1 + ^ 2 , 1 = I- (58) 

Equations (57) and (58) are solved to define the remaining 
elements of the eigenvectors as 

<f> 
c2 

i , i " 

V^ +el 
02,1 = 

C\ 

V^ + el 
(59) 

0/=0/-]C (#**)&; J = 2> • • • . nr-l. (51) 

Note that the first eigenvector does not need to be ortho-

Solution of the Characteristic Equation 

The roots of the nonlinear characteristic equation (28) can 
be easily obtained with the standard Newton-Raphson tech-
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Table 1 Eigenvalues of the combined system in Fig. 1 at consecutive 
levels of coupling 

Eigenvalues of 
the uncoupled 
system, x 10' 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.049973 

0.081254 

0.194310 

0.235978 

0.250614 

0.250614 

0.261095 

0.293395 

0.433156 

Initial 
values 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.024986 

0.065613 

0.137782 

0.215144 

0.243296 

0.250614 

0.255855 

0.277245 

0.363276 

1 

Final 
values 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.031557 

0.061785 

0.163995 

0.214741 

0.236146 

0.250614 

0.259793 

0.292431 

0.431174 

Initial 
values 

0.0 

0.0 

0.0 

0.0 

0.0 

0.015758 

0.046671 

0.112890 

0.189368 

0.225444 

0.243380 

0.255203 

0.276112 

0.361803 

Number of connected DOF 

2 

Final 
values 

0.0 

0.0 

0.0 

0.0 

0.0 

0.029742 

0.039715 

0.107997 

0.175430 

0.218191 

0.237574 

0.258597 

0.276274 

0.418120 

3 

Initial 
values 

0.0 

0.0 

0.0 

0.0 

0.014871 

0.034729 

0.073856 

0.141713 

0.196810 

0.227882 

0.248086 

0.267436 

0.347196 

Final 
values 

0.0 

0.0 

0.0 

0.0 

0.029698 

0.038551 

0.107618 

0.151598 

0.216225 

0.229678 

0.255761 

0.275143 

0.417490 

Initial 
values 

0.0 

0.0 

0.0 

0.014849 

0.034124 

0.073084 

0.129608 

0.183912 

0.222952 

0.242720 

0.265452 

0.346317 

4 

Final 
values 

0.0 

0.0 

0.0 

0.026802 

0.030170 

0.074807 

0.128331 

0.155728 

0.223230 

0.232359 

0.268941 

0.293614 

nique (Householder, 1970). Because the derivative/'(X,) of the 
function /(A,) in equation (28) or (40) is always positive, the 
function /(\j) is monotonically increasing in the intervals w2

oj 
< \j < cooj+i- This fact provides us with bounds to check the 
convergence to the proper roots, as well as with initial values 
for the iterative process. Assuming that the eigenvalues ulj at 
the previous stage of coupling are arranged in ascending order 
of their magnitudes to2,! < cô  < . . . < a>o/, the initial trial 
values for the Newton-Raphson algorithm can be obtained as 
follows: 

\ = 
2 2 

oj+i (60) 

If a root is very close to a pole of the function/(X,), the 
root calculated in an iterative step can be larger than ulj+i 
or smaller than wjy. In this situation, the process is restarted 
with the new initial value being taken as the average of the 
previous initial value and the bounding pole. 

If some of the coefficients c,- are zero, the corresponding 
eigenvalues will remain unchanged after the coupling process. 
This can be seen by inspecting the eigenvalue problem in equa
tion (22). For the coefficient ck equal to zero, all the elements 
of the corresponding eigenvector <j>k are zero except <j>kk = 1 
or, in other words, the kt\\ eigenvector \pk of the original system 
and its corresponding eigenvalue will remain unchanged during 
the coupling process. In such a case, therefore, only the ei
genvalues which will change should be considered in the so
lution of the characteristic equation. The bounds for the roots 
of the characteristic equation are now defined only by the 
eigenvalues which will change; that is, by those eigenvalues 
which correspond to the c,- which are different from zero. 

Numerical Results 
The proposed procedure was implemented to obtain the 

eigenproperties of the structures shown in Figs. 1 and 2. The 
area of cross-section, mass density, and modulus of elasticity 
of each member of the truss were taken to be A = 16.0 cm2, 
p = 0.00783 Kg/cm3, E = 210 GPa, respectively. In the ei
genvalue analysis of both substructures, the consistent mass 
matrix was used. 

Table 1 shows the eigenvalues obtained in the synthesis pro
cess at each successive coupling stage. The eigenvalues of the 
uncoupled system are shown in column 1. Seven of these ei
genvalues are zero which correspond to the three rigid body 
modes of substructure 1 and four of substructure 2. The next 
two columns show the initial estimates and the final eigenvalues 
in the first coupling stage calculated according to the proposed 
approach. The initial estimates of the eigenvalues were ob
tained from equation (60). For the rigid body modes the ei
genvectors were calculated according to the method described 
in the section on "rigid body modes." It is noted that at each 
coupling stage the rigid body modes of the combined structures 
are reduced by one. The results shown in the last column of 
the fourth coupling stage now give the eigenvalues of the com
pletely assembled structure. As one would expect, at this stage 
the structure is left with only three rigid body modes. The final 
eigenvalues are exactly the same as those obtained by a direct 
eigenvalue analysis of the combined structure. 

For the structure shown in Fig. 2, the cross-sectional and 
material properties were taken to be uniform for all members 
asM = 17.1 in.2, moment of inertia / = 228.0 in.4, p = 0.105 
x 10"3 kips - sec2/in.4, and E = 30000 ksi. In addition to 
the distributed mass considered in the consistent mass matrix, 
the concentrated masses of 0.5 kips - sec2/in. were also placed 
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Table 2 Frequencies of the combined system in Fig. 2 at consecutive 
levels of coupling 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

Frequencies of 
Uncoupled 
Systems 

1.4323 

1.4323 

4.5071 

4.5071 

15.8433 

15.8433 

52.6289 

52.6289 

67.3723 

67.3723 

122.3776 

122.3776 

150.1312 

150.1312 

155.0171 

155.0171 

230.9212 

230.9212 

m Initial 
Values 

— 
3.3441 

— 
11.6474 

— 
38.8639 

— 
60.4518 

— 
98.7809 

— 
136.9592 

— 
152.5937 

— 
196.6658 

— 
— 

Final 
Values 

1.4323 

4.0917 

4.5071 

14.8268 

15.8433 

52.6275 

52.6289 

67.2342 

67.3725 

81.7651 

122.3776 

126.2673 

150.1312 

155.0165 

155.0171 

230.8127 

230.9212 

— 

Couolinq Staqe 
(2) 

Initial 
Values 

3.3441 

— 
— 

11.6474 

38.8639 

— 
60.4518 

— 
— 

98.7809 

— 
136.9592 

152.5937 

— 
196.6659 

— 
— 
— 

Final 
Values 

2.5609 

4.0917 

14.8268 

15.5141 

51.5294 

52.6275 

65.3453 

67.2342 

81.7651 

121.0358 

126.2673 

150.0695 

154.9007 

155.0165 

228.4974 

230.8127 

— 
— 

(3) 
Initial 
Values 

— 
10.8760 

— 
38.6619 

— 
60.3742 

— 
74.8531 

106.3695 

— 
--

141.3746 

— 
196.6019 

— 
— 
— 
— 

Final • 
Values 

2.5608 

8.1553 

15.5141 

15.6880 

51.5294 

56.3182 

65.3453 

79.8246 

96.9603 

121.0358 

150.0695 

152.1695 

154.9007 

176.7026 

228.4974 

— 
— 
— 

at each node as shown in the figure. The numerical results for 
this structure are presented in Table 2. 

Column 1 shows the frequencies of the two substructures, 
arranged in increasing order of magnitude. Since the two sub
structures are identical and thus have the same frequencies, 
there are pairs of equal frequencies in this column. When the 
two substructures are joined, one of the two equal frequencies 
remains unchanged, as indicated in the paper. The initial es
timates of these frequencies are, therefore, omitted from col
umn 2 in the table. The final eigenvalues calculated for the 
first coupling stage are shown in column 3. In the subsequent 
coupling stages, several other eigenvalues are also seen to re
main unchanged because the corresponding elements of the 
vector c were zero. These unchanged eigenvalues can be iden
tified by the blank space in the columns of the initial estimates. 
The initial estimates of the eigenvalues which will change in 
the coupling process are again calculated by equation (60) as 
the average of the two consecutive eigenvalues obtained in the 
previous coupling stage. In calculating this average, however, 
the eigenvalues which remain unchanged are disregarded, as 
mentioned in the text. It is therefore noticed that in the case 
of this particular structure, there were always some eigenvalues 
which remained unchanged in all three coupling stages. The 
eigenvalues shown in column 7, obtained in the final coupling 
stage, are the true eigenvalues of the combined structure. Again, 
these eigenvalues were exactly the same as those obtained by 
a direct eigenvalue analysis of the combined structures. Once 
the eigenvalues were known, the corresponding eigenvectors 
were calculated by the closed-form expressions given in the 
paper. These were also exactly the same as those obtained by 
a direct eigenvalue analysis. 

As another example, a moderate size problem of a structural 
frame with five bays and five stories was also analyzed by this 
approach. The frame consisted of a total of 110 frame elements 
with 85 unrestrained nodes. Each node had three degrees-of-
freedom, with a total of 255 degrees-of-freedom in the struc
ture. The structure was divided into two identical substruc
tures, each with 45 modes and 135 degrees-of-freedom. The 
synthesis problem, therefore, has 135 equal eigenvalues and 
several instances of unchanged roots requiring special treat

ment, as noted in the paper earlier. The problem was suc
cessfully analyzed by the proposed synthesis scheme, utilizing 
all modes and eigenvalues of the two substructures, on an 
Apollo DN 3000 work station. The eigenvalues and eigenvec
tors of the combined structure obtained by the proposed syn
thesis approach and those obtained by a direct eigenvalue 
analysis of the complete structure were in excellent agreement, 
with some minor differences in the higher digits in only the 
higher eigenvalues. It can also be shown that the roots of the 
characteristic equation developed in the paper are not very 
sensitive to the errors in its coefficients. Since, the coefficients 
are calculated very simply, it is easy to control the error in the 
calculated eigenproperties in a successive step of the proposed 
approach. It is therefore expected that the accuracy of the 
calculated eigenvalues in the proposed approach will be better 
than the accuracy of the eigenvalues calculated by a straight
forward algebraic matrix eigenvalue analysis. 

Concluding Remarks 
A generalized approach is presented for synthezing the ei

genproperties of two structures to obtain the eigenproperties 
of the combined structure. The eigenproperties of the two 
substructures obtained with free boundary conditions at the 
interface are utilized. The two structures are coupled succes
sively one degree-of-freedom at a time. At each coupling stage, 
the eigenvalues of the coupled systems are obtained as the 
solution of a characteristic equation. This characteristic equa
tion is defined in closed-form. The roots of this equation can 
be easily obtained by the Newton-Raphson approach as the 
bounds on each root are precisely known as defined by the 

. Raleigh's inclusion principle. Once the eigenvalues are known, 
the eigenvectors can be calculated by utilizing closed-form 
expressions, also provided in the paper. The eigenproperties 
calculated at a coupling stage are subsequently utilized in the 
next coupling stage. The eigenproperties calculated in the final 
coupling stage, when the substructures are connected at all the 
interfacing degrees-of-freedom, then provide the desired com
bined system eigenproperties. 

The approach can be used with any finite element discre-
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tization of the substructures. The methods to treat the special 
cases involving the rigid body modes and equal frequencies 
are also presented. Numerical examples demonstrating the ap
plication of the proposed method is also given. 

Herein we present a new mode synthesis approach without 
any claim about the computational superiority of the proposed 
method. Such claims can only be verified by solving large 
problems. This approach can provide an exact solution of the 
problem if a complete set of substructures' modes are used. 
However, a set of truncated modes can also be used in the 
approach if only a first few important eigenproperties are to 
be determined. For large eigenvalue problems, the proposed 
computational scheme will require a small memory storage 
requirement than a straightforward eigensolution scheme. 
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A P P E N D I X 
As suggested by an anonymous reviewer, the characteristic 

equation (28) can also be developed quite elegantly as follows. 
For a single coupling case, equation (11) can also be written 
as 

- c 
0 

Its corresponding eigenvalue problem is 

- c 
0 

(61) 

(62) 

Reducing the matrix on the left-hand side of the equation 
(62) to the upper triangular form and setting its determinant 
formed as a product of the diagonal terms to zero will provide 
the characteristic equation (28). This approach avoids the use 
of the quantities with a hat. 
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Multi-Flexible Body Dynamics 
Capturing Motion-Induced 
Stiffness 
This paper presents a multi-flexible-body dynamics formulation incorporating a 
recently developed theory for capturing motion-induced stiffness for an arbitrary 
structure undergoing large rotation and translation accompanied by small vibrations. 
In essence, the method consists of correcting dynamical equations for an arbitrary 
flexible body, unavoidably linearized prematurely in modal coordinates, with gen
eralized active forces due to geometric stiffness corresponding to a system of 12 
inertia forces and 9 inertia couples distributed over the body. Computation of 
geometric stiffness in this way does not require any iterative update. Equations of 
motion are derived by means of Kane's method. A treatment is given for handling 
prescribed motions and calculating interaction forces. Results of simulations of 
motions of three flexible spacecraft, involving stiffening during spinup motion, 
dynamic buckling, and a slewing maneuver, demonstrate the validity and generality 
of the theory. 

1 Introduction 
The subject of simulation of motion of a system of rigid 

bodies connected in a topological tree has reached a stage of 
maturity, thanks to the work of numerous investigators over 
the last 25 years, so that books (Wittenburg, 1977; Roberson 
and Schwertassek, 1988) and efficient computer programs (Ro
senthal and Sherman, 1986; Levinson and Kane, 1990) are now 
available. When the bodies in the system must be considered 
as deformable, the situation is quite different. Public domain 
software (Bodley et al., 1978; Singh et al., 1985) on flexible 
multibody dynamics has been available for some time, and it 
has been widely believed, in the absence of any disclaimers in 
these codes, that they simulate correctly the dynamics of flex
ible bodies over all ranges of motion. Recent simulations with 
rotating beams (Kane et al., 1987) and plates (Banerjee and 
Kane, 1989) have shown that, on the contrary, these codes can 
produce incorrect results such as predicting dynamic softening 
of a rotating structure when dynamic stiffening is to be ex
pected, for all rotational speeds, with the frequency error grow
ing from 0 to 100 percent as the speed grows from zero to the 
fundamental bending frequency. Eke and Laskin (1987), while 
confirming the predictions of Kane et al. (1987) with the sim
ulation of one publicly available software, makes the recom
mendation that for rotation rates that are low compared to 
the fundamental bending vibration frequency, the analyst is 
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better off deleting the erroneous dynamic softening terms from 
the formulations. Similar recommendations are given by Pad-
ilia and von Flotow (1989). In the light of this situation, the 
need for developing multibody formulations that correctly re
flect motion-induced stiffness of arbitrary structures can hardly 
be overemphasized. 

The mechanics of spin-stiffening of beams has long been 
known, see, for example, Bisplinghoff et al. (1955), and Mei-
rovitch (1967). For more general rotating structures, Likins 
(1974) was one of the earliest to suggest the use of geometric 
stiffness augmenting the structural stiffness to correctly rep
resent the dynamic response. The researches of Levinson and 
Kane (1976), Turcic and Midha (1984) and Turcic et al. (1984), 
Modi and Ibrahim (1988), Ider and Amirouche (1989) illustrate 
the use of geometric stiffness. Simo and Vu-Quoc (1986) and 
Housner et al. (1986) capture dynamic stiffening by using non
linear stiffness and mass formulations, respectively, in finite 
element theory. All of these works use the elastic displacements 
at discrete points of a continuum as generalized coordinates; 
with the use of displacement-dependent geometric stiffness, 
this approach becomes unwieldy for large space structures. 
Conversely, the modal approach to representing motion-in
duced stiffness is highly effective from the point of view of 
model reduction. Wu and Haug (1990) use component modes 
and produce coupling between axial deformation and bending, 
necessary for geometric stiffness, by breaking a structure into 
multiple substructures and using constraint conditions and La
grange multipliers in the manner of Bodley et al. (1978); how
ever, this introduces additional modal coordinates for the 
substructures as well as associated multipliers, increasing the 
dimension of the problem and leaving the simulation suscep
tible to constraint violations. Zeiler and Buttrill (1988) consider 
generalized modal stiffness corresponding to geometric stiff-
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Fig. 1(a) A system of hinge-connected rigid and flexible bodies in a 
topological tree 

-frame 
j-frame 

Fig. 1(b) Two hinge-connected adjacent bodies in the topological tree 

ness associated with an approximate representation of the ro
tational inertia force. In a recent paper, Banerjee and Dickens 
(1990) considered geometric stiffness due to a system of 12 
inertia forces and 9 inertia couples, representing the most gen
eral motion of the reference frame, to capture motion-induced 
stiffness for an arbitrary structure. This manner of geometric 
stiffness computation does not require iterative update of the 
geometric stiffness matrix as with nonlinear finite element codes 
(which makes these codes more accurate but also more ex
pensive). 

This paper extends the theory of Baner j ee and Dickens (1990) 
to a multibody formulation, and shows in the process how to 
update existing multibody software to correctly represent dy
namic stiffening. In Section 2, a system of hinge-connected 
flexible bodies in a topological tree is considered and gener
alized speeds are introduced. In Section 3, we review the kin
ematics and generalized inertia force expressions for an 
arbitrary flexible body. In Section 4, the recurrence relations 
for the/'th hinge acceleration and angular acceleration for the 
reference frame of the /'th body are written. The generalized 
active forces due to motion-induced stiffness and structural 
elasticity are given in Section 5. The final form of the flexible 
multibody dynamics equations are given in Section 6 with an 
explicit form of the dynamical "mass matrix"; use of the 
theory for a treatment of prescribed motion and associated 
interaction forces and moments are explained. Application of 
the theory to the simulation of three motions of a flexible 
spacecraft are given at the end. 

2 System Description 
A system of rigid and flexible bodies connected in a topo

logical tree is shown in Fig. 1(a). We number the bodies 
arbitrarily, with an inertial frame denoted as body 0; following 
Huston and Passerello (1980) a topological array is defined 
such that body/' has inboard adjacent body c(j) in the path 
going from body /' to body 0. Thus, for the system of Fig. 
1 (a), we have the array 

8 9 
6 8 

In Fig. 1(b) we show two adjacent bodies Bj and BcU) con
nected at a hinge allowing rotation and translation, with Qj a 
hinge on Bj and Pj the corresponding hinge point on BC{J). 
Reference frames j and pj are attached to Qj and Pj, respec
tively. Following Kane we introduce generalized speeds as mo
tion variables, as many in number as there are degrees-of-

./' 
c(j) 

1 
0 

2 
1 

3 
1 

4 
3 

5 
4 

6 
1 

7 
6 

freedom in the system. If there are Rj rotations along hinge 
axis unit vectors h) (i = 1, ., Rj), and 7} translations along 
unit vectors tj, (i = 1, ., 7}), and if A/,- modal coordinates are 
used to describe the small elastic deformation of body Bj in 
its reference frame /', then the following generalized speeds are 
selected. 

«j= 

"Rj+i~ 

Tj+i-

= tf/pJ 

= v°J/p 

-vi 

ti 
'•% 

U= 

(j = 

(/ = 

= 1, 

= l, 

= 1, 

-,N; / = 

..,N; / = 

-,N; h 

1.-

= 1, 

= 1, 

;Rj) 

-,Tj) 

-Mj) 

where 73/pJ denotes the angular velocity of frame/' in the frame 
Pj fixed at Pj and vQJ/pJ is the velocity of Qj with respect to 
the point Pj (see Fig. 1 (b)). Note that this defines n generalized 
speeds corresponding to the total number of degrees-of-free-
dom of the system, where n is given by 

n=Yi(Rj+Tj + Mj). (2) 
j=i 

3 Kinematics and Generalized Inertia Force for a Single 
Flexible Body 

Let the elastic displacement dj of the body Bj in Fig. 1(b) 
at a generic point G, located relative to Qj by 7, in the unde-
formed configuration, be given in terms of space-dependent 
modal functions <$ and generalized coordinates irf by 

c^^M (3) 

Then, the velocity of G in the inertial frame is written as 

vG=vQJ + Zi>x(ri + dj) + 2 Mil (4) 

where va and vQJ denote the velocity in the inertial frame of 
points G and Qj, respectively, and ~u/ is the inertial angular 
velocity of frame /'. If G is treated as a rigid body rather than 
a material point, then the inertial angular velocity of G is 
written, for small elastic rotations of the body in frame/' given 
in terms of the space-dependent functions \j/it as 

}=^+Yim- (5) 

The partial velocity of G (where for a nodal rigid body G 
stands for its mass center) and the partial angular velocity of 
nodal rigid body G, in the inertial frame, are obtained from 
equations (4) and (5) as (see Kane and Levinson, 1985) 

v?=v?J + Mx(ri + 'di)+Wk^k 0=1 .«) 

« f = wJ' + \W&« 0=1, n) (6) 

where 5,* is the Kronecker delta symbol, having the value unity 
only when the rth system generalized speed is the kth modal 
coordinate rate for the/'th body, and is otherwise zero. Note 
that the velocity expressions in equations (4) and (5) do not 
represent the kinematical constraints of elastic deformation 
and are linear in the modal coordinates; partial velocities and 
partial angular velocities obtained from such prematurely li
nearized equations give rise to incorrect equations. However, 
for an arbitrary flexible body, there is no general way of writing 
the kinematical constraints; the resulting error will be com
pensated for in our consideration of the generalized active 
forces. 

The acceleration of G of body Bj is obtained by differen
tiation in the inertial frame of velocity of G given by equation 
(4) 
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aa = aQJ + aix(rJ + di) + 7Jx&x (ri + di)] nonorthogonal axes one can write the angular velocity of frame 
j as 

+ 2Wx^ltiyj + J]<t>itf< (7) _, "cU) 

The angular acceleration of G of body JB, follows from 
equation (5) as 

aG = ̂  + ^xJ]^J
i+Yim (8) 

The generalized inertia force contribution from body Bj is 
given by 

FJ*=- \ v?-aGdm 

- I Tif-[df-aG+ wax(dT°-wa)\ ( i= l , . . . , « ) . (9) 

With equations (6)-(8) available, the operations indicated in 
equation (9) become straightforward, but massive and ex
tremely laborious. What one must do is perform all the in
tegrations over the spatial domain in equation (9) in such a 
way that the integrands do not contain any time-varying quan
tities. This is done by invoking certain vector-dyadic identities, 
and this yields the modal integrals defined in the Appendix. 
In terms of these integrals, equation (9) can be written as 
follows, where all terms nonlinear in the modal coordinates 
and their time derivatives have been dropped. 

; = i ; = i * = i 

where Oi
lk=pi-JiJ

k (11) 

where \pc{J) (Pj) is the ith modal small rotation at Pf, d{ is the 
time derivative of the kth relative rotation of the hinge at Qj. 
The velocity of Qj can be written assuming 7} translational 
motion at Pj along (possibly) nonorthogonal axes as follows. 

vQj=vQcU)+Z>cU)x 

ac(j) 

-rQcu)pj+ ^ 4>ckU)(PjWk U) 

"c(j) 

+ 2 <t>c
k
U)(Pj)v cU) 

k 
* = 1 

Hc(/> 

5 ^ + 2 ttU)(Pj)nk' U) 

k=\ 

3 

* E j]mA 

• vfi • \ rrtcfti - s W + 2 Vkr(k + Jx zyxs'+i 2 ^ 

+ 2 2^^+^) 
i = i * = i 

where LJ
lk=p{-lj

k. (12) 

Here, 8k is the kth translational degree-of-freedom at the hinge 
point Qj. Equations (11) and (12) provide the mechanism for 
developing expressions for velocities of a point Qj and the 
angular velocity for the y'th reference frame for all bodies Bj 
in the tree structure in Fig. 1(a), starting at body 1. The partial 
velocities needed in equation (9) are obtained from 

Z?i • s>xaQi + V • o? + J] c'kV'k + ^xP • i? + 2 J] TVT,}{• Z? 
* = i * = i 

n 

(13) 

-6« yk-a
QJ + gi

k-^+ J]ei
lkij'l-^-D/

k-^ + 2W- J] 4 ikVl 
/ = i 

M, 

-(M- wv+J] wM) •«'+«'• S wyk^k+2 wm 
J 

k=\ 

+ 03IX 

Mj 

7 
k=\ 

WY+J] W2/k4) •w'+XJ W^i 
k=l 

The remaining variables needed in equation (10), namely, 
aQJ, a1, represent, respectively, the acceleration of point Qj and 
the angular acceleration of the y'th frame; they are obtained 
by differentiation of De and W in the inertial frame N, and 
written on the basis of equation (13) as 

aQjjAjjQj^vQju. + y 

Mj 

I 
k=l 

s'-S W5i^i ^=-r«7=E«fo+/y. dt 
(14) 

"j 

s 
/=1 

+ «* w&k+Y, wtiid) •a'+is'-Yt w^ivi+Yj w91^ 
j 

1=1 

- « ? • mi-^+J^ moM-d 

Note that hJ and / 7 in equation (14) represent terms free of w,-
(/' = 1 n). Use of equations (11)—(14) in equation (10) 
completes the formulation for the rth generalized inertia force 
contribution from they'th flexible body. The system generalized 
inertia force is obtained by summing up these contributions 
over all bodies in the system, 

•2 (wnJ
lk-wnJ

lk)^ (y=l,...,/V; /= l,...,n) (10) 
tf = 2 > f (''=1 «)• 

y'=i 

(15) 

If rotatory inertia is not significant, terms within the angular 
brackets < > are deleted. 

4 Kinematical Recurrence Relations 
In this section we review the recursive relations for Z57, vQJ, 

<?, aQJ needed in equation (10) for body Bj in terms of the 
same kinematical variables for body Bclj). Refer to Fig. 1(b). 
Introducing an orthogonal triad of basis vectors pf fixed to 
the frame pjt and assuming Rj hinge rotations about (possibly) 

5 Generalized Active Force due to Nominal and Mo
tion-Induced Stiffness 

In this section we develop the expressions for the generalized 
active forces due to nominal structural stiffness and motion 
induced (geometric) stiffness. Because both these quantities 
are typically developed via the finite element method that deals 
with matrices, we will use the matrix notation here. 

Generalized active forces due to nominal, structural elasticity 
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are customarily written on the basis of the component modes 
of they'th body in the matrix form, 

F{= -&TKJ„&rri= - A i V (16) 

where ^ is the modal matrix (with superscript T denoting 
transpose), KJ„ is the stiffness matrix in the reference state, and 
1/ is the (Mj x 1) matrix of modal coordinates for the y'th 
body. The matrix Ai premultiplying if in equation (16) is di
agonal if the columns of & are mass-normalized vibration 
modes, and nondiagonal if constraint modes are used in ad
dition to the normal modes (Craig, 1981). It should be em
phasized here that the modes reflect deformations about the 
undeformed state of the body; if on the other hand, the equi
librium state of the body corresponds to a prestressed state, 
then modes have to be computed with this state as a reference. 

Motion-induced stiffness, as conceived by Banerjee and 
Dickens (1990), is a special case of geometric or initial stress 
stiffness (Cook, 1985) caused by inertia loading. It has its origin 
in the strain energy term, 

= tNLOgdv 
JB 

(17) 

where a0 is the reference state stress (matrix) due to inertia 
loading and eNL is a matrix representing the nonlinear terms 
in the Lagrangian strain tensor, 

= (ffi 

eNL~ 

<70 = 

l /2(wf i i + H'2,i + w f j ) 

l /2(Wi ] 2 +W2, 2 + wja) 

l/2(W2
Ui+W2J+wjj) 

Wl,}Wii2+ W2ylW2,2+ WX1WX2 I 
wl, 3^1,1 + ^2,3^2,1 + W ^ M ^ ! 

VW1]2WU + W2,2W2A + W3i2W3%U 

(IS) 

Here, wu w2, w3 are the components in the orthogonal 1, 2, 
and 3-directions of the elastic displacement w, and a subscript 
preceded by a comma denotes differentiation with respect to 
that coordinate. In the standard procedure of the finite element 
method (Zienkiewicz, 1977) one assumes interpolation func
tions N(x, y, z) between the nodal displacements d for the 
displacement at a point within an element, and derives ele
mental stiffness matrices based on the potential energy func
tion. In this case equation (17) leads to the geometric or initial 
stress stiffness matrix Id in 

M=[N(Xl,x2,x3)]{d} 

Ki Nj. Nj 
"HO?} "l2(/3 0"l3c/3 

"l2(/3 "220^3 <?23(/3 

"l3(/3 "230I3 "33(/3 

N,2 \ dv 

(19) 

where 73 is a 3 x 3 identity matrix. In a finite element program 
such as NASTRAN or EISI-EAL (Whetstone, 1983), the ref
erence stress stiffness matrix is computed by first evaluating 
the stresses due to a reference state distributed loading, and 
then generating elemental stiffness matrices as per equation 
(19), and finally assembling the latter into a global geometric 
stiffness matrix for the structure. The distributed loading in 
this case is the system of inertia forces and inertia torques 
associated with the motion itself. To produce a theory that is 
finally linear in the modal coordinates (in consistency with the 
small elastic displacement assumption) we consider inertia force 
and torque expressions that involve only zeroth-oijder terms 
in the modal coordinates. In other words, we neglect the terms 
related to elastic displacement in equations (6)-(8) to develop 
expressions for the inertia force and torque on a nodal rigid 
body G in body j . 

fjG = -dm[aQJ + a'x? + 7Jx(aixr')] 

?'°* = - [dP • •&' + IJxdP • a1] (20) 

Equation (20) is written in the matrix form after introducing 

VT={bi
iy2y,] U=\,...,N) 

Cu(i,k) = b)-blk. (21) 

We now define a (« x 1) column matrix U formed by stacking 
the generalized speeds given by equation (1) for all the bodies 
in the system. Then equation (13) is rewritten so as to introduce 
the partial velocity matrix for Qj and the partial angular ve
locity matrix for frame-./, 

Equation (14) is now written as 

aQJ=biTcl(v$JU+ti) 

ai = biTCji(JuU+fJ). 

At this stage we introduce scalars zj, / = 1, 
...,JV: 

ri = xijjl+xi
2b

i
2 + xiM 

0 

6? = 

15; j 

(22) 

(23) 

= 1, 

z3 

- * 3 

0 
Z2 

-z{ 
0 

4 5̂ 4 
£5 ^7 4 

•Zfc 4 4 
••Cla/uiCij 

zio=2i*i 

z i i=Z2Z3 

^12 = ^ 1 

Zi 3 =(*i) 2 - (Z2) 2 

Zi 4 =(22 ) 2 - (Z3 ) 2 

z i 5 =(z3) 2 - ( z i ) 2 -
Now, the matrix form of the inertia force in equation (20) 

can be written as representing the following set of 12 distributed 
loadings: 

(24) 

= -dm[I3 xj3 x2I3 X3I3] 

(25) 

where At (i = 1, .., 12) are expressed in terms of the previous 
definitions and e,, the rth row of the 3 x 3 unity matrix I3, as 

{Ai\=cUv°JU+h/) 

Ai = zis + e3CljUu+fJ) 

Ai^ti-e^fjUu+f) 
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A^ti-eiCfjUO+f) 

Ai = z>s + eiCljUu+fJ) 

A\0 = 4 + e2Cfj(JuU+fJ) 

Ai^ti-eiCfjUu+f) 

A{2 = 4. (26) 

The inertia torque on a nodal rigid body, given in equation 
(20), can be similarly rewritten in terms of the inertia com
ponents of the nodal body in frame-./', as constituting the fol
lowing set of nine torque loadings on the body. 

ourselves only to forces associated with structural elasticity 
and motion-induced stiffness, we have 

(31) 

Kane's dynamical equations (Kane and Levinson, 1985) for 
the system are 

F,+F, = 0 ( i = l n). (32) 

-M 
III 

hi 
In 

In In 
hi hi 
hi hi 

hi 
-hi 

hi —hi 

hi ~ hi 
hi 
- 7 1 3 

-hi 
hi—hi 

hi 

0 
0 

hi 

hi 
0 
0 

0 

hi 
0 

Considering the forms of equations (14) embedded in equa
tions (10), and of equations (26) and (28) in equations (29), it 
is seen that equations (32) can be written in the matrix form 

DU+E=Q. (33) 

The coefficient matrix D is unsymmetric because of accel-

(27) 

where Ah (i = 13, ..., 21) are defined as 

\AJ
U \=cl{dau+h/) 

V*is + / = 4 + i (Z'=l,...,6). 
(28) 

With the force and torque loadings given by equations (25) 
and (27), the finite element code has to generate geometric 
stiffness matrices K^ for unit values of each of Ah (i = 1, 
..., 21); these are premultiplied by $ r and postmultiplied by 
$ to yield the generalized geometric stiffness S ( , ), (/ = 1, ..., 
21); the time-varying nature of At is accounted for in the 
multibody computer program. This produces the generalized 
active force due to motion induced stiffness in the modal co
ordinates of theyth body in the form of the matrix equations, 

F^-^AWW. (29) 

Finally, the scalar form of the generalized force due to nom
inal and motion-induced stiffness is written using equations 
(16) and (29) as 

^=-*y*Il Mi ill) + /-I ^m('')^m r/l ( i = l «) . (30) 

Recall that the index of the second summation in equation 
(30) goes only up to 12 if rotatory inertia is ignored. System 
generalized active forces are obtained by summing individual 
body contributions over all bodies, a step that accomplishes 
the elimination of all non working constraint forces. Restricting 

eration dependent stiffness and is a function of the generalized 
coordinates, while the column matrix £ is a function of both 
the generalized coordinates and the generalized speeds. 

6 Treatment of Prescribed Motion and Internal Forces 

Here we consider two types of problems that can be treated 
alike. In one, relative motion between two contiguous bodies 
may be prescribed and the interaction force required to realize 
this motion is to be found; in another, the nonworking internal 
force at a joint of the structure may be of interest. If some of 
the generalized coordinates are prescribed, which means pre
scribing the corresponding generalized speeds and their deriv
atives, then equation (33) can be written in the partitioned 
marix form as follows, with a new term added to represent 
the generalized active forces due to the (working) interaction 
forces needed to realize the prescribed motion. 

Dff DfP 

DPf DPP 

U, 
UL 

'/ = . 
EPf 

(34) 

Here, subscripts / and p are associated with free and pre
scribed variables. The method of solution proceeds in the steps 

DffUf= -DffU„-E, Jffuf '//UP- afp 

F= - [DpfDpp] -E, •pf-
(35) 

For our choice of generalized speeds, which are time deriv
atives of relative angles and distances (see equation (1)), the 
elements of the column matrix F are directly the torques and 
forces that do work over the prescribed motion. If the elastic 
displacement is prescribed as in an antenna shape control prob
lem, F = <&Tf, where / is a column matrix describing the 
actuator force distribution over the finite element nodal degrees 

Fig. 2 A spacecraft consisting of two identical trusses attached to a 
rigid body 
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Fig. 4 Dynamic buckling of truss under translational acceleration (solid 
line: present theory; dashed line: theory with no geometric stiffness) 

of freedom, in such a case a least square solution to /can be 
found by the use of a pseudo-inverse of $ r . 

If the internal force at a hinge point in a structure is of 
interest, the hinge is assigned degrees-of-freedom and asso
ciated interaction forces and couples such that these forces 
and couples do work when motion involving those degrees-of-
freedom takes place. This prescribed motion is subsequently 
set equal to zero. The interaction forces are found from equa
tion (35). 

7 Simulation Results 
To establish the correctness and generality of the foregoing 

theory, we have performed motion simulatibns for three space
craft problems, each bringing out a special feature of the the
ory. The first problem is that of spinup motion of a spacecraft 
(see Fig. 2) consisting of a rigid body to which two identical 
trusses are attached. Each truss is 12-m long and consists of 
tubular members interconnected as shown at 21 joints; the 
cross-section of the truss is a right-isosceles triangle, the mem

bers at the right angle being 2-m long. Young's modulus for 
all members is 109 N/m2, the cross-sectional area of each mem
ber is 8.46 X 10~4 m2 and each member has a mass density 
104 kg/m3. The rigid body has a mass of 104 kg, and a spin-
axis moment of inertia of 1200 kg-m2. The angular velocity of 
the rigid body in spinup is prescribed as follows,_where co is 
the angular speed in simple spin along the vector &3, Q is the 
steady-state spin speed, and T is the rise time, 

n , T . 2itt 

7 V - S s i n T ,t<T 

= Q ,t>T. (36) 
The vibration modes of the truss were obtained by means 

of the EAL (Whetstone, 1983) finite element program. The 
first ten modes for each truss are included with the lowest in-
plane frequency (which is the second-mode frequency of the 
truss) of 0.592 Hz or 3.72 rad/sec. The spinup speed is pur
posefully chosen at 4 rad/sec to be higher than this lowest 
frequency to accentuate the capture of motion-induced stiff-
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Fig. 6 Dynamic stiffening of the truss under tension due to translational 
acceleration (solid line: present theory; dashed line: theory with no geo
metric stiffness) 

ness in this formulation; formulations not having any provision 
of geometric stiffness are known (see Kane et al., 1987) to 
produce unbounded response at spinup speeds exceeding the 
fundamental bending vibration frequency. The spinup speed 
in this case is attained over a rise time of 50 sees. The solid 
line in Fig. 3 shows the ft2-direction tip deflection of the right-
corner point of one truss at its free end. Note that these results 
are the same for both trusses in this case. The response may 
be recognized as the typical signature of dynamic stiffening of 
a structure, see for example, (Kane et al., 1987; Banerjee and 
Kane, 1989; Banerjee and Dickens, 1990). The dashed line in 
Fig. 3 shows the incorrect, unbounded response that is obtained 
when the geometric stiffness terms are omitted from equation 
(30). 

Consideration of motion-induced stiffness in the present 
theory allows one to represent dynamic weakening and incip
ient buckling under appropriate conditions. To demonstrate 
this, we considered the problem of rectilinear motion of the 

Fig. 7 A space crane with three rigid body degrees-of-freedom in a 
slewing maneuver 

system in Fig. 2, with the speed of the mass center of the rigid 
body given by equation (36) with co now standing for speed in 
translation along the vector &,, and Q the maximum speed 
attained. The maximum acceleration is then given by 252/T. 
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Fig. 8 Elastic rotation due to bending at the tip of the end truss during 
slewing of the space crane 
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Fig. 9 Torsional rotation at the end of the inner truss during slewing 
of the space crane 

The truss at the right end of the rigid body is now in dynamic 
compression, while the truss at the left end is in tension. The 
critical buckling acceleration for a uniform, constant loading 
applied at all nodes of the truss is computed by the EAL 
(Whetstone,_1983) finite element code as 53.6 m/s2. Figure 4 
shows the 63-direction tip deflection of the truss under 
compression. Here, we clearly see the evolution of buckling 
when the maximum acceleration during speedup corresponds 
to the critical acceleration. The solid line correctly demon
strates the expected large deflections of the buckling truss. The 
dashed line shows the erroneous solution with no geometric 
stiffness terms in equation (30). 

Figures 5 and 6 demonstrate the expected softening (at the 
compression end) and stiffening (at the tension end) for a case 
where the system is accelerated to 75 percent of the critical 
buckling acceleration. Once again, the 63-directional deflec
tions are plotted as a solid line for the correct solution and as 
a dashed line for the solution ignoring geometric stiffness. 
Figure 5 shows a larger deformation, indicating a softer struc- Fig. 10 Animation of the slewing maneuver for the space crane 
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ture, as compared to the incorrect result. On the other hand, 
the truss under dynamic tension shows that the correct solution 
corresponds to a stiffer structure than the incorrect solution 
predicts. In passing, note that the dashed line curves in Figs. 
3-6, given by a formulation in which the geometric stiffness 
terms were deleted from our present formulation, effectively 
predict the response that is expected to be given by public 
domain software that do not have any provision for dynamic 
stiffness for an arbitrary structure. 

Kane et al. (1989) point out the importance of accounting 
for motion-induced stiffness for a slewing maneuver of a flex
ible body and documents a case where lack of such stiffness 
results in a 180-deg phase error in the response. Accordingly, 
we investigate a slewing maneuver with the present formulation 
as it incorporates motion-induced stiffness for an arbitrary 
structure. Figure 7 shows a space crane consisting of a rigid 
body with two hinge-connected articulated trusses. 

We assume that the rigid body undergoes a simple rotation 
through an angle qt in inertial space about the axis shown, 
while the trusses go through the relative angles q2 and q3. In 
a repositioning maneuver, the commanded values of these an
gles are qu, q2c, and <73c, respectively, and the following joint 
torques are applied at the hinges to realize the desired com
mands: 

Ti = ki(qic-qj)-ciqi (=1,3. (37) 
Initially, the angles are all equal to zero, corresponding to 

both trusses being aligned in the plane of rotation of the base 
body. The commanded angles use the integral of the expression 
in equation (36) to reposition each body such that all three 
relative angles go from zero to 90 deg in 100 sec. The control 
gains in equation (37) are chosen for the' 'worst case" or largest 
effective inertia at the respective revolute joints, for a band
width of 0.1 Hz and damping factor of 0.707. This controller 
bandwidth is below the first natural frequency of the synthe
sized system in the initial configuration. 

The data for an individual truss used in the previous two 
problems are also used here. However, a change is made to 
the inner truss by assigning a large stiffness at the free end. 
This is done to model a possible gimbal fixture that attaches 
to all three nodes of the truss tip, so that, the three nodes are 
"fixed" in a plane. The modal data used for the inner beam 
include the first ten fixed-fixed natural modes and six con
straint modes (Craig, 1981) representing unit displacements 
for this end plane. With three rigid-body motion freedoms and 
ten modes for the outboard truss, this represents a system 
having 29 degrees-of-freedom. 

Figure 8 shows the rotation due to bending at the free end 
of the second truss at the end of the maneuver. Figure 9 displays 
the angle of twist at the end of the inner truss at the elbow. 
Plots such as these can obviously be used to assess control-
structure interactions corresponding to various control law 
designs for meeting a specified control objective. Finally, an 
animation of the motion of the structure during the reposi
tioning maneuver is shown in Fig. 10, where the structure, 
initially in the plane of the paper, comes out of the plane 
during the maneuver. 

Conclusion 
The illustrative examples given here establish the validity 

and generality of the theory presented in this paper for cap: 
turing motion-induced stiffness (or softness) in a hinge-con
nected system of arbitrary flexible bodies undergoing large 
rotation and translation. The formulation consists of correct
ing flexible body dynamical equations, unavoidably linearized 
prematurely in modal coordinates, through the addition of 
generalized active forces associated with geometric stiffness 
due to a system of 12 inertia forces and 9 inertia couples that 
corresponds to the most general motion of the reference frame 

of the body. Computation of geometric stiffness in this way 
does not require displacement-dependent updates, and is pro
duced by online multiplication, by the values of the actual 
inertia forces and couples, of precomputed geometric stiffness 
matrices for unit values of these inertia forces and couples. It 
has been shown that the present formulation captures dynamic 
stiffening, which is at the heart of producing correct simulation 
of multi-flexible body dynamics, while making use of vibration 
modes to reduce the number of coordinates. Existing for
mulations for dynamics of a system of arbitrary flexible bodies 
reproduce dynamic stiffening either by introducing additional 
coordinates and enforcing constraints (a procedure susceptible 
to constraint violation) or by introducing geometric stiffness 
in a nonlinear finite element approach requiring iterative up
dates. Both these methods use large numbers of dependent 
variables, and hence require excessive computations. The con
tribution of the present paper in producing correct simulations 
of large motions of multiflexible-body systems with reduced-
order modal models of the structures is significant in this 
context. 
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A P P E N D I X 

Modal Integrals Used in Equation (10) 
When certain vector-dyadic identities are used in carrying 

out the operations indicated in equation (9), we get the fol
lowing modal integrals reported in equation (10). Here, all 
integrations are over the volume occupied by body &; the 
ranges of the indices are: 0' = 1. •••» W, (/, k = 1, ..., M,); 
superscript * on a dyadic indicates its transpose. 

1. y k = J <j>{ dm 

2. V = ( Vdm + J] bfoi 
J <t=i 

3. cJ
k=\rJxWk 

4. di^^WixWk 
Mj _ 

5. gi=H+J]dJ
lkvi 

dm 

dm 

dm 

7. Nj= 1 l(rJ-Wi)0-rj^dm 

8. V = \ [(rJ-rJ)U-rrJ]dm+ J] (^j + Nj )rrj 

9. O J = / V J + | ] , , | J \&k-W\U-MV, dm. 

The following additional integrals need to be considered only 
if rotatory inertia at the nodes is taken into account. Here, 
the modal expansion of the nodal moment of inertia dyadic 
involves a coordinate transformation representing small elastic 
rotations. We also introduce a skew-symmetric matrix 4/k 
formedwith the measure numbers of the small elastic rotation 
vector i/i, just as SiJ is formed out of the measure numbers of 
Zij in equation (24). 

10. W\J= \dii 
Mj 

11. W2{ = f 7l{, where dlj = dIJ
0+J] dIJ

kriJ
k 

k=l 

12. WVk: 

13. M i = J 5 ? i - $ 

14. W5i - I dl{ x fk 

15. W6{=] U-dli 

16. Wlj
lk=^J

rdIJ
k 

17. W8{t=^&dJi-Ji 

j Wrdli-Wk 

= j $0-19. W10{ 

20. WUjk= j (dIJ
0-t

j,)xH 

2i. M I i = J ( 5 7 w ? W i . 

Integrals numbered 7, 8,9 are obtained by applying the identity 
ax (b xc) = [(c-a)U-ca\-b 

where U is a 3 x 3 unity dyadic. Integrals 12, 17, 19 are 
obtained by using the following vector-dyadic relations which 
can be verified by expansion 

A-(bxc) = b-CA* 

C'dxA-b=-d-CA*-b 

where C is the skew-symmetric matrix formed out of the com
ponents of c, and A is a dyadic. 
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A Modified Transfer Matrix 
Method for Linear Rotor-Bearing 
Systems 
The steady-state responses of linear flexible rotor-bearing systems are analyzed by 
the modified transfer matrix method. The transfer matrix has the advantage of 
solving the problems in frequency domain with fixed matrix size. This makes the 
method more economical in analyzing a large degree-of-freedom rotor system than 
many time-marching integrating methods. In this paper, the modifications of transfer 
matrix method include that the transfer matrix of shaft is derived from the "con
tinuous system" concept instead of conventional "lumped system" concept, and 
the paper tries to extend the transfer matrix method to fit synchronous elliptical 
orbit and nonsynchronous multi-lobed whirling orbit. To demonstrate the appli
cations of the method, three examples are presented; two synchronous and one 
nonsynchronous. 

Introduction 
Rotor dynamics plays an important role in many fields of 

engineering, such as the gas and steam turbines, turbogener
ators, reciprocating and centrifugal compressors. On account 
of the ever-increasing demands for high power, high speed, 
and light weight which are the main reasons of failure in per
formances and fatigue in structures of the rotor-bearing sys
tems, the designers need to have some new techniques for the 
prediction of critical speeds, unbalance responses, and thresh
old speeds of instability for synchronous and nonsynchronous 
whirling. 

For the linearized model, analysis techniques to estimate the 
dynamic characteristics of rotor systems have been fairly well 
established. Currently, there are three main methods to analyze 
rotor bearing systems, i.e., finite element method, mode syn
thesis method, and transfer matrix method. The transfer matrix 
method solves dynamic problems in the frequency domain that 
makes itself suitable to study the steady-state behavior of the 
rotor with the advantages of small computer memory require
ment and satisfactory accuracy. Because the equations of mo
tion derived by such a method are not in explicitly written 
form, it is also useful in optimizing eigensolutions for adjusting 
design factors. 

The transfer matrix method was first proposed by Prohl 
(1945). Later, the effects of damping and stiffness of the fluid 
film bearing were included by Koenig (1961) and Guenther 
and Lovejoy (1961). Lund (1974) and Bansal and Kirk (1975) 
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applied the transfer matrix method in modal analysis for cal
culating damped natural frequencies and examining the sta
bility of flexible rotors supported by fluid film bearings. Lund 
(1980) presented a scheme for estimating the sensitivity of the 
critical speeds of a rotor to changes in the design factors. In 
the aforementioned papers, the rotor-bearing system is mod
eled as a connection of shaft "station" which is normally 
considered to consist of a mass plus the shaft section imme
diately to its right. Then, one assigns degrees-of-freedom (co
ordinates) at the junctions between the stations (i.e., at each 
concentrated mass). The linear differential equations are writ
ten for each station and are arranged in matrix form. A single 
transfer matrix, which fully represents the entire system, can 
be obtained by multiplying together all the transfer matrices 
for the system. 

Lund and Orcutt (1967) modified the transfer matrix method 
by allowing a continuous representation of the shaft and in
vestigating the unbalance vibrations of a rotor analytically and 
experimentally. In their work, it is assumed that the effects of 
rotary inertia and gyroscopic moment are neglected in the shaft 
section. Furthermore, since only eight state variables are con
sidered, the general ellipse of whirling orbits with arbitrary tilt 
could not be obtained. Gu (1986) proposed an improved trans
fer matrix-direct integration (ITMDI) method for rotor dy
namics. He attempted to combine transfer matrix and direct 
integration methods while incorporating the advantages of 
both. The assumptions he made that the whirling orbits are 
circular and that the bearings have no damping effect are not 
realistic. In practice, the fact that the bearings may possess 
considerable damping and anisotropic characteristics, or that 
the cross-sections of shaft and disk may have asymmetric iner
tias of moment, would cause the induced whirling orbits to be 
elliptical in general (Lund, 1974, pp. 525-533). 

In this work, attempts have been made to represent the 
transfer matrix of shaft by a continuous system instead of the 
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lumped system representation and to describe the whirling orbit 
of a rotor system in a general way. The rotary inertia, gyro
scopic, and transverse shear effects are included. Small de
flections are assumed throughout the derivation of the analysis. 
Material damping in the shaft and external damping effects, 
such as air resistance, are not included in the formulation. 
Three examples are presented to show the applicability of the 
modified transfer matrix for steady-state analysis in both syn
chronous and nonsynchronous whirlings. 

Transfer Matrix Analysis 
1 Modified Transfer Matrix for an Uniform Shaft. From 

the Timoshenko's beam theory, the equations of motion of a 
uniform and homogeneous shaft are given in Eshleman and 
Eubanks (1969) and written down as follows: In the XZ-plane 
it is 

3Z4" 
_ + £ 

KG E 

dAX d*X 
dZ2dt2 + KGE 3f4 

pA dzX 2pa> 
"~E 

d'Y d'Y 
EI dt2 E \dZ2dt KG dt3 

The motion equation of shaft in the KZ-plane is 

= 0. (la) 

dZ4' KG E 

d4Y d"X 

dzW KGE dt4 

pA d2Y 2po> 

EI dt2 E 

d3X p d3X 

dZ'dt KG df 
= 0. (lb) 

Because the synchronous whirling orbit is elliptical in gen
eral, the solutions of two linear differential equations (LDE) 
(la) and (lb) can be represented in the following form 

X(Z, t) = Xc(Z) cos Ut + Xs(Z) sin Qt 

Y(Z, t)= YC(Z) cos Qt+ YS(Z) sin Qt. (2) 

In the XZ-plane, 

d4X pjr p » 

E~ + KG 

d2X 

dZ2~* 
Vn4 pAQ2\ 

X 
\KGE EI J 

j2paQd2Y j2cop2Q3 

E dZ2 KGE 
Y=0. (3d) 

In the yZ-plane, 

d*Y 

12* 
psr ptt 
E +KG 

\ d^Y /p2Q4 pAQ2\ -

'/ dZ2 + \KGE EI ) 

j2po)Q d2X j2up2tf ^ n 
_| _ _|_ ______ J£ — (J ̂  

E dZ1 KGE 

The solutions of equations (3) are in the forms of 

X(Z) = Xc+jXs= Uc e
xz +JUS e

xz 

Y(Z) = Yc+j Ys= Vc e
xz+JVs exz 

(3b) 

(4) 

where Uc, Us, Vc, and Vs are the arbitrary real constants, and 
X is characteristic value w.r.t., a specific natural mode. Then, 
by substituting equation (4) into (3) and separating the real 
part and imaginary part, the four algebraic equations are ob
tained. For Uc, Us, Fcand Ks being nontrivial, the characteristic 
equations become 

x4+/x2+g 
0 

0 

-(h\2 + k) 

0 

A 4 +/X 2 + £ 

h\2 + k 

0 

0 

h\2 + k 

X 4 +/X 2 + g 

0 

-(h\2 + k) 

0 

0 

x4+/x2+g 
(5) 

where 

ptf pfi2^ 
J E + K G ' 8 ' 

p2fi4 p ^ Q 2 , 2pwQ , 2wp2Q3 

KGE EI 
; h = ——, k = 

KGE 

The representations shown above are steady-state solutions of 
the LDE. The whirling orbits due to these displacement func
tions are ellipses. It is noted that Xc, Xs, Yc, and Ys are the 
mode functions. The representations of the other state vari
ables, i.e., slopes, moments, and shear forces are the same as 
those of X and Y. Their coefficients are ac, f3c, Mxc, Myc, Qxc, 
Qyc, and as, ft, Mxs, Mys, Qxs, Qys associated to respective 
cosine terms and sine terms in the XY or YZ-plane. 

Substituting equations (2) into (1), then separating the terms 
associated with cos Qt and sin Qt, respectively, would result in 
four homogeneous equations. Furthermore, they can be com
bined into two complex equations_ by introducing the complex 
variables, X = Xc + j Xs, and Y = Yc + j Ys. 

in which Q is replaced by co when the whirling is synchronous; 
otherwise, Q is substituted by nw when the whirling is non-
synchronous. It can be shown that the roots of the character
istic function of equation (5) are 

X = ± X„, ±j\b, ± Xc, ±yAd 

for a constant value of oi. Normally, the characteristic roots 
of the Timoshenko's beam are not much different from those 
of Euler's beam, and they are not equal to each other (Gu, 
1986). If we substitute eigenvalues into the characteristic equa
tions the relations of Vc = Us, and Vs = - Uc for X0 or \b, 
and Vc = - Us, and Vs = Uc for Xc or Xd are obtained. 
Therefore, the mode functions can be written as follows: 

X, Y = 
E = 

G, K = 
a, 0 = 

M = 
Q = 
A = 
P = 

/, J = 

h = 
^d> Jp ~ 

deflection in XOZ and YOZ-plane 
Young's modulus 
shear modulus and shear factor 
slope in XOZ and TOZ-plane 
bending moment 
shearing force 
cross-section area of shaft 
density 
transverse and polar area moment of 
inertia of the shaft 
thickness of disk 
transverse and polar mass moment of 
inertia of the disk 

01, Q 

e 
" x x , **yyt ^xy> ^-yx 

C C C C 
^xxt ^Jyy> '-'xy* *^yx 

Subscripts 
x, y 
b, t 
r, I 
c, s 
0, n 

= rotating and whirling speed, respec
tively 

= eccentricity of disk 
= spring constants of bearing 
= damping coefficients of bearing 

= in^TZ, FZ-plane 
= caused by bending, shearing 
= right, left 
= associated to cosine and sine terms 
= stage number 
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Xc (Z) = A !CoshX„Z + A2smh\aZ+A3cos\bZ + ^44sinX6Z 

+ A5cosh\cZ+A6smh\cZ + v47cosXrfZ + y48sinXrfZ 

Xs (Z) = fiiCoshX^+£2sinhXaZ + 53cosXftZ + 54sinX6Z 

+ 55coshXcZ + 56sinhXcZ + 57cosXrfZ + 58sinXdZ 

Yc (Z) = B^oshXaZ+fi2sinhXaZ + 53cosXAZ + j54sinX6Z 

- B5coshXcZ - fi6sinhXcZ - 57cosXdZ - 58sinXrfZ 

Ys (Z) = - A !COshXaZ - y42sinhX„Z - ,43cosXAZ - ,44sinXftZ 

+ A 5coshXcZ+A 6sinhXcZ + ̂ 47cosXdZ+A 8sinXdZ. 

(6) 
The real constants, A; and B,, which can be expressed in terms 
of the boundary conditions at the left end of the shaft (i.e., 
Z = 0), are shown as follows: 

Xc(0) 

X"c (0) 

X'"c (0) 

or, in the simplified form as 

Similarly, 

Y, (L) 

Xc(Lj 

YC(L) 

Hi H2 

-Hi H2 

Hi 

Hi 

H2 

-H2 

lA) = [Ha] {A). 

[B} = [Hb] {B} 

(8a) 

m 
Substituting (7a) into (8a), and (7b) into (86), we obtain 

Xc (L) 

Ys (L)_ 
= [Ha] [Ma] 

~XC (0)~ 

_Y, (0) 

~NU Na' 

_ ̂ 2 1 ^ 2 2 _ 

"X c (0)~ 

. Y * ( 0 ) . 
(9a) 

and 

Y,(0) 

Yi (0) 

Y"s (0) 

r - (0) 

1 

0 

x> 
0 

- 1 

0 

-xa 

0 

0 

xfl 
0 

xa 

0 

-x f l 

0 

-xa 

1 

0 

-xj 
0 

- 1 

0 

x? 
0 

0 

x6 
0 

-xS 
0 

-x6 
0 

xl 

1 

0 

x? 
0 

1 

0 

x? 
0 

0 

\ 

0 

xc 

0 

Xc 

0 

x? 

1 

0 

-xS 
0 

1 

0 

-xj 
0 

0 

xrf 

0 

-xj 
0 

xrf 

0 

-xj 

^4i 

^ 2 

A* 

For simplification, the following expression is introduced 

Y,(0) 

M, : M 2 

-Af r M2 

[A)=[Ma] M ] (7a) 

Similarly, the relationships between Xs (0), 
and B, are written as 

•, YA0), 

Xs(0) 
Yc(0) 

M, M2 

M, - M 2 
( 5 ) = [ M J (5) (76) 

From equations (7), the coefficients of mode functions, which 
are in terms of deflections and their derivatives at Z = 0, are 
obtained by premultiplication of [M a]" ' or [Mb] ~' in both sides 
of equation (7). Let cosh XaZ = C,, sinh \aL = C2, cos \tL 
= C3, sin XfcL = C4, cosh XCZ = C5, sinh \,JL = C6, cos \dL 
= C7, sin XrfZ- = C8. The deflections and their derivatives at 
Z = L can be obtained from equation (6), 

Yc (L)_ 
= [#*] [Mft]" 

"X, (0)~ 

Yc (0) 

~N'n Nh' 

Nil iV22_ 

~XS(0)~ 

Y c (0 ) 
(9b) 

"xc 

x, 
Yc 

.Y , 

w 
(£) 

(£) 

(£)J 

Combining two equations (9a) and (9b), results in 

[W(Z = L)\ = 

~Nn 0 0 M2I |"XC(0)' 

0 NU N{2 0 Xs (0) 

0 Nh Ni2 0 Yc (0) 

_N2l 0 0 N22\ L Y , ( 0 ) . 

where 0 is 4 x 4 null matrix. 

= [JV](W(Z = 0)! (10) 

A-c 

^ 

A-; 
x"£ 

Ys 

Y's 

Y"s 

1 s 

(L) 

(L) 

(L) 

(L) 

(L) 

(L) 

(L) 

(L) 

c, 
XaC2 

XaCj 

xac2 

-c , 
- X a C 2 

— XaCj 

- X a C 2 

c2 
XaC! 

x ac 2 

XflC] 

-c2 

— XaCi 

— XaC2 

- X a C j 

c3 
— X(,C4 

- X 6 C 3 

XftC4 

-c3 

XftC4 

XftC3 

—x^,c4 

c4 
XiC3 

— XjC4 

— XftC3 

-c4 

-X(,C3 

X(,C4 

x*c3 

c5 
XcCg 

XCC5 

\c6 

c5 

\cCb 

x cc5 

XCC6 

Q 

x cc5 

XCC6 

xcc5 

c6 

xcc5 

x cc6 

XcQ 

c, 
~XrfC8 

- X d C 7 

XdQ 

c7 

~XrfC8 

-X r f C 7 

XrfQ 

c8 
XdC7 

_ x d c 8 

— Xo-C7 

Q 

XdC7 

_XrfC8 

-XrfC7 

"^4i " 

^ 2 

^ 3 

^.« 

^45 

v46 

^ 7 

^ 8 
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Mx -f-dMx 
(My+dMy) 

Fig. 1 Element of a shaft in the XZ-plane or VZ-plane 

From the theory of Timoshenko's beam (Dym and Shames, 
1973), we have the compatibility relations of the shaft projected 
in the A'Z-plane, 

X=Xb + X, 

dX dXb dXt . 
a = T^; = ^ - + — = a ccos QZ + a^sin Qt = ab + a, 

oZ aZ aZ 
*\2 -y 

Mx = EI-—j = Mxc cos Qt + Mxs sin tit 
oZ 

Qx= -KAG f f f - ^ 1 =Q*c cos Qt + Qxs sin Of. (11a) 

The similar relations in the YZ-plane are 

Y=Y„+Y, 
rkV rkV riV 

®=Jz=Iz + ~dz = ̂ c o s Qt+^sin Qt=&"+&t 

My = EI-—2=Myc cos Qt + Mys sin Qt 
oZ 

Qy= -KAG ( H - H f ) =Qv cos Qt+Q» sin Qt- (116> 

Considering a uniform shaft segment, the projections of the 
element in the XZ and YZ-planes are shown in Fig. 1. The 
force and moment equilibrium conditions are 

dZ 
= -pAX 

Mx dZ P 
9^j 

dt2 dt 

dZ 
= -pAY 

Q>=^z~-pI dZ0b , - doib 

dt2 dt 
(12) 

Since the element is considered as a circular thin disk in this 
study, we have J = 21, From the relations of equations (9)-
(11), the following relationships presented in the complex form 
between the differential variables of deflection and the state 
variables can be obtained. 

In the XZ-plane, 

X=Xc+jXs 

X' = a 

kGA 

X ~EI+KGX 

X" 
pO2 pti 

1 
EI kGA 

In the FZ-plane, 

Y= Yc+jYs 

Qy 

KG E 

E~~kG 

2pcon -

(13a) 

- — Q 
2pcoQ -

Q* + lGA~EQ>-

y = i8 + 
kGA 

EI KG 

~ [KG E 

1 o l\ 

- 2pcoO . 

1 
- - — Q 

- 2pa)fi „ 
Qy + T~77,Qx kGAE 

PC+JPS, Mx = Mxc+jMxs, My 

EI kGA \E kG 

in which a = ac+jas, /3 
= Myc+jMyS, QX=QXC + jQxs, and Qy=Qyc+JQys- The above 
equations could be represented in a matrix form 

IW} = [A]{S) (14) 

where 

I "I = (Xc, Xc, X c, X c, Xs, Xs, X s, X s, Yc, Yc, Y c, Y c, Ys, 
Y'„ Y'„ Y'"s)\ and {S} = (Xc, Xs, Y„ Ys, ac, a„ 0C, 0„ Mxc, 
Mxs, Myc, Mys, Qxc, Qxs, Qyc, Qys)', in which "t" denotes 

, the transpose of an array. 
By considering the boundary conditions at Z = 0 and Z = 

L, we have 

[W(Z = L))=[A] [S(Z = L))=[A]{Sl) 

[W(Z = 0)}=[A] {S{Z=0))=[A]{S0}. (15) 

Substituting the above equation into (10) results in 

( S 1 ) = [ ^ ] - 1 [N] [A] [So) = [7](So). (16) 

Journal of Applied Mechanics SEPTEMBER 1991, Vol. 58 / 779 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



e : Eccentric distance 
C: tfasa center 
G; Gerometric center 

Cross section of 
rotor 

0 ^ Y 
Fig. 2 Response of a synchronous whirling orbit 

Hence, the transfer matrix [7] of a shaft is modified by the 
size of 16 x 16 to fit general whirling in the elliptical orbits. In 
consequence, a uniform shaft segment can be taken as long as 
possible for decreasing the numbers of matrix multiplications 
and increasing the accuracy of computation. 

For the purpose of response calculations we augment the 
transfer matrix to size of 17 x 17 and add an identity 1 at the 
last diagonal element as 

T 0 

0 1 
(17) 

2 The Transfer Matrix of the Disk. The disk is assumed 
to be a rigid body with the gyroscopic effect. The transfer 
matrix of the disk is defined as a point matrix which considers 
the effect of mass at the station. 

Unbalance mass on the disk induces the exciting force and 
will cause the synchronous whirling. The whirling orbit of the 
rotor system at the disk is shown in Fig. 2 with the unbalance 
given in a plane. From the relations of the forces and deflec
tions of the disk in a plane (see Fig. 3), the equilibrium and 
compatibility conditions may be shown as follows: 

Mxr=Mxl + Idai+Jpui3i-md lXi+-a{ h) -

Qxr=Qx\-md I X\ + - «] h\-md w2ex (cos Qt - sin Qt) 

Y^Yi + fah 

Qyr=Qy\-md | F] + - ^h J - m ^ e y (cos Sit + sinfi/) 

(18) 

where md is the mass of disk, and Jp - 2Id. The unbalance 
forces mdw

1ex, mjufey are functions of rotating speed. The 
relationship of the state variables between the right side and 
left side of an unbalance disk is directly derived from equation 
(18). It is shown that 

[D] 17x17 (19) 

where "r" and "/" represent the right and left of disk, re
spectively. The elements of the matrix [D] are 

—̂ .̂ 2 
Fig. 3 Forces acting on a disk 

Fig. 4 Model of a bearing 

A,,= l , / = 1 , 2 , 3, 17 

A,5 = A, 6>=A, 7 = A> i = h 

D$, i=Z>io, 2 = -Dll> i=Di2, 4 = Di3, 5=Z)i4, s = D[s, 7 

MdhQ2 

= D1S, 

D -n -n _ n M«h1®2 jtf 

A 3 . 1 = A 4 . 2 = A 5 , 3= Di6, 4 = MdU
2 

Dg, 8= — Di0, 7= A h 6= _ A 2 > 5 = JpU® 

- A 3 . 17 = A t . n = mdo)2ex 

A s . 17 = A s . n=~md u2 ey (20) 

and the others are equal to zero. 

3 The Transfer Matrix of a Support Bearing. In the rotor 
system, the fluid film bearings play an important role in the 
dynamic behavior of the system. Since the squeezed thin film 
between the journal and the ring acts to provide the effects of 
spring and damping, the dynamic properties of the fluid film 
bearings will dominate the critical speeds, the unbalance re
sponses, and threshold speeds of instability, which is signifi
cantly, and totally different from those of the rigid supports. 
However, these fluid films are very complicated in operation. 
When the fluid film bearing is analyzed, the physical model 
of fluid bearing may be simplified as a linear element and 
represented by eight coefficients, i.e., two direct stiffness Kxx, 
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Table 1 The details of the three-disk rotor system 

// / > 7 7 7 7 

Fig. 5 A general rotor-bearing system 

The coefficients of shaft 
Young's modulus E 
shear modulus G 
shear factor K 
density p 

The coefficients of disks 
disk mass Md 
polar moment of inertia 
transverse moment of inertia 
unbalance at the disk 1 

The coefficients of bearings 
direct stiffness 
cross stiffness 
direct damping 
cross damping 

2.07xl07N/cm2 

8.1xl06N/cm2 

0.68 
7.75 XlO-3 Kg/cm3 

13.47 Kg 
1020 Kg-cm2 

512Kg-cm2 

0.01347 Kg-cm 

Kxx = ILy=l.0xl07 

K.Xy — K.yX — 5 . X 10 
Cxx=Cyy = 2(X)Q. 
*-'XV *-* VX " * 

106.2 

unit: cm 

Fig. 6 Configuration of the three-disk rotor 

Kyy, two cross stiffness Kxy, Kyx, two direct damping Cxx, Cyy, 
and two cross damping Cxy, Cyx (see Fig. 4).The dynamic prop
erties of such bearing a model are derived by treating the fluid 
film as a laminar flow and are governed by a Reynold's equa
tion (Rao, 1983). 

The equilibrium relations of the bearing force at the XZ and 
yZ-planes can be written as 

Qxr = Qxi - KXXX\ - Kxy r , — CxxXi — Cxy Yi + mb Q X\ 

Qy\-Qy\~ Kyy Y\ - KyxX\ — Cyy Y\ — Cy xXi + mb Q Y\ (21) 

where mb is the distributed mass of the shaft supported by the 
specific bearing. From the foregoing discussion, the relation 
of the state variables between the right and left of the bearing 
is 

= [5]nxi (22) 

where the elements of the matrix [B] are 

Bu,= 1, i=l, 2,. . . , 17 

5l3, 3=5,4, 4, = _ Kxy 

Sin, 1 = ~~ 513 , 2 = Cxx 

5,3, 4= —5,4, 3= — Cxy 

5,6, ,= —5,5, 2~Cyx 

5,6, 2 = - 5 , 5 . \=Kyx 

(23) 

5 „ )— —5,5, 4 - Cy-

5,3, 1—5,4, 2 — mbu —Kxx 

5,5, 3 = 5,6, 4 = nib £2 — Kyy 

and the others are equal to zero. 

Numerical Examples 
The study is first based on the assumption that the whirling 

frequency is equal to the rotating frequency, i.e., synchronous 
whirling. In practice, it is predominantly excited by the mass 
unbalances of a rotor system. 
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Fig. 7 Unbalance responses of disk 1 by FEM and modified transfer 
matrix method (TMM) 

As in the previous sections, since the transfer matrix for 
each component (i.e., bearing, shaft, and disk) is constructed, 
it can be used for calculating the unbalance response, critical 
speeds, modes, whirling orbits, and threshold speeds of in
stability of a rotor-bearing system. Consider a rotor-bearing 
system shown in Fig. 5, which has multidisks and bearings, 
and has an unbalance eccentricity e,- at each disk, with both 
ends of the shaft free. The overall transfer matrix of the rotor 
can be represented by 

{S„) = [U] (So) 

= [T\[B]IT\. . . [T}[D][T]. . . [B][T\{S0). (24) 

A simplified rotor-bearing system shown in Fig. 6 is used 
to demonstrate the applicability of the analytical results. The 
rotor supported by two bearings has three disks of equal mass 
with an unbalance mass at disk 1 only. The bearing is ap
proximated by different dynamic characteristics in order to 
compare their effects on the rotor dynamics. The bearing forces 
are considered as concentrated forces. The details of the rotor 
are listed in Table 1. There are two cases to be investigated: 

Case 1 bearing without damping and 
Case 2 bearing with both stiffness and damping. 
Because the shear forces and bending moments are zero at 

both ends, equation (24) becomes 

(7„ C/,2 ii," 

^21 t^22 u 2 

0 0 1 

"ŝ " 
0 

1_ 

(25) 

1 

where S' = [S'] = (Xc, Xs, Yc, Ys, ac, as, ft, ft)', 0 = (0, 0, 
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Fig. 8 Synchronous whirling orbits of unbalance responses of disk 1 
in Case 2 

a. 
u=44Hz 
r = 0 . 0 2 m m 

( r is rad ius of journal mot ion with fj= 3w) 

Fig. 9 Nonsynchronous whirling orbits of disk 1 induced by journal 
motion in Case 2 

0, 0, 0, 0, 0, 0)', and subscripts 0 and 1 are labeled for stages. 
By deleting all elements which are related to moments and 
shear forces, equation (25) is expanded into 

iSl) = [Un] [S6J+U! (26a) 

and 

[U2l]{S&}+u2 = 0. (26b) 

The above system of linear equations (266) can be solved to 
determine the state variables Xc, Xs, . . . etc. at the stage 0, 
denoted by [S0]. Then, the state vectors at every point of the 
rotor can be obtained by multiplying transfer matrices between 
the specific stage and the zeroth stage. Shown in the following 
equation, to get the unbalance response, 

iSp}=lU„] (S0), (27) 

where {Sp} is state vector of stage p and [Up] is the transfer 
matrix from stage 0 to stage p. For instance, the state vector 
of stage n is obtained from equation (26a). 

In this paper, the amplitudes of responses are represented 
by the absolute values of the major axes of the elliptic orbits. 
The calculated unbalance responses at disk 1 are plotted as 
solid curves in Fig. 7, for the first natural mode region. The 
dashed curves are calculated from the finite element method 
by six elements. It is shown that two curve groups are close 
to each other. The cross stiffnesses make the critical speed 
split into two values for its asymmetry, as evaluated in Case 

2 at 44.83 Hz and 51.52 Hz. The critical speed can be located 
from the maximum resonance peak of the frequency response 
curve. For the unsymmetrical bearing due to cross stiffness 
and damping, the whirling orbit becomes elliptical and there 
is a backward whirling phenomena between the two split critical 
speeds. The whirling orbits in forward and backward directions 
of Case 2 are shown in Fig. 8. 

Lastly, we consider the motion of the journal as a nonsyn
chronous exciting sources which may be induced by the rough
ness and unround profile, axial forces or torques, nonlinear 
bearing performances, or external vibrations. In this example 
the synchronous response, due to unbalance mass and non-
synchronous response due to journal motion with frequency 
being three times of the rotating speed, is considered. It is 
assumed that the journal motion at stage n is represented by 
X = r cos 3o>t, and r sin 3o>t. In this case, Q = 3a> is substituted 
into all prescribed equations which process Q. The displace
ments of the free ends are set to be equal to the displacements 
of the journals. And the bending moments of the free ends 
are still zero. Then substituting these boundary conditions into 
equation (24), we have 

[S„)=(r, 0, 0, r, ac, a„ ft, ft, 0, 0, 0, 0, 
\CXCJ \dxsi \lyc> \dys) 

iS0\ =(X„ X„ Yc, Y„ ac, a,, ft, ft, 0, 0, 0, 0, 0, 0, 0, 0)' 

for nonsynchronous components and 

[S„] = (0, 0, 0, 0, ac, as, ft, ft, 0, 0, 0, 0, Qxc, 
\&xs> \£yc> \lys) 

lSo)=VC„ X„ Y„ Y„ etc, a,, ft, ft, 0, 0, 0, 0, 0, 0, 0, 0)' 
for synchronous components. By further manipulation, we can 
obtain the excited response of any stage induced by journal 
motion. 

The configuration of Case 2 is considered here. From the 
superposition of the unbalance response and excited response 
the multi-lobed whirling orbits for various journal motions in 
different radii are obtained and shown in Fig. 9. It is obvious 
that the results can not be obtained from the assumption of 
a circular orbit in transfer matrix method. The nonsynchronous 
whirling is a natural phenomenon of the nonlinear rotor system 
which indicates that this method can be extended to the non
linear analysis. 

Conclusion 
A modified transfer matrix method involving the general 

whirling motions is presented to analyze the dynamic properties 
of a flexible linear rotor-bearing system. The transfer matrix 
of a shaft is derived from continuous-system representation in 
order to decrease the number of segments of the shaft and 
also to obtain higher accuracy than that of a lumped-system 
representation. 

The computing results show that the developed method agrees 
satifactorily with actual performances of the rotor systems. 
For synchronous whirling, the unbalance response is solved 
following the track of an elliptical orbit. For nonsynchronous 
whirling, the motion of the bearing will cause the secondary 
orbit. Also, the method can be used to investigate the non-
synchronous whirling orbits of subharmonic and superhar-
monic resonances of the nonlinear rotor system. 

Acknowledgment 
This study was supported by the National Science Council, 

Republic of China, under contract number NSC8O-O401-E-009-
04. 

References 
Bansal, P. N., and Kirk, R. G., 1975, "Stability and Damped Critical Speeds 

of Rotor-Bearing Systems," ASME Journal of Engineering for Industry, Vol. 
97, pp. 1325-1332. 

Dym, C. L., and Shames, I. H., 1973, Solid Mechanics, A Variational Ap
proach, McGraw-Hill, New York, pp. 187-194. 

782 / Vol. 58, SEPTEMBER 1991 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

file:///Cxcj
file:///dxsi


Eshleman, R. L., and Eubanks, R. A., 1969, "On the Critical Speeds of a Unbalance Response of a Flexible Rotor," ASME Journal of Engineering for 
Continuous Rotor," ASME Journal of Engineering for Industry, Vol. 91, pp. Industry, Vol. 89, No. 4, pp. 785-596. 
1180-1188. Lund, J. W., 1974, "Stability and Damped Critical Speeds of aFlexible Rotor 

Gu, Jialiu, 1986, "An Improved Transfer Matrix-Direct Integration Method in Fluid-Film Bearings," ASME Journal of Engineering for Industry, Vol. 96, 
for Rotor Dynamics," ASME Journal of Vibration, Acoustics, Stress, and pp. 509-516. 
Reliability in Design, Vol. 108, pp. 183-188. Lund, J. W., 1974, "Modal Response of a Flexible Rotor in Fluid-Film 

Guenther, T. G., and Lovejoy, D. C , 1961, "Analysis for Calculating Lateral Bearings," ASME Journal of Engineering for Industry, Vol. 96, pp. 509-516. 
Vibration Characteristics of Rotating Systems with Any Number of Flexible Lund, J. W., 1974, "Modal Response of a Flexible Rotor in Fluid Film 
Supports: Part 2—Application of the Method of Analysis," ASME JOURNAL Bearings," ASME Jounal of Engineering for Industry, Vol. 96, pp. 525-533. 
OF APPLIED MECHANICS, Vol. 28, pp. 591-600. Lund, J. W., 1980, "Sensitivity of the Critical Speeds of a Rotor to Changes 

Koenig, E. C , 1961, "Analysis for Calculating Lateral Vibration Character- in Design," ASME Journal of Mechanical Design, Vol. 102, pp. 115-121. 
istics of Rotating Systems with Any Number of Flexible Supports: Part 1—The Prohl, M. A., 1945, "A General Method for Calculating Critical Speeds of 
Method of Analysis," ASME JOURNAL OF APPLIED MECHANICS, Vol. 28, pp. Flexible Rotors," ASME JOURNAL OF APPLIED MECHANICS, Vol. 67, pp. A-142-
585-590. A-148. 

Lund, J. W., and Orcutt, F. K.,.1967, "Calculations and Experiments on the Rao, J. S., 1983, Rotor Dynamics, Wiley Eastern Ltd., New Delhi. 

CALL FOR PAPERS 
18th INTERNATIONAL CONGRESS OF THEORETICAL 

AND APPLIED MECHANICS 
Technion—Israel Institute of Technology 

Haifa, Israel 
August 22-28, 1992 

Information for Prospective Authors 

1 Papers will be accepted in all areas of theoretical and applied mechanics, but the following three topics will receive 
special attention as subjects of Mini-Symposia: Instabilities in solid and structural mechanics, Sea surface mechanics and 
air-sea interaction, Biomechanics. 
2 The submitting author should prepare 6 copies each of an extended summary of about 500 words and an abstract of 
100-150 words. The Abstract must be typed double space on a single page; the page should also contain the title of the 
paper and the full name and complete address of the author(s). The author should also prepare a statement of preference 
for lecture session or poster session. 
3 The above material should be submitted directly to the Congress Secretary at the address below so as to arrive before 
January 15, 1992. 

Professor A. Solan, Secretary ICTAM 1992 
Faculty of Mechanical Engineering 
Technion—Israel Institute of Technology 
Haifa 32000, ISRAEL 

4 FOR U.S. AUTHORS ONLY: The U.S. National Committee on Theoretical and Applied Mechanics has some funds 
available for Travel Fellowships for U.S. authors of accepted papers. Fellowship applications may be obtained between 
July 15 and December 15, 1991 from: 

Professor Thomas L. Geers 
Department of Mechanical Engineering 
University of Colorado 
Boulder, CO 80309-0427 
Telephone: (303) 492-7151 
Fax: (303) 492-3498 

5 More detailed announcements of plans and arrangements for the 18th Congress will be issued in the near future. To 
receive subsequent announcements, write to the Congress Secretary at the above Haifa address. 

Journal of Applied Mechanics SEPTEMBER 1991, Vol. 58 / 783 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



P. Yu 

N. Popplewell 

A. H. Shah 

Faculty of Engineering, 
The University of Manitoba, 

Winnipeg, Manitoba R3T 2N2, Canada 

A Geometrical Approach Assessing 
Instability Trends for Galloping 
Although the galloping of an iced electrical conductor has been considered by many 
researchers, no special attention has been given to the galloping's sensitivity to 
alternations in the system's parameters. A geometrical method is presented in this 
paper to describe these instability trends and to provide compromises for controlling 
an instability. The conventional but uncontrollable parameter of the wind speed is 
chosen as the basis for obtaining the critical conditions under which bifurcations 
occur for a representative two degrees-of-freedom model. Variations in these critical 
conditions are found in a two-dimensional parameter space in order to determine 
the trends for the initiation of galloping as well as to evaluate the stability of the 
ensuring periodic vibrations. 

1 Introduction 
The galloping of iced electrical conductors has been consid

ered, since early in this century, by many researchers. Impor
tant results have been obtained, for example, by Den Hartog 
(1932), Simpson (1965), Chadha (1973), and Blevins and Iwan 
(1974). The main focus of these papers, however, was to find 
the requirements for the initiation of galloping as well as to 
determine the conditions for the instability of the vibrations. 
However, galloping is highly complex as a result particularly 
of the nonlinear aerodynamic forces and because many phys
ical parameters are involved. Although several analytical 
expressions have been given for the criteria of instability (e.g., 
Blevins and Iwan, 1974), the direct application of these expres
sions to the design of appropriate control devices is still not 
possible. This serious deficiency suggests that it is necessary 
to investigate the instability trends with respect to the system's 
parameters. Moreover, exact solutions and instability condi
tions may not be meaningful in view of the approximations in 
the mathematical modeling and analysis and the errors in lab
oratory experiments and field trials. Instability trends, there
fore, should provide more suitable and effective guidelines for 
a robust control strategy which makes a particular design more 
tolerant of uncertain parameters. 

A geometrical approach will be introduced to consider the 
instability trends for the galloping of a two degrees-of-freedom 
model (Blevins and Iwan, 1974). The approach is based upon 
the instability conditions for the steady-state solutions asso
ciated with equilibrium, periodic, and quasi-periodic motions. 
Of particular interest here are the conditions for the initiation 
of galloping as well as the critical boundaries where a plunge 
or torsional motion, or even a mixed-mode motion, loses sta
bility. A two-dimensional parameter space will be chosen to 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS for publication in the JOURNAL OF APPLIED ME

CHANICS. 

Discussion on this paper should be addressed to the Technical Editor, Prof. 
Leon M. Keer, The Technological Institute, Northwestern University, Evanston, 
IL 60208, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by the 
ASME Applied Mechanics Division, Sept. 28,1989; final revision, May 9, 1990. 

be chosen to demonstrate the instability trends. Thus, instead 
of expressing the instability conditions in the whole (at least 
eight-dimensional) parameter space, a single parameter—the 
wind speed—will be chosen as the critical variable. Then the 
critical values of this variable, which correspond to the initi
ation of galloping and to the onset of instability of the periodic 
motions, will be determined. The influence of the remaining 
variables will be found in the two-dimensional parameter space 
by considering their individual effects on the critical values of 
the wind speed. 

A brief derivation of the equations is given in the Appendix 
and the results obtained are presented in the following section. 
The geometrical approach and two practically important inst
ability trends are discussed in Section 3. Finally, conclusions 
are drawn in Section 4. 

2 Iniation of Galloping and Critical Boundaries for a 
Two Degree-of-Freedom System 

The two degree-of-freedom model shown in Fig. 1 has mass 
m and moment of inertia /. It represents a cross-section of an 
iced conductor where y is the vertical (plunge) displacement 
and 6 is the angle of rotation or twist. The ky and ke are the 
vertical and torsional stiffness, respectively, and the cy and c$ 
are corresponding viscous dampers (which are not shown in 

Fig.1 Elastically supported two degrees-of-freedom model 
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Table 1 Steady-state solutions 

a) 

(ID 

(ni) 

(IV) 

Solution 

I.E.S. 

H.B.S. (P) 

H.B.S. (T) 

2-D Torus 

Expression 

Ay = 0, A 9 = 0 

Ay = -3B1B3 , AQ = 0 

Ay = 0, AQ = -3B2B4 

2 2 
A y = %B6> A e = B 4 B s 

Fig. 1). Furthermore, sx generally indicates the eccentricity so 
that sx/m is the lateral position of the iced conductor's center 
of gravity (C.G.) measured from its center of rotation O. 
However, only the cocentric case corresponding to sx = 0 will 
be considered here. The rate equations, describing the motion 
of the cocentric model, expressed in terms of the amplitudes 
(Ay, Ae) and phases (4>y, <j>e) of y and 6, respectively, are ob
tained by setting ex = 0 (sx = 0) in equations (A12) and (A13) 
as follows: 

--1}yAy \ U ^ - k ) +7TT [A2 + 2(U2
 + fa2)A2]}, 

L TjyJ 8 Uy 

Ae = Vo^e j ( T UyTibi 

+ ̂ l2AJ+(U> + fa2)Al]), (1) 
OUy 

a n d 

4>y= 1, 

UyVe 
2u 

3b 
pg = 0> + -M ]Uybl+—j-[2A2y+(U2y + riio2)AJ] 

4C/, 
(2) 

where 

and 

Cy ce pd2 pd4 7je 

2mwy 2Iug 2m 21 i\y 

(3) 

U, 
U R 1 , 2 _ •>" , . 2 . ke 0>6 

y o>vd d m I i 

B2 C3 

. unstable/ 

*-B, c^-

(a) a 3 > 0 , b3>0 

B2 

Unstable 
t 

illl11L11illli 
ci 7 o" 

(b) a , < 0 , b,<0 

(c) a 3 < 0 , b3>0 (d) a 3 > 0 , b3 < 0 

Fig. 2 Bifurcation and stability diagrams 

Table 2 
Solution 

Existence 
Condition 

Frequency 

Stability 
Condition 

Critical 
Boundary 

Bifurcation 
Solution 

The stability conditions and critical boundaries for ex = 0 

( i ) 

^ ^ ^ 

B, < 0, B 2 < 0 

C ^ B ^ O 

(H) 

C2:B 2 = 0 

(IH) 

(II) 

a3 

1 

Bi >0 , B 5 < 0 

C 3 :B 5 = 0 

(III) 

b3 

a + 22-I 

B 2 > 0 , B 6 < 0 

C 4 : B 6 = 0 

(IV) 

(IV) 

a3 b3 

O-" )̂ 
a3b3 < 0, 

B5 + B 6 < 0 

C,:B 1 + B 6 = 0 

3-D Tonis 
or 

Chaos 

Note: The bifurcation solutions (II), (III), (IV) and 3-D torus or chaos given in the last row, 

denote the solutions bifurcating from (I), (II), (IB) and (IV) along the critical boundaries Ci, C2, 

C3 or C4, and C5, respectively. 

In equations (1) through (3), p is the density of air, U is the 
free-stream wind speed, d is a characteristic length which is 
usually taken as the maximum width of the cross-section nor
mal to the free stream, and R{ is the characteristic radius of 
the section. The aerodynamic lift force and moment are ap
proximated by the best fit cubic polynomials having coeffi
cients «!, A3, b\, and b% (Blevins and Iwan, 1974). 

The steady-state solutions can be obtained readily from (1) 
by setting Ay = Ae = 0. They are listed in Table 1, where the 
abbreviations I.E.S., H.B.S.(P), H.B.S.(T), and 2-D Torus 
represent the initial equilibrium solution, the Hopf bifurcation 
solution corresponding to a periodic plunge vibration, the Hopf 
bifurcation solution for a periodic torsional vibration, and a 
motion of a two-dimensional torus, respectively. In Table 1, 
the coefficients B,, (/ = 1 , 2 , . . . , 6) are given by 

Bi=~Uyav .51 
Vy' 

B4 = 
8t/v 

9r1a3(U! + ' V 

*2 = ^ £ / y i * i - — . BS = B5-2S3BU 

2 no 
(4) 

9«3 

where 

Bd^Bi—— Bi, 

"3, 

Stability conditions for the steady-state solutions and the 
critical boundaries, where bifurcations occur, can be obtained 
from equation (1). The results are summarized in Table 2 and 
are illustrated graphically in Fig. 2. 

Table 2 and Fig. 2 present an overview of the dynamical 
behavior of the system. Critical boundaries where bifurcations 
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occur are given explicitly. Bifurcations and secondary bifur
cations into periodic and nonresonant quasi-periodic motions 
are also indicated. The aerodynamic coefficients «3 and 63 can 
be seen to play a very important role in determining the stability 
of these bifurcations. Indeed, depending upon «3 and 63, four 
distinct cases exist. They are categorized in Fig. 2 as case (a) 
«3 > 0, Z>3 > 0, for which no stable periodic solution exists. 
Case (b) a3 < 0, 63 < 0 where both the plunge and torsional 
motions can be stable but they cannot exist simultaneously. 
Case (c) a3 < 0, b3 > 0 for which the plunge motion is stable 
but the torsional motion in unstable. (Furthermore, subsequent 
bifurcations from the stable plunge motion may lead motion 
is unstable. (Furthermore, subsequent bifurcations from the 
stable plunge motion may lead to a family of two-dimensional 
or even three-dimensional tori.) Case (d) a3 > 0, Z?3 < 0 where 
the torsional motion is stable but the plunge motion is unstable. 
Then the same family of the two-dimensional or three-dimen
sional tori may bifurcate from the stable torsional motion. 

B2 = QB| 

(a )Case(P) ,Q>S, 

3 Instability Trends 
3.1 A Geometrical Approach. Although the stability 

conditions of the steady-state solutions have been given ex
plicitly in the previous section, instability trends with respect 
to different parameter are still unknown. A geometrical ap
proach will be presented next to give a clear intuitive view of 
how these instability trends change with variations in the sys
tem's parameters. The main thrust will be to first introduce a 
reference line (or curve) representing a given parameter in the 
two-dimensional, By-B^ parameter space employed, for ex
ample, in Fig. 2. Then critical values will be found, with respect 
to this reference, which correspond to the initiation of gal
loping and to the (dynamic) instability of the periodic as well 
as the quasi-periodic motions. 

It has been reported that a change in a steady wind speed 
is an important factor in causing instability (Edwards and 
Madeyski, 1956). This observation suggests that the dimen-
sionless wind speed, Uy, is a reasonable choice for the reference 
line. Indeed, it may be deduced, from the critical boundaries 
given in Table 2, that all the critical values can be expressed 
in terms of Uy because every critical boundary is described by 
an homogeneous equation. The equation of the reference line 
can be obtained from equation (4) by eliminating Uy in the 
following form: 

Uy:B2 = SyBl+[^\ (Sj-Q) 

where 
Sx = r, 

a\ 

-©(::. 

?y. 

- rxb and 

(5) 

1 (c, 
' d1 \c, (6) 

Here, the ratio (1/d2) (c$/cy) is defined as a new parameter 
Q. In practice the natural frequency ratio co (= o>e/o3y) is often 
manipulated to alleviate galloping by using dampers (Havard, 
1988; Sasaki et al., 1986). Now, Q is related directly to the 
natural frequency ratio because Cg/cy = (I/m) 01. Therefore, 
it is believed that Q plays a significant role. Moreover, changing 
the ratio co (e.g., by using dampers) may also simultaneously 
vary the inertia and mass of the system. It is more practically 
useful, therefore, to consider Q instead of the simples ratio, 
co, as a control parameter. Also, it may be noted from equations 
(5) and (6) that the slope of the line Uy involves a factor b( = 
bi/ai). The b is an uncontrollable parameter because it is very 
sensitive to the uncertain geometric shape produced by the 

B2=QB| 

(b)Case ( T ) , Q < S | 
Fig. 3 The critical boundaries 

weather-dependent ice accumulation. However, b is very im
portant in determining the stability of the conductor's initial 
configuration because the stability conditions of the initial 
equilibrium state depend upon both a\ and b\. The effects of 
the two parameters Q and b, therefore, will be considered 
separately later. 

It has been observed that as and bx are both positive, whereas 
ff3 and bi are both negative in most practical situations (Novak, 
1971). Thus, special attention will be given in the following 
analysis to the case: «i> 0, b\> 0, a3<0, and ft3<0. These 
stipulations correspond to case (b) in Fig. 2. However, it is 
not difficult to extend the approach to the other cases presented 
in Fig.2. 

The following two distinct cases can be found by comparing 
the slope of Uy, i.e., Si, to the control parameter Q: 

Case (P): Q>Slt corresponds to the initiation of 

plunge vibration, and 

Case (T):Q<Sl, corresponds to the initiation of 

torsional vibration. 
These two distinct cases are illustrated in Fig. 3. The hatched 
lines in this figure indicate the stability boundaries of the initial 
equilibrium solution. The U{Pl) and U{T[) are the initiation 
values for plunge and torsional vibrations, respectively. The 
t/(/J2) and t/(7-2), on the other hand, respectively represent the 
practically important critical values where the stability of the 
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Table 3 P 

C a s e 

Initiation of 
Galloping 

Stability 

Condition 

for Periodic 

Vibrations 

unge and torsional cases 

(P) Q > S , 

Plunge Vibrations 

S ; < 2 S 3 

S , > 2 S 3 

Stable 

( U ( P 2 ) - * ° ° ) . 

U < U(p j Stable 

U > U ( p } Unstable 

(T) Q < S , 

Torsional Vibrations 

S ^ ^ S s 

s ,<-is 3 

Stable 

(uCr2r> ~) 

U < U ( T j Stable 

U S U p . } Unstable 

Table 4 Trends of the key region and points for case (P) 

plunge motion and the torsional motion are lost. All the ini
tiation and critical values can be obtained from the critical 
boundaries listed in Table 2 and equation (4). They are given 
as follows: 

U, ( / > i ) : 
..2*2. 

2o>gfl 

V i & i ' 

U^ = 

U{T2) = 

2^ (6-2S3 ) 
(7) 

2 M (S2-2Q) 
V i / (S3-2Si) 

1 1 
Q~s3 

L_2 
Si S3 

It can be seen from Fig.3 (a) that if the slope of C3, the 
critical boundary for the plunge motion defined in Table 2 is 
larger than that of Uy (i.e., 2S3>Si), there is no intersection 
of C3 and Uy in the first quadrant. This implies U(p2) — 00 so 

that the actual wind speed, U, can never exceed U(p2), and the 

plunge motion is always beneficially stable. 
A similar conclusion can be drawn from Fig. 3(b) for the 

torsional vibration case, H.B.S.(T). The two sets of results are 
summarized, for convenience, in Table 3. 

Table 3 suggests that both the plunge and the torsional 
motion are stable when 1/2 S3 < Si < 2S3, irrespective of the 
wind speed (i.e., U(Pl) — 00 and £/(7-2) — 00). This region, 

therefore, is of no practical interest. Consequently, it is as
sumed from the following analysis that 

S,>253 for H.B.S.(P), and 
1 (8) 

S{< -S3 for H.B.S.(T). 

3.2 General Instability Trends. Consider the effects of 
variations in the system's parameters on the critical values 
£/(f>,), (̂7-1)1 and t/(r2)- As the parameters of their combinations 

change, lines like Uy, C3, C4, etc., will move in the Bx-B2 

plane and new values will be obtained for U(P^, U^T{), U^Pl) 

and C/(7-2). For illustration, examine the simple example of cy 

A which results in (£,y/i}y) {-cy/wypd2) J~, where the arrow 
J' (\) indicates an increase (a decrease) in the given parameter. 
This example is illustrated in Fig. 4 where a superscript prime 
denotes a new value of a parameter whereas the corresponding 
unprimed quantity indicates the old values. An " x " in this 
figure represents the point to which the old U(P{) or old 

U(p2) will move when cy increases. The movements are indicated 
by the dashed lines which are parallel to the line passing through 
the points marked Uy = 0 and U'y = 0. These latter points 
correspond to the old and new values of cy, respectively. 

Parameter ( 4 ) 

c y 

ce 

a i 

b i 

h. 
a 3 

S.R. of I .E.S. 

> 

> 

Unchanged 

Unchanged 

Unchanged 

%,) 

> ' 

Unchanged 

> 

Unchanged 

Unchanged 

U<P2> 

> 

> 

> 

> 

> 

Table 5 Trends of the key region and points for case (T) 

Parameter yT) 

c y 

c 9 

a l 

b i 

b 3 

a3 

S.R. of I .E.S. 

> 

> 

Unchanged 

Unchanged 

Unchanged 

u Crj ) 

Unchanged 

> 

Unchanged 

> 

Unchanged 

U (T 2 ) 

> 

> 

> 

> 

"V 

"(^y) Uy ] 

Uy=0 Uy = 0 

Fig. 4 Instability trends for increasing cy and Q> S, 

The following results can be observed from Fig. 4. When 
cy increases, the point marked Uy = 0 will move to the left to 
a point marked Uy = 0. Hence, line Uy , which is parallel to 
line Uy, will be displaced to the left, too. Thus, the new value 
l/('p,) obtained from the moving up of £/(/)l) parallel to axis 

B2, is greater than the value of the corresponding point marked 
"x , " which moves from U(Pl) parallel to axis B\. Therefore 

an increase in cy causes UiPl) to grow. Similarly, it can be 
concluded that an increase in cy makes £/(p2) diminish. More
over, it is seen that the stable region for the initial equilibrium 
solution is a rectangle in the third quadrant which is bounded 
by the Bu B2 axes, and the dashed lines passing through Uy 

= 0 or U'y = 0. So, a greater cy will enlarge the stable region 
of the I.E.S. In summary, 

cyJ* U{Pl)J, U{P2^ and S.R. of I.E.S._A (9) 

where S.R. denotes the stable region. The same conclusions 
may also be deduced straightforwardly from equation (7) for 
this simple example. 

Although conclusion (9) was obtained on the basis of a 
particular point Uy = 0 and a small increase in c„, it can be 
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Table 6 Trends of the I.E.S. stability region (S.R.) and the key points 
w.r.t. Q in case (P) 

•yo p(-ta 
Fig. 5 Instability trends for Increasing Q in case (P) 

B5 

(a) Q) 

(b) Q ) 

Case 

Q > 

Q > 

Region 

(i) 

(ii) 

(iii) 

(iv) 

(i) 

(ii) 

(iii) 

(iv) 

Definition 

c y < c ; 

^ e < c ^< Cy 

Cy < Cy 

Cy < Cy 

Co 
Cy < 4 < ^ 

Q . y y 

Cy < Cy 

S.R. Of 
I.E.S. 

> 

> 

Indefinite 

> 

> 

Indefinite 

> 

> 

u(p,) 

> 

> 

> 

> 

> 

> 

> 

> 

u(p2) 

> 

> 

> 

> 

> 

> 

> 

> 

Fig. 6 Different characteristic regions which depend upon the origin 
of Uy in case (P) 

observed from Fig. 4 that this conclusion is true for any ar
bitrary location of the point Uy = 0. Thus, conclusion (9) is 
true globally so that is robust. 

Following the previous procedure, instability trends were 
derived for separate changes in several simple parameters. These 
trends are summarized in Tables 4 and 5. Except for the sta
bility region (S.R.) of the I.E.S., the results can be obtained, 
alternatively, from equation (7). (Later, however, two impor
tant cases will be studied in which it may not be feasible to 
use equation (7).) Tables 4 and 5 suggest that the stable I.E.S. 
region and the the initiation points UiPl) and U(Tl) generally 
grow beneficially with individual increases in cy or cg. On the 
other hand, such increases, when simultaneous, have disad
vantageous^ counteracting influences on the dynamic stability 
points t/(/)2) and C/(r2). Consequently, the obvious control strat
egy of simple enlarging both cy and ce does make the initiation 
of galloping harder, but the wind speed for the onset of a 
dynamic instability may or may not be affected. Increasing 
the aerodynamic coefficients ait b\ or the ratio b^/a3 produces 
similar opposing trends for t/(p2) and U{Tl), but the wind speed 
at the initiation of galloping is either unchanged or reduced 
disadvantageously. Therefore, the problem of controlling gal
loping may not be straightforward. 

3.3 Two Important Practical Cases. Specific instability 
trends with respect to (w.r.t.) first Q (rather than cy or ce) and 
then b will be considered next. It is more appropriate, from 
a practical viewpoint, to consider the effects of cy and ce si
multaneously because, as seen in Section 3.1, Q is the key 
parameter which distinguishes the torsional from the plunge 
vibration. Further, Q plays a significant role in controlling the 
stability trends of galloping. 

3.3.1 Instability Trends w.r.t. Parameter Q. First, con
sider case (P), in which Q > S[t and, further, suppose that Q 
is increasing. Draw the line Uy and lines having the old slope, 
Q, and the new slope, Q', in the B\ -B2 plane as indicated in 
Fig. 5. To draw the line corresponding to a new U'y = 0, the 
origin Uy = 0 has to be chosen in the third quadrant on the 
line having slope Uy = 0, the origin U'y = 0 has to be chosen 
in the third quadrant on the line having slope Q'. This origin 
reflects the absolute values of cy and cg and its location will 

788 / Vol. 58, SEPTEMBER 1991 Transactions of the ASKIE 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



^ 

Table 7 Trends of the I.E.S. stability region (S.R) and the key points 
w.r.t. Q in case (T) 

(b) Q) 
Fig. 7 Different characteristic regions which depend upon the origin 
of Uy in case (T) 

Case 

Q > 

Q > 

Region 

(0 

(") 

(iii)' 

(iv) 

(i) 

(ii) 

(iii) 

(iv) 

Definition 

ci) < <s 

ce < <s < Q'Cy 

Q'cy < ce < Q'c * 

Q'c; < c;, 

cj, < Q'cJ 

°-'cy < "D * °-'cy 

Q'e y< c^< c9 

c e < Si 

S.R. of 
I.E.S. 

> 

Indefinite 

> 

> 

> 

> 

Indefinite 

> 

%!> 

> 

> 

> 

> 

> 

> 

> 

> 

U ( T 2 ) 

> 

> 

> 

> 

> 

> 

> 

> 

Table 8 Trends of the critical boundaries w.r.t. b 

Case 

Q > Si 

Q < S, 

Critical 
Boundary 

%,) 

%2> 

U ( T i ) 

U ( T 2 ) 

Condition 

P<^-

P>i" 

P < (33 

P > P3 

p < o 

p > o 

P < p4 

P > P4 

» ( » 

> 

> 

> 

> 

> 

> 

> 

> 

Uy=L^=0 

Fig. 8 Instability trends for increasing b in case (P) 

Note: P3 =-tan_1 (2S3) and p4 = it - cot"1 (2S3) where S3 is defined in 

equation (6). 

affect the results. Once chosen, the line Uy can be drawn 
parallel to the line Uy and the new values of £/('/>,) and U{Pl) 

can be obtained. Next, draw dashed lines through the points 
£/(/>,) and C/(/>2) which are parallel to the line from the point 
Uy = 0 to the point U'y = Q. These dashed lines intersect the 
line Uy at the point marked by "x" in Fig. 5. Thus, an increase 
or a decrease in £/(/>,) and [/(/>2) can be determined, as a result 
of Q increasing, by comparing U[Pl) and U[Pl) with the cor
responding points marked by "x." For the case depicted in 
Fig. 5, (/(/>), ^ and £/<p)2^/ when Q^f- However, it can be 
shown that the choice of the origin U'y = 0 affects this con
clusion. Four different regions can be distinguished depending 
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upon the location of U'y = 0. They are indicated by (i), (ii), 
(iii), and (iv) in Fig. 6(a). A similar procedure can be followed 
for the case Q~\ and the results are shown in Fig. 6 (b). The 
associated instability trends for Q^/ and Q~^ are listed in 
Table 6, where 

Cy (S , -Q ' ) ' ' ( } 

It should be noted that, although the notation for the dif
ferent regions given in Fig. 6 and Table 6 are identical, the 
definitions of these regions are very different. Also, it is in
teresting to note that; if compared in the reverse order of the 
rows in Table 6, the trends for Q~\ are opposite to those for 
Qj because of antisymmetry. 

The procedure described above can be applied similarly to 
case (T) where Q < S{. The results are shown in Fig. 7 and 
they are summarized in Table 7. Due to the symmetry between 
the equation describing the torsional motion and that giving 
the plunge motion (see equation (1)), the trends of the critical 
arrowed values listed in Table 7 for Q^f (Q^, respectively) 
are identical to those given in Table 6 for Q "Y (QJ , re
spectively). 

The need for four separate regions in Tables 6 and 7 suggests 
that the effects of changing Q are not described simply. How
ever, it appears from these tables that a larger or a smaller Q 
generally produces conflicting trends in the initiation and the 
dynamic stability of either plunge or torsional galloping. Fur
thermore, these trends are usually opposite for the plunge and 
corresponding torsional situation. Therefore, a control strat
egy for galloping may have to be a careful compromise which 
depends upon individual circumstances. 

3.3.2 Instability Trends w.r.t. Parameter b. Parameter Q 
does not change for this case but the slope of the line Uy does 
vary. First, consider case (P), Q > Su which corresponds to 
the initiation of a plunge vibration. Suppose b = ( = b\/a{) is 
increasing as exemplified in Fig. 8. 

In order to compare U{Py) with UiPl) and t/(p2) with UiP2), 
the positions of the points £/</>,) and U(P2) have to be found 
on line Uy. First, define a new parameter (angle) (3 given by 

Aft, ft.-ft, 
tarij8 = — - = — , (11) 

A«i a[-a\ 

where the range of /3 is found to be 

- tan- 1 (S , ) = (31<^</32 = i r - ^ l . (12) 

Then it is straightforward, in terms of /3, to draw similar 
diagrams to Fig. 8 for the cases presented in Table 8. For 
example, consider the changing trends of U(Ply It is easy to 
observe from Fig. 8 that j3 = 7r/2 is a critical value for which 
the new point f/Jp,) will be located at the place marked by 
" x . " So [/(p,) does not change when b varies such that /3 = 
7r/2. Here, it should be noted that, for convenience, the di
rection of measuring angle (3 in Fig. 8 is always clockwise 
irrespective of whether parameter b increases or decreases. 

The results shown in Table 8 suggest that the possibilities 
of the initiation as well as the dynamic instability of galloping 
are less if /3 is mall, or even negative, when b grows. Of course, 
the reverse is true when b decreases. 

4 Conclusions 
A geometrical approach has been introduced to find the 

instability trends of galloping of an iced, transmission lines 
when its parameters change. Based on the stability boundary 
derived from a two degrees-of-freedom model, critical wind 
speeds are obtained, with respect to (at least eight) system 
parameters, but in a simple two-dimensional space. Besides 
considering the general instability trends, important practical 
cases are studied in detail. Tabulations are presented of the 

increases or decreases in the stability trends, with respect to 
various parameter ranges, for the initiation of galloping and 
periodic vibrations. Not only does the geometrical approach 
provide robust solutions, but it can also be generalized straight
forwardly to accommodate eccentricities, and more than the 
quite representative, but still only two degrees-of-freedom 
model employed here. Changing the parameters of an iced 
conductor has been shown to often lead to contradictory inst
ability trends. Therefore it is not surprising that the most 
practical way to best control galloping is still debated. 
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A P P E N D I X 
A brief outline of the derivation of equations (1) and (2) is 

given when sx/m^o. The equation describing the motion of 
a two degree-of-freedom model are (Blevins, 1974): 

my + cyy-sx 6 + kyy = Fy, 

ie + Ced-Sxy +ke6 = FM, (Al) 

where m, I, and sx are defined with reference to the center of 
rotation, O, in Fig. 1 as 

m=\lidi dr,, 1= \ (Z2 + r,2)ix d£ dV, sx= \ Zp <% dV (A2) 

and Li is the mass density over cross-section A. The Fy and Fu 
represent the vertical aerodynamic force and the aerodynamic 
moment, respectively. They are functions of the angle of attack 
a, and can be expressed by 

Fy = \ p U2d Cy (a), 
2 (A3) 

FM=^pU2d2CM(a). 

The a can be approximated by 

a = e-^6-yTy. (A4) 
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Coefficients Cy and CM are relatively smooth continuous func
tions of a and they may be expressed as experimentally de
termined polynomials in a. The cubic polynomial 
approximation suggested by Blevins and Iwan (1974) for sym
metric ice shapes is used here, i.e., 

Cy = ax a + a3 a3, 

CM=bi a + b3 a3. 

A combination of equations (Al), (A3), and (A5) produces 
the following set of dimensionless equations: 

Y-ex6+Y=-2£y Y-i\y Uy (a, a + a3a
3) 

-2£ 9 w 6-no Uy (bi a + b3a
3) 

(A6) 
J-r,ex Y+wid=-2^gu e-Tie Uy 

where Y = y/d, ex = sx/md, and the definitions of the other 
coefficients are given by equation (3). Here, dots indicate de
rivatives with respect to time, r = oiyt. The characteristic fre
quencies for the homogeneous system (A6) may be defined as 

2 
W(1.2)<; ¥ 1 W ± (1 + to2)2- 4 2 (A7) 

where T = 1/(1 -i,ex). Next, the introduction of the linear 
transformation 

1 0 K2 0 

0 0)lc 0 K20>2c 

Kt 0 1 0 

0 K\OS\c 0 M2c 

(A8) 

into (A6) results in the state variable equations 

[x} = [L][x} + [N\ (A9) 

whose Jacobian matrix, evaluated on the initial equilibrium 
solution [x] = 0, is now in the standard form 

(A10) 

The L and N in equation (A9) represent the linear and nonlinear 
parts of | x}, respectively, and Ki and K2 in equation (8) are 
given by 

0 Wic 

— OJ\c 0 

0 0 

0 0 

0 

0 

0 

~<*?r 

0 

0 

0>2 

0 

2 
C0 lc 

2 
"2c 

A , = — 2-r}exK2 = — 2ex. (All) 
0)lc-OJ W2c—W 

Finally, by applying classical methods (e.g., averaging, mul
tiple scale, normal form theory), rate equations governing the 
local dynamic behavior, expressed in terms of the amplitudes 
(Ay, Ae) and phases (4>y, </>#) of the perodic vibrations having 
frequencies wu and u2 respectively, are obtained as 

Ay = E{ Uy 0>2
lc VyAy [A J + £ 2 (A^y + 2A ̂ J)] , 

Ae = ElUy 
7 "2c 

r,oAe [A2 + E3 {lAyAl + A^A2)}, 

4>y = oiu ll+K^U^y lUyldy+Klbi) (A12) 

+ (a3+K1b3) [AiAy + lAiA] 

2 

9 = W2c ] l + £ " l ( — ) 1\t Uy (Kia, + bX) 

, + M (2 + (K2ch + bi) llAjAl+AtAl 

Here, 

A^-Uyd+K^) (a,+*,*>,)-

A2 = - Uyfo + rdVCjPi + bd-

_Vy Ve 

Vy Ve 

A' = V77^uy+ ( l + ^ i n ) 2 " 2
c ] (>0) , 8 a 

(A 13) 

A. = -

Ex=-

lUy+(K2 + ri)
2o>l] (>0) , 

1 

(1-KiKd u; 

E2=(l+Klrl)(a3 + Klb3), 

E3=(K2 + n)(K2a3 + b3). 
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Measurements of Velocity, 
Velocity Fluctuation, Density, and 
Stresses in Chute Flows of 
Granular Materials 
Experiments on continuous, steady flows of granular materials down an inclined 
channel or chute have been conducted with the objectives of understanding the 
characteristics of chute flows and of acquiring information on the rheological be
havior of granular material flow. Two neighboring fiber-optic displacement probes 
provide a means to measure (1) the mean velocity by cross-correlating two signals 
from the probes, (2) the unsteady or random component of the particle velocity in 
the longitudinal direction by a procedure of identifying particles, and (3) the mean 
particle spacing at the boundaries by counting the frequency of passage of the 
particles. In addition, a strain-gauged plate built into the chute base has been 
employed to make direct measurement of shear stress at the base. With the help of 
these instruments, the vertical profiles of mean velocity, velocity fluctuation, and 
linear concentration were obtained at the sidewalls. Measurements of some basic 
flow properties such as solid fraction, velocity, shear rate, and velocity fluctuation 
were analyzed to understand the characteristics of the chute flow. Finally, the 
rheological behavior of granular materials was studied with the experimental data. 
In particular, the rheological models of Lun et al. (1984) for general flow and fully 
developed flow were compared with the present data. 

1 Introduction 
Recent theoretical research has added greatly to our knowl

edge of the rheological behavior of rapidly flowing granular 
materials. For example, Ogawa et al. (1980), Savage and Jef
frey (1981), Jenkins and Savage (1983), and Lun et al. (1984) 
have led to a comprehension of how stresses and solid fraction 
in a granular flow are related to velocity gradient and to the 
kinetic energy associated with random motions of particles 
(the so-called granular temperature). Moreover, for simple 
shear flow, all the theoretical analyses predict a rheological 
behavior which is a natural extension of that originally pro
posed by Bagnold (1954). Namely, 

Tij = Ppfij(v)d m 
where T# is the stress tensor, pp is the density of the solid 
particle, fy is a tensor function of solid fraction, v, d is the 
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diameter of the particle, and du/dy is the local mean shear 
rate. Lun et al. (1984) estimated the ratio of the characteristic 
mean shear velocity, d{du/dy), to the root mean square of 
velocity fluctuations to be a function only of solid fraction 
and the coefficient of restitution. In their analysis the velocity 
fluctuations were assumed to be isotropic. Furthermore, the 
effect of a variable coefficient of restitution which depends 
on the particle impact velocity, has been studied by Lun and 
Savage (1986). It has been found that the coefficient of res
titution, which increases with decreasing impact velocity, causes 
the stresses to vary with the shear rate to a power less than 
two. 

These advances have been greatly aided by computer sim
ulations (for example, Campbell and Brennen (1985a,b), Wal
ton and Braun (1986a,b), Campbell and Gong (1986), and 
Campbell (1989)). Especially Walton and Braun (1986b), 
Campbell and Gong (1986), and Campbell (1989) produced 
results similar to those of the theoretical models. However, 
velocity fluctuations are found to be anisotropic. That is, as 
solid fraction decreases, granular temperature deviates from 
an isotropic distribution. The effect of a variable coefficient 
of restitution has also been examined in the computer simu
lation by Walton and Braun (1986b). The results manifested 
a deviation from those of the constant coefficient of restitution 
in a manner similar to that of Lun and Savage (1986), but the 
calculated stresses were significantly lower than those of ex-
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perimental studies and Lun and Savage. Though there has been 
significant success, computer simulation faces difficulties in 
creating realistic boundary conditions. In addition, compli
cated interactions between particles and between solid walls 
and particles remain to be explored. 

On the other hand, progress in experimental methods for 
granular materials has been very limited, being hindered by 
the obvious difficulties involved in making point measurements 
of velocity, solid fraction, or granular temperature in the in
terior of granular material flow. For example, granular tem
perature, in spite of its importance, had not been experimentally 
measured until Ahn et al, (1988) used fiber-optic displacement 
probes to measure one component of velocity fluctuations. 
The present state of the experimental information on granular 
material flows consists of a number of Couette flow studies 
(e.g., Savage and McKeown (1983), Hanes and Inman (1985), 
and Craig et al. (1986)) and several studies of flows down 
inclined chutes (e.g., Bailard (1978), Augenstein and Hogg 
(1978), Patton et al. (1987), and Ahn et al. (1988)). Under
standably, the initial objective of some of the Couette flow 
experiments (such as those of Savage and McKeown (1983)) 
was to produce a simple shear flow with uniform velocity 
gradient, uniform solid fraction, and hopefully, uniform gran
ular temperature. To this end the surfaces of the solid walls 
were roughened to create a no-slip velocity condition at the 
wall. Practical engineering circumstances require the knowl
edge of how to model the conditions for smooth walls at which 
slip occurs. This presents some difficulties because the bound
ary conditions on the velocity and granular temperature at the 
smooth walls are far from clear (see, for example, Campbell 
(1988)). 

Chute flows differ from Couette flows and have a "con
duction" of granular temperature as indicated in Campbell 
and Brennen (1985b). In their work, a boundary layer next to 
the wall had a lower solid fraction and higher granular tem
perature than the bulk further from the wall, indicating a 
conduction from the boundary layer to the bulk. Granular 
conduction has more extensively been studied by Ahn et al. 
(1989). The results show that granular temperature can be 
conducted either from the wall boundary to the free surface, 
or from the free surface to the wall, depending on the values 
of the coefficient of restitution and the angle of chute incli
nation. Furthermore, the granular conduction term and the 
dissipation term are found to be comparable in magnitude. 
The results also show a significant role played by the granular 
conduction in determining the profiles of granular tempera
ture, solid fraction, and velocity. 

This paper contains a study of continuous, steady flows of 
granular materials down an inclined chute. The objective was 
to understand the characteristics of granular chute flows and 
to acquire information on the rheological behavior of granular 
flow. 

2 Review of Rheological Models 
In this section, the existing rheological models postulated 

by Lun et al. (1984) will be reviewed for the purpose of ana
lyzing the present experimental data. Comparisons between 
simple shear flow and fully developed chute flow will also be 
included. 

For two-dimensional flow which is steady and fully devel
oped in the flow direction, the translational fluctuation energy 
equation is given as follows (see, for example, Jenkins and 
Savage (1983)): 

du dqy 
dy 

— P 
yx dy 

-7 = 0, (1) 

where Pyx is the shear stress, u is the velocity in the flow 
direction, y is a coordinate in the direction normal to the flow, 
and qy is the j>-component of fluctuation energy flux. The rate 
of the dissipation of fluctuation energy per unit volume is 

denoted by 7. The first term is the work done to the system 
by stresses, and the second term represents the conduction of 
the fluctuation energy. 

Following Lun et al., the normal and shear stresses and the 
dissipation term are given as follows: 

Pyy = PPg\(v,ep)T, 

Pyx=-PPg2(v,ep)dj-Tl 

(2) 

(3) 

(4) 

where pp is the density of the solid particle, and d is the diameter 
of the particle. The granular temperature, T, is defined by 
1/3 «u ' 2 > + <t;'2> + <w'2)) where u', v', and w' are three 
velocity fluctuation components. And g\{y,ep), g2(v,ep), and 
gi(v>eP) are functions of solid fraction, v, and the particle-
particle coefficient of restitution, ep. 

For simple shear flow with uniform density and granular 
temperature, the conduction term in the energy equation (1) 
vanishes. Therefore, the shear work term and the dissipation 
term should balance. Using equation (1) with (3) and (4), the 
ratio of the characteristic velocity gradient to the granular 
temperature is obtained as follows: 

dy /g 3 S=-

Note that S is a function only of v and ep. 
(3) can be written as follows: 

2 / , M 2 g i 

x=Pp{dTy) 

El 
gi 

2g\n 

(5) 

Therefore, (2) and 

(6) 

(7) 

The ratio of shear stress to normal stress, or friction coefficient, 
is also a function only of v and ep. 

On the other hand, fully developed chute flow does not have 
uniform temperature and solid fraction over the depth of the 
flow. Therefore, the conduction term remains in the energy 
equation (1) and it plays an important role in determining the 
profiles of granular temperature, solid fraction, and velocity 
(see Ahn et al. (1989)). Simple momentum principles are suf
ficient to demonstrate that for fully developed chute flow, the 
ratio of shear stress to normal stress is a constant given by tan 
6 where 8 is the angle of chute inclination. From (2) and (3), 
therefore, S is given by 

, du 

c dy g, 
S=^m = ~ tan 

Tl/2 g2 
(8) 

It should be noted that S is a function not only for v and ep 

but also of tan 6. And since v varies over the depth of the 
chute flow, S also varies, tending to zero at the free surface. 
Under these circumstances, (2) and (3) can be written as 

(9) P„ tan2 6 = PP(d^ 

( 
Pyx tan 0 P^dfy) ft" (10) 

These characteristics of chute flows will be important in con
sidering the results presented in this paper. 

3 Experimental Measurements 
The present experiments were conducted in a long rectan

gular aluminum channel or chute—7.62 cm wide and 1.2 m 
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Fig. 1 Geometry of the faces of the two displacement probes used for 
velocity measurements with the 1.26mm diameter glass beads 

long. The chute was installed in a continuous flow, granular 
material facility, as previously described in Patton et al. (1987). 
The material enters the chute from an upper hopper and is 
collected in a collecting hopper from which, in turn, a me
chanical conveyor delivers the material to the upper hopper. 
The channel is positioned at different angles, 6, to the hori
zontal. Measurements were taken only after a steady-state flow 
had been established. The flow into the channel is regulated 
by a vertical gate, and the opening between the gate and the 
channel base is referred to as the entrance gate height, h0. 

In these experiments two sizes of glass beads were used as 
granular materials; one is of mean diameter d= 1.26 mm with 
2.9 percent standard deviation, and the other has d= 3.04 mm 
with 7.2 percent standard deviation. The maximum shearable 
solid fraction, v* was estimated from measurements of the 
values for the two cases in which the materials are densely 
packed and loosely packed in a container. The 1.26-mm beads 
had a value of e* = 0.61. For the 3.04 mm beads, v* is 0.59. 
The density of both granular materials is pp = 2500 kg/m3. 

Two important instruments were used in the experiments; 
one is a gauge to measure shear stress, and the other is a set 
of two fiber-optic probes to measure mean velocity and velocity 
fluctuation. In order to measure shear stress of flowing ma
terial at the chute base, a rectangular hole, 11.4 cm long and 
3.8 cm wide, was cut into the chute base and replaced by a 
plate supported by strain-gauged flexures sensitive to the shear
ing force applied to the plate. Calibration of this balance was 
achieved by placing weights on the plate with the channel set 
at various inclinations. The clearance between the plate and 
the rest of the chute base was adjusted to be about 0.2 mm, 
much smaller than the particle sizes. Nevertheless, dirt would 
occasionally get trapped in the gap and this necessitated clean
ing of the gap prior to each measurement. 

A system of fiber-optic probes, similar to that originally 
devised by Savage (1979), was developed to measure particle 
velocities and their fluctuations at the chute base, the free 
surface, and the sidewalls. The system consisted of two MTI 
fiber-optic displacement probes set with their faces flush in a 
lucite plug which was, in turn, either set flush in the chute 
base or sidewalls or held close to the free surface of the flowing 
granular material. The probe faces were 1.6 mm in diameter 
and of the type in which one semicircle of the face consisted 
of transmitting fibers and the other of receiving fibers. The 
specific geometry is shown in Fig. 1. The distance between two 
displacement probes was selected to be about two particle 
diameters. This distance was carefully calibrated by placing 
the probes close to a revolving drum to which particles had 
been glued, and comparing the drum peripheral velocity with 
the velocity measured from the probe output. 

The output from these velocity measuring devices was 
processed in the following way. First, the signals from each 
of the two displacement probes were simultaneously digitized 
and stored using a data acquisition system. Sampling rate was 
varied, depending on the mean velocity of particles. For most 

flows, the record time was about 0.5 second, recording at 
3 x 104 samples/sec. Typically, each record detected the pas
sage of 300 ~ 600 particles. The two records were digitally cross-
correlated over the entire record in order to obtain the mean 
particle velocity, u. This information was then used to identify 
the peaks on the two records corresponding to the passage of 
a particular particle. When no such correspondence could be 
established or where the peak was below a certain threshold, 
the data was discarded for the purposes of this second part of 
the analysis. However, where positive identification was made, 
the velocity of that individual particle was obtained from the 
time interval between the peaks it generated on the two records. 
In this way, a set of instantaneous particle velocities were 
obtained, and ensemble-averaging was used to obtain both the 
mean velocity, u, and the root mean square of velocity fluc
tuation, u'. Though the latter represents only one component 
of velocity fluctuations, it should be some measure of granular 
temperature. Finally, the number of particle passages per unit 
time detected by the probe was divided by the mean velocity 
to obtain the characteristic particle spacing, C\D, and in turn 
the linear concentration, vw, was calculated as viD = d/Cw 
where d is the mean diameter of the particles. An estimate of 
the local solid fraction near the wall, vw, was calculated using 
PW = ICU\D/6. 

In addition, point probes were used to record the depth, h, 
of flow at several longitudinal locations in the channel. Mass 
flow rate, th, was obtained by timed collection of material 
discharging from the chute. Mean velocities at the chute base 
and at the free surface obtained by the fiber-optic probes were 
averaged to give the average mean velocity, um, over the depth 
of the flow. A mean solid fraction, vm, could then be obtained 
as vm = m/pphbum where b is the channel width. Furthermore, 
mean shear rate was calculated as Au/h where Aw is the dif
ference between the two velocities at the base and at the free 
surface, and h is the depth of the flow. Normal stress was 
calculated by rN=ppvmgh cos 0 where g is the gravitational 
acceleration, and shear stress, TS, was measured directly by the 
shear gauge. All the above measurements except for shear stress 
were made at two stations located at 72 cm and 98 cm down
stream from the entrance gate. The shear gauge was located 
in the middle of these two stations. It should be noted that 
vH, u, u', TN, and TS are local properties while v,„ and Au/h 
represent quantities averaged over the depth of flow. The data 
from all the measurements were quite repeatable, and the data 
presented here are typically averages over two or five meas
urements. 

Preliminary tests suggested that the flow could be influenced 
by the surface conditions of the chute base. Indeed, the data 
were quite sensitive to the degree of the cleanliness of the 
aluminum chute base. Therefore, it was possible to create 
different surface conditions with the aluminum chute by con
trolling the cleanliness. In addition, a very thin film of liquid 
rubber (Latex) was applied to the chute base to give a totally 
different surface condition. This film was about 0.2 mm thick. 
Before conducting experiments, the chute was run long enough 
to achieve a steady-state surface condition. With these pre
cautions, data will be classified in this presentation by whether 
the chute base was "smooth," "moderately smooth," or "rub
berized." The state of being moderately smooth was quite 
stable, but the smooth surface condition was less stable, re
quiring careful control of the cleanliness. To systematically 
characterize these different surface conditions, Coulombic 
friction coefficients were measured using the shear gauge and 
a block to which glass beads were glued. The kinematic Cou
lombic friction coefficient of the smooth surface was 0.15; the 
moderately smooth and rubberized surface had coefficients of 
0.22 and 0.38, respectively. Furthermore, smooth and mod
erately smooth surfaces yielded coefficients of restitution dif
ferent from that of the rubber-coated surface; the former was 
0.7 while the latter 0.5. Both were measured by observing an 
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Fig. 2 The transverse velocity profiles (a) at the chute base and (b) at 
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mm. o, 9 = 17.8 deg, >>m = 0.54, u„ = 0.898 m/sec, and us = 1.118 m/sec; 
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Fig. 3 The vertical profile at the sidewall, • . Vertical location, y, nor
malized by the particle diameter d against (a) mean velocity, (b) velocity 
fluctuation, and (c) linear concentration, x , data at the center of the 
chute. Dotted line, the assumed velocity profile at the center of the 
chute. Data were taken at 0 = 17.8 deg on the rubberized surface; >•„, = 0.30, 
/i„ = 25.4 mm, and d=3.04 mm. 

individual particle colliding with the surface. These coefficients 
of restitution, em between the wall surface and a particle should 
be distinguished from that between two particles, ep, which 
was not measured here. 

4 Preliminary Observations on Profiles 
Originally the chute was designed to be wide enough to yield 

almost two-dimensional flow. To examine the effect of the 
sidewalls (and the extent to which this objective was achieved), 
fiber-optic probe measurements were made at several lateral 
locations with various chute inclinations. The 1.26-mm glass 
beads were used in measurements of the transverse velocity 
profiles, and the surfaces of the aluminum chute base as well 
as the sidewalls were smooth. Velocities normalized by the 
velocity at the centerline are plotted in Fig. 2. Comparison of 
the profiles on the free surface and on the chute base indicates 
that the flow at the free surface is more uniform and less 
affected by sidewall than the flow at the base. This is a "corner 
effect" in which particles in the corner are slowed both by the 
chute base and the side wall. One could visually observe that 
particles in the corner are arranged in a distinct line which has 
high solid fraction and low velocity. It should also be noted 
from Fig. 2 that the higher the velocity (or the higher the chute 
inclination), the less significant the sidewall effect. Thus non-
uniformity, due to the sidewall, was significant only at the 

base and at low velocities (low inclinations). We were partic
ularly concerned about the sidewall effect on the shear gauge 
whose width was one half of that of the channel. The foregoing 
results indicated that this sidewall effect would be very small. 

Vertical profiles were obtained by making measurements 
through lucite windows in the sidewalls. Savage (1979) made 
similar efforts to obtain velocity profiles at the sidewalls using 
fiber-optic probes. Bailard (1978) obtained the vertical profiles 
of velocity and solid fraction by measuring cumulative mass 
flux profiles. Campbell and Brennen (1985b) in the computer 
simulation with circular discs obtained the profiles of velocity, 
granular temperature, and solid fraction. In the present work, 
fiber-optic probes were used to measure velocity, its fluctua
tion, and linear concentration. It should be noted that, usually, 
fully developed flow could not be achieved because of the finite 
length of the chute. 

One typical example of the vertical profiles is included in 
Fig. 3, the measurements being taken with 3.04-mm glass beads 
with a chute inclination of 17.8 deg and a rubberized chute 
base. As illustrated in Fig. 3(a), the velocity profile is fairly 
linear except within a distance of about one particle diameter 
from the base. The uniform velocity within the distance of 
one-particle diameter indicates that there is a distinct layer at 
the corner, preventing particles from entering the layer from 
above, assuring the existence of the "corner effects." Note 
that the ratio of velocity at the base to that at the free surface 
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Fig. 4 The vertical profile at the sidewall, a. Vertical location, y, nor
malized by the particle diameter (/against (a) mean velocity, (b) velocity 
fluctuation, and (c) linear concentration. Data were taken at 6 = 22.7 deg 
on the smooth surface; h„= 15.9 mm and d= 1.26 mm. 

is about one half, which is comparable with the results of the 
computer simulation by Campbell and Brennen (1985b). This 
result should be distinguished from those of Savage (1979) and 
Bailard (1978) where almost zero velocity was obtained at the 
chute surfaces roughened by rough rubber sheets or attached 
particles. 

Velocities at the center of the chute, both at the base and 
the free surface, are shown in Fig. 3(a) for comparison with 
the velocities at the sidewall. At the free surface, the velocities 
at the center and at the sidewall are almost equal. But at the 
base there is some discrepancy due to the corner effect. This 
characteristic of the data suggests that the velocity profile in 
the center of the chute is similar to that at the sidewall except 
within one particle diameter distance from the base. An as
sumed velocity profile at the center is shown by the dotted line 
in Fig. 3(a). We also conclude from these observations that 
the shear rate, du/dy, can be approximated by the difference 
between the base and free-surface velocities, A«, divided by 
the depth, h, of the flow. This approximation has been used 
throughout the analysis which follows. 

The profile of velocity fluctuations at the sidewall is plotted 
in Fig. 3(b). It can be seen that the profile is fairly linear, and 
that fluctuations are larger at the free surface than at the chute 
base. Comparison between the sidewall and center values is 
also included in Fig. 3(b). At the free surface, no significant 
difference is encountered between the velocity fluctuations at 
the sidewall and at the center. But at the base, a small dis
crepancy is observed which is again believed to be due to the 
corner effect. This fairly linear profile for velocity fluctuation 
was observed in most flows. Furthermore, the fluctuations 
were always higher at the free surface than at the base of the 
chute. These overall features are in contrast to the results 
obtained by Campbell and Brennen (1985b). In their computer 
simulation, granular temperature near the solid wall was sub
stantially higher than near the free surface, and the profile was 
far from linear. We believe this difference is probably due to 
that fact that 0.6 was used for ep in the computer simulation, 
while ep for glass beads is more like 0.95 (Lun and Savage 
(1986); refer to Ahn et al. (1989) for more detail). 

When Fig. 3(b) is closely examined, it raises some compli
cated problems in measurements of granular flows. For in
stance, a slight peak in the velocity fluctuation was consistently 
observed at a distance of one-particle diameter from the chute 
base. This location coincides with the interface between the 
first and second layers of particles which are quite distinct 
because of the corner effect. Within each distinct layer, the 
fiber-optic probes measure only longitudinal fluctuations for 
the particles within that layer. At the interface, however, par
ticles from both layers contribute, and hence the difference in 
the mean velocities in the two layers enters into the result. 
Therefore, the fluctuations at the interface were observed to 
be slightly higher than elsewhere. 

The profile of linear concentration, vw, is presented in Fig. 

3(c). Again, in the region near the base, the locations of the 
first and second layers and their interface can be determined 
by the details of the profile. The peak at y/d =0.5 indicates 
the location of the center of the first layer; the interfacial region 
has a lower concentration; the peak at y/d =1.7 corresponds 
to the center location of the second layer. This detailed struc
ture seems to disappear above the second layer. Near the free 
surface, the linear concentration decreases gradually, and as 
a result the free surface is not clearly defined as it might 
otherwise be. 

The monotonic decrease of solid fraction with distance from 
the wall as shown in Fig. 3(c) was a somewhat unexpected 
result. From previous experiments (Bailard (1978)) and from 
computer simulations (Campbell and Brennen (1985b)), it has 
been observed that solid fraction increases with distance from 
the base and it vanishes at the free surface after it achieves its 
maximum in the bulk. The discrepancy between the profile of 
the present experiments and the results of Bailard may be due 
to the different surface conditions used in the experiments. 
The experiments of Bailard used the surface on which particles 
were glued to create a no-slip condition at the boundary. On 
the other hand, the present experiments used relatively smooth 
surfaces. The discrepancy between the present data and the 
results of Campbell and Brennen may arise from the fact that 
the value of ep used by Campbell and Brennen is different from 
that of the glass beads in the present experiments. The results 
of Ahn et al. (1989) show that the profile of solid fraction can 
be either of Campbell and Brennen or of the present one, 
depending on the value of ep. 

Similar sidewall measurements were made with other sizes 
of glass beads and at other chute inclinations (Ahn (1989)); 
the general features of these profiles are similar to those of 
the preceding example though the data with a smooth alu
minum base differed somewhat from that with the rubberized 
base. To illustrate this, measurements with the 1.26-mm glass 
beads at a chute inclination of 22.7 deg with the smooth alu
minum base are presented in Fig. 4. Compared to the data on 
the rubberized surface, the profiles of velocity and velocity 
fluctuation are more uniform. The velocity at the wall is more 
than 80 percent of that at the free surface. Velocity fluctuation 
is fairly uniform, although there is a slight increase with dis
tance from the chute base. The detailed structure of the layers 
due to the corner effect is clearly observed in all the profiles. 

5 Presentation of Experimental Data 
5.1 Experimental Data on Basic Flow Properties. In this 

section, we examine how basic flow properties (such as veloc
ities, velocity fluctuation, and shear rate) vary with solid frac
tion. Two kinds of solid fraction are used in this presentation; 
mean solid fraction, vm, and wall solid fraction, v„. The mean 
solid fraction is an average value over the depth of flow, and 
the wall solid fraction describes a density in the vicinity of the 
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chute base. Because it is calculated from a measurement of 
linear concentration, the wall solid fraction may not represent 
accurately the local solid fraction near the wall, but it is at 
least a qualitative, comparative measure. 

The ratio of velocity at the wall, u„, to velocity at the free 
surface, us, is plotted against mean solid fraction in Fig. 5. 
Different symbols are used for different surface conditions. 
For the smooth surface, the ratio u„/us is fairly constant and 
greater than 0.9, implying that the velocity profile over the 
depth is close to uniform. On the other hand, for the rubberized 
surface, the ratio increases with decreasing vm. In other words, 
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Fig. 5 The ratio of velocity at the chute base wall to velocity at the tree 
surface, ujus, against mean solid fraction, vm. • , the smooth surface, 
+ , the moderately smooth surface; A, the rubberized surface. 

the lower the solid fraction, the more uniform the velocity 
profile. Note the rather sudden change of uw/us at cm = 0.1 
which will be discussed later. As expected, the data for the 
moderately smooth surface lie between those for the smooth 
surface and the rubberized surface. 

The mean shear rate, Au/h, is plotted against mean solid 
fraction in Fig. 6. For the smooth surface (see Fig. 6(a)), the 
shear rate monotonically increases with decreasing vm. (Recall, 
however, ujus remains constant as shown in Fig. 5). On the 
other hand, the moderately smooth and rubberized surfaces 
(see Figs. 6(6)-and (c)) yield shear rates which first increase 
and then decrease as the solid fraction decreases. The values 
of vm at which the shear rate is a maximum are about 0.3 for 
the moderately smooth surface, and about 0.2 for the rub
berized surface regardless of the particle size. Note that the 
steep change of the shear rate at vm = 0.1 for the rubberized 
surface corresponds to that of ujus in Fig. 5. 

The variation of the velocity fluctuation at the wall, w ,̂ with 
wall solid fraction is examined in Fig. 7(a). Regardless of 
surface conditions, u'v increases with decreasing c„. The use 
of wall solid fraction was essential for the examination of the 
local quantity u^. To illustrate this, the local quantity ui, was 
plotted against the mean quantity vm as shown in Fig. lib). 
The use of the mean quantity with the local quantity leads to 
a wide scattering of the data. If examined more closely, the 
data reflected a strong dependency on the entrance gate open
ing h0. As observed in Fig. 1(b), the data have a distinct line 
for each h0. This is because the mean solid fraction is closely 
related to h0. Note that fully developed flow was not achieved 
in the present experiments (this will be discussed later). There
fore, the test section was directly affected by entrance con
ditions governed by h0. When vw is used, the dependency on 
h0 largely disappears as shown in Fig. 7(c). 

It is also interesting to present the velocity fluctuation in a 
nondimensionalized form. In Fig. 8, the velocity fluctuation 
normalized by the mean velocity is plotted against wall solid 
fraction. Note all the quantities are local values measured at 
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Fig. 6 The shear rate, Au/h, against mean solid fraction, vm: (a) the 
smooth surface, (b) the moderately smooth surface, and (c) the rubber
ized surface. • , d=3.04 mm; A, d=1.26 mm. 
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Fig. 7 The longitudinal velocity fluctuation at the wall, u'„, against solid 
fraction with the rubberized surface, (a) Data for d= 1.26 mm and d= 3.04 
mm. n, the smooth surface; + , the moderately smooth surface; A, the 
rubberized surface, (b) Data for d=1.26 mm. a , h0 = 38.1-50.8 mm; A, 
/i„ = 25.4 mm; v , / l 0 = 12.7~15.9 mm. (c) Data as in (6). 
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Fig. 8 The longitudinal velocity fluctuation at the chute base wall nor
malized by mean velocity, ui,lum against wall solid fraction, v„. • , the 
smooth surface; +, the moderately smooth surface; A, the rubberized 
surface. 
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Fig. 10 Friction coefficient at the wall, f=rshN, against longitudinal 
velocity fluctuation at the wall normalized by mean velocity, ui,lu„. a, 
the smooth surface; +, the moderately smooth surface; A, the rubberized 
surface. 
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Fig. 9 Friction coefficient at the wail, / = TS/TN, against wall solid frac
tion, v„. • , the smooth surface; +, the moderately smooth surface; A, 
the rubberized surface. 

the wall. The ratio of u'y, to uK for the rubberized surface is 
larger than that for the smooth surface. The ratio u'JUy, for 
the smooth surface shows little variation with v„. For the mod
erately smooth surface, u'JUy, changes only mildly with vw. 
However, the rubberized surface clearly shows the increase of 
u'Juw with decreasing vw. 

5.2 Experimental Data on Friction Coefficient. As pre
viously mentioned, shear stress was directly measured by the 
shear gauge, and normal stress was calculated as ppv,„gh cos 
8 where pp is the density of particles, g is the gravitational 
acceleration, h is the depth of flow, and 8 is the angle of the 
chute inclination. Note both stresses were measured at the chute 
base wall. Recall from Section 3 that kinematic Coulombic 
friction coefficients, /J,C, were measured for each surface con
dition; 0.15 for the smooth surface, 0.22 for the moderately 
smooth surface, and 0.38 for the rubberized surface. 

The ratio of shear stress to normal stress, or friction coef
ficient, / , is plotted against wall solid fraction in Fig. 9. For 

the smooth and moderately smooth surfaces, friction coeffi
cients appear to be fairly constant. Furthermore, the values 
of friction coefficients are comparable to the kinematic Cou
lombic friction coefficients for each surface (though/is slightly 
higher than (ic). On the other hand, for the rubberized surface, 
the friction coefficient is a decreasing function of solid frac
tion. And the Coulombic friction coefficient for the rubberized 
surface does not seem to directly affect the friction coefficient 
for the flowing material. Therefore, it may be concluded that 
the different surface conditions result in quite different types 
of boundary condition at the wall. 

In Fig. 10, the friction coefficient is plotted against velocity 
fluctuation normalized by mean velocity, or u^,/u„. For the 
smooth and moderately smooth surfaces, all the data are clus
tered at one region. For the rubberized surface, / seems to 
correlate quite well with u^/uw; /increases with increasing u„/ 
uw. This phenomenon is independent of particle size. 

5.3 Experimental Results on Rheological Behavior. The 
data on the normal and shear stresses will be examined by 
comparison with the rheological model of Lun et al. (1984). 
In particular we examine the stresses by normalizing by pp(u„f 
and pp{dAu/h)u'w (see equations (2) and (3), for any kind of 
flow). Other possible normalizing factors which merit inves
tigation are pp(dAu/h)2 (see equations (6) and (7), for simple 
shear flow), pp(dAu/h)2/tan2 8, and pp(dAu/tif/tan 8 (see equa
tions (9) and (10), for fully developed flow). In this investi
gation, it is important to recall that Lun et al. assume that the 
granular temperature is isotropic, and that the effects of par
ticle rotation and surface friction are not included in their 
model. One could, therefore, expect some discrepancies in 
comparison with the experimental data. 

The theory of Lun et al. suggests that the appropriate nor
malizing factor of the normal stress should be pp{Uw)2, and the 
experimental data thus normalized is plotted against the wall 
solid fraction in Fig. 11(a). This method of normalization 
appears to correlate the data quite well and seems to collapse 
the data for the different surface conditions. When these same 
values are plotted against the mean solid fraction as in Fig. 
11(6), the data are more scattered. This may be explained by 
realizing that the normalized stress is a local quantity which 
should be related to the local wall solid fraction rather than 
the mean solid fraction. In both figures, results for the rheo-
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Fig. 11 The normalized normal stress, rNlppUi,2, against (a) wall solid 
fraction, v„, and (b) mean solid fraction, vm. a, the smooth surface; + , 
the moderately smooth surface; A, the rubberized surface. The solid 
lines, the results of Lun et al. (1984). 
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Fig. 12 The normalized shear stress, TSlppd(Aulh)u^, against (a) wall 
solid fraction, >•„, and (b) mean solid fraction, vm. a, the smooth surface; 
+ , the moderately smooth surface; A, the rubberized surface. The solid 
lines, the results of Lun et al. (1984). 

logical model postulated by Lun et al. (1984) (see equation (2)) 
are also plotted using T= <«'2>. 

On the other hand, the theory of Lun et al. suggests that 
the shear stress should be normalized by pp{db.ulh)u!„, and the 
resulting experimental data is presented in Fig. 12. Again the 
data is well correlated regardless of surface conditions when 
plotted against the wall solid fraction, and the data is less 
satisfactorily correlated with the mean solid fraction. The re
sults of Lun et al. (1984) for any general flow (see equation 
(3)) are shown in the same figure for comparison. The quan
titative discrepancy between the theoretical and experimental 
results is substantial. 

It should also be observed that alternative normalizations 
with Pp(dAu/h)2, pp(dAu/h)2/tan2 6, and pp(dAu/h)2/ta.n 6 
yielded less satisfactory correlation of the data than in Figs. 

11(a) and 12(a) (see Ahn (1989)). This strongly implies that 
the rheological models of Lun et al. have considerable merit 
in so far as the functional dependence on the flow parameter 
is concerned though the quantitative values of some of the 
coefficients may be significantly in error. 

We now examine the parameter, S, introduced by Savage 
and Jeffrey (1981) where 

S = -

,du 
dy 

The model of Lun et al. (1984) predicts that S should be a 
function only of v and ep for simple shear flow and that S/ 
tan 8 should likewise be a function only of v and ep in fully 
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Fig. 13 The parameter, S = d(Aulh)lui,, against wall solid fraction, e„. 
• , the smooth surface; + , the moderately smooth surface; A, the rub
berized surface. The solid lines, the results of Lun et al. (1984). 
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Fig. 14 The parameter, S/tan 0 = d(Au/h)ui tan fl, against wall solid 
fraction, v„. a, the smooth surface; + , the moderately smooth surface; 
A, the rubberized surface. The solid lines, the results of Lun et al. (1984). 

developed flow (see equations (5) and (8)). Here we estimate 
S by d{A.u/H)/u'w. The parameter S is plotted against the wall 
solid fraction in Fig. 13 while S/tan d is presented in Fig. 14. 
In both figures the data is widely scattered showing strong 
dependency on surface conditions. We believe, for reasons 
stated later, that this is due to the fact that the flow is not a 
simple shear flow and that only a subset of the data represent 
fully developed flows. 

6 Discussion 
6.1 The Characteristics of Chute Flows. It is apparent 

from Fig. 5 that the surface condition has considerable influ
ence on the characteristics of chute flow. Different results have 
been achieved by several authors when different surface con
ditions are used. For example, Bailard (1978) used a surface 
on which grains were glued, and Savage (1979) applied rough
ened rubber sheets to the surface. In both cases, the ratio of 
uw to us was close to zero. Augenstein and Hogg (1978) obtained 
various u„/us for various surface roughnesses. When a smooth 
surface with high friction coefficient was used by Campbell 
and Brennen (1985b) in computer simulations, the ratio of uw 
to us was about 0.4 — 0.5. The rubberized surface of the present 
experiments, therefore, is similar to those cases in Campbell 
and Brennen in which a no-slip condition at the contact surface 
was assumed. Despite these data, the present state of knowl
edge does not allow prediction of the slip at the wall. Indeed, 
the features of the surface or of the flow which determine the 
slip are not well understood. 

The surface conditions also influence velocity fluctuations 
at the wall as observed in Fig. 8. For the smooth and moderately 
smooth surfaces, the ratio of u^ to uwis low and fairly constant. 
On the other hand, u^/uw for the rubberized surface is high 
and increases as solid fraction decreases. These observations 
may imply the following. The rubberized surface is charac
terized by large velocity fluctuations particularly at lower solid 
fractions. The high fluctuations and the low solid fraction 
allow particles to move more freely from one location to an
other. One of the effects by these random motions is a decrease 
of velocity gradient in the direction normal to the flow. That 
is, when particles move from a layer with low mean velocity 
to a subsequent layer with high velocity, the mean velocity of 
the layer with high velocity is reduced. When particles move 
due to random motion from the upper layer with high mean 

velocity to the lower layer with low mean velocity, the opposite 
is true. This phenomenon is consistent with experimental ob
servations. For the rubberized surface, uw/us rather sharply 
increases at c —0.1 as the solid fraction is decreased (see Fig. 
5). As also observed in Fig. 6(c), since at low solid fraction 
velocity fluctuation is high and there is more space for particles 
to freely move, the shear rate decreases as solid fraction de
creases. In Fig. 6(a), however, this decrease of the shear rate 
is not observed with the smooth surface since no substantial 
velocity fluctuation exists (see Fig. 8). 

6.2 Friction Coefficient and Boundary Conditions. In the 
present work, an attempt to investigate boundary conditions 
was made by changing chute surface conditions. The Coulom
bic friction coefficient, /xc, was measured for each surface since 
it was anticipated that fic would be a major factor which de
termines whether or not particles slip when in contact with 
solid boundary. Here the word "slip" means the tangential 
slip between the contact surfaces of the particle and the wall. 
The slip velocity is different from a velocity at the wall, um 
which is the velocity of the particle center extrapolated to the 
wall. Clearly, even when slip velocity is zero, a particle touching 
the wall may roll and thus have a nonzero center velocity. 

When a particle collides with a wall such that the shear stress 
at the contact point exceeds a shear stress limit which the 
surface can withstand for the given normal stress at the contact 
point, slip will occur. Then the ratio of the shear stress to the 
normal stress at the contact point is adjusted to the Coulombic 
friction coefficfent of the surface, i.e. /=/tc . On the other 
hand, when the ratio of TS to rN at the impact does not exceed 
jtt„ there will be no slip between the contact surfaces of the 
particle and the wall. In this case / is different from /xc. 

As seen in Fig. 9, friction coefficients for the smooth and 
moderately smooth surfaces seem to be fairly constant. But 
for the rubberized surface the friction coefficient decreases 
with increasing solid fraction. Decreasing friction coefficients 
with increasing v were also observed in the shear cell experi
ments of Savage and Sayed (1984) and in the computer sim
ulations of Campbell (1989). However, the constant friction 
coefficients of the smooth and moderately smooth surfaces 
have not been observed previously. To explain these obser
vations, we suggest the following. For the smooth and mod
erately smooth surfaces, slip occurs at the contact between 
particles and the surfaces, and the slip condition results in the 

800 / Vol. 58, SEPTEMBER 1991 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



constant friction coefficient equal to nc. On the other hand, 
the varying friction coefficient for the rubberized surface sug
gests a no-slip condition at the boundary. The high Coulombic 
friction coefficient of the rubberized surface would inhibit any 
slip at the contact between particles and the surface. 

When there is no slip, the following relation results from a 
simple analysis of the oblique impact of a single sphere on the 
flat surface (see Ahn (1989)): 

/ • 

= 2 (l_<^l 
7 \ u, 

coiA tan ai n + ew 

where coj is the rotational rate before impact, r is the radius 
of the sphere, and ux is the velocity tangential to the wall before 
impact. The impact angle cx\ is defined by t an - 1 (Wi/fi) where 
Vi is the velocity normal to the wall before impact, and e„ is 
the wall-particle coefficient of restitution. In this equation, the 
friction coefficient or the ratio of rs to TN at the surface depends 
on the ratio of rotational velocity to tangential velocity, u>xr/ 
U\, and on the impact angle, tan a\. 

tan 0 

i i i i I i i i i i i i i i i i i i i i i i i 

+ 
• 

+ + A + 

A * A ft ^ AA A 

I I I 1 t I I I I 1 I I I I 
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Fig. 15 The ratio of tan 0 to f against wall solid fraction, »„. a, the 
smooth surface; +, the moderately smooth surface; A, the rubberized 
surface. 

In the present experiments, the values of tan ctx could not 
be estimated. Another factor influencing / is the ratio of the 
rotational velocity oir to the tangential velocity u before impact. 
Campbell (1988) has shown that next to the wall o> is consid
erably larger than the mean value, but that with a small distance 
from the wall u is slightly less than the mean value. Therefore, 
when a particle next to the wall with high o> hits the wall, the 
friction coefficient will be low, but if a particle at a distance 
from the wall with low w comes down and collides with the 
wall, the friction coefficient will be relatively high. 

These phenomena suggests a possible explanation for the 
decrease in the friction coefficient as the solid fraction in
creases. At low solid fraction particles move more freely from 
one layer to another. Thus more particles in the upper layer-
with small values of ur/u move down to the boundary and 
make collisions with the wall. Because friction is measured in 
a statistical sense as a sum of frictions due to individual par
ticles colliding with the wall, / is therefore high at low solid 
fraction. On the other hand, at high solid fraction and low 
granular temperature, very few particles in the upper layer 
with low ur/u penetrate to the wall. As a result, particles next 
to the wall with high rotational velocity will dominate collisions 
at the wall. Thus, /would be smaller at high solid fraction. 

This explanation appears to be consistent with the data for 
the rubberized surface where no slip is expected (see Fig. 9). 
The general trend of decreasing / with increasing v holds in
dependent of particle size. In Fig. 10, / i s plotted against u'J 
uw. When higher u'Ju^exists, particles with low w in the upper 
layer more easily move down to the boundary and collide with 
the wall. That is, as u^/u„ increases, the intrusion of particles 
with low oi from the upper layer into the boundary becomes 
more frequent, causing/ to increase. As a result, the friction 
coefficient appears to be a fairly linear function of u„/u„ for 
the rubberized surface. 

For the smooth and moderately smooth surfaces, slip occurs 
and ixc controls the boundary conditions. Therefore,/is com
parable to nc (see Fig. 9), a n d / i s unrelated to u„/u„ (see Fig. 
10). (However, one might argue from Fig. 10 that for the 
smooth and moderately smooth surfaces/is small because u!„/ 
uw is small. Then it appears that regardless of the surface 
conditions / has a fairly linear relation to u^,/uw). 

6.3 Stresses and Rheological Behavior. When the exper
imental data on the normal and shear stresses are normalized 
in the same way as in the rheological models by Lun et al. 

rs 
A u \ 2 

»('¥) 
tan0 

i i I^J l i i i i I i i i I ' I ' i i i i ™ ' ' ' ' • ' ' ' i I i i i i I i i i i I i i i i I 
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Fig. 16 The normalized shear stress, rs tan Blpp(dAulh)2, against (a) wall 
solid fraction, v„, and (b) mean solid fraction, vm. Data only with 
tan 0/f<1.25. The solid lines, the results of Lun et al. (1984). 
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Fig. 17 The parameter, S/tan $ = d(Aulh)lui, tan $, against wall solid 
traction, v„. Data only with tan 0//<1.25. The solid lines, the results of 
Lunetal. (1984). 

(1984), the measurements turn out to be well correlated as 
shown in Figs. 11(a) and 12(a). (The models should hold for 
any flow whether fully developed flow or not.) The data are 
also internally consistent, independent of the surface boundary 
conditions. It is also important to note that other normali
zations such as TN/pp(dAu/h)2 and TS/pp(dAu/h)2 (Ahn (1989)) 
do not lead to such satisfactory collapse of the data and yield 
curves which appear to depend on the surface boundary con
dition. 

The chute flows in the present experiments were not fully 
developed. This is confirmed by comparing friction coefficient 
with the tangent value of the chute inclination angle. The ratio 
of tan 6 to / is plotted in Fig. 15. If the flow were fully 
developed, the ratio would be 1, and the results clearly show 
that this is not the case. Therefore, when rN tan2 6/pp(dAu/ 
hf and rs tan 6/pp(dAu/h)2 are plotted against the wall solid 
fraction, vw, considerable scatter is observed since these cor
relations would only hold for fully developed flows. However, 
we can select those data points which represent nearly fully 
developed flow by applying the requirement that tan 6/f< 1.25 
where the 1.25 is somewhat arbitrary. This subset of data is 
used to present the shear stress normalized by pp(dAu/h)2/tan 
6 in Fig. 16. It is significant that this subset of data is well 
correlated in this figure. Though not presented here, the normal 
stress normalized by pp(dAu/fif/tan2 6 would also be well 
correlated when tan 0//<1.25. Furthermore, this subset of 
data is also used to present S/tan 8 in Fig. 17 in which the 
scatter is much less than in Fig. 14. This indicates again that 
the fully developed flows adhere to the model expected on the 
basis of the theory of Lun et al. (1984). On the other hand, 
it is clear that many of the chute flows examined here were 
not fully developed. 

In summary, it may be concluded that the rheological models 
for general flow (equations (2) and (3)) give good correlation 
to the present experimental data (see Figs. 11 and 12). The 
rheological model for fully developed flow (equation (9) or 
(10)) also agrees with a subset of experimental data which is 
judged to be fully developed (see Fig. 16). 

7 Summary and Conclusion 
Experiments on continuous, steady flows of granular ma

terials down an inclined chute have been made with the ob
jectives of understanding the characteristics of chute flows, 
and of acquiring information on the rheological behavior of 

granular materials. Two neighboring fiber-optic displacement 
probes were used to measure mean velocity, one component 
of velocity fluctuations, and mean particle spacing. The mean 
particle spacing also gave qualitative information on density 
near the boundaries. In addition, a. strain-gauged plate was 
employed to directly measure shear stress at the chute base. 
The surface of the chute base was carefully controlled to yield 
three distinct surface conditions; smooth aluminum surface; 
moderately smooth aluminum surface, rubber-coated surface. 
Each surface condition was characterized by Coulombic fric
tion coeffi.cient and the coefficient of restitution between the 
chute base and a particle. 

The preliminary experiments indicate that the flow at the 
free surface is less affected by the sidewalls than at the chute 
base; the transverse velocity profile at the free surface is close 
to uniform. It is also observed that the higher the velocity (or 
the higher the chute inclination), the less significant the sidewall 
effect. 

Vertical profiles of velocity, velocity fluctuation, and linear 
concentration have been measured through lucite windows in 
the sidewalls. The velocity profile is fairly linear except for the 
region within the distance of one particle diameter from the 
chute base. Velocity fluctuation increases with distance from 
the chute base. This granular conduction from the bulk of the 
flow to the chute base wall is opposite to what we observe 
from the results of Campbell and Brennen (1985b). The results 
of Ahn et al. (1989) indicate that granular temperature can be 
conducted in either direction, depending on the value of the 
particle-particle coefficient of restitution and the chute incli
nation. In the present measurements, linear concentration al
ways decreases monotonically with distance from the chute 
base. This result is also different from the results found in the 
other literature. The surface condition of the chute base plays 
an important role in the above profiles. The profiles of velocity 
and its fluctuation with the smooth surface (the surface with 
low Coulombic friction coefficient) are more uniform than 
those with the rubber-coated surface (the surface with high 
Coulombic friction coefficient). 

The characteristics of the chute flow of granular materials 
have been studied by measuring various basic flow properties. 
The experimental data are strongly affected by the surface 
condition of the chute base. The ratio of velocity fluctuation 
to mean velocity is fairly constant for the smooth and mod
erately smooth surfaces, but for the rubberized surface it clearly 
increases as the solid fraction decreases. And the ratio for the 
rubberized surface is much larger than those for the smooth 
and moderately smooth surfaces. Regardless of the surface 
conditions, the mean shear rate increases at high solid fraction 
with decreasing solid fraction. But for the rubberized surface 
the mean shear rate shows a drastic decrease at low solid 
fraction. The high ratio of velocity fluctuation to mean velocity 
causes particles to move from one location to another more 
frequently, and as a result the velocity gradient is reduced. For 
the smooth surface where the ratio is low, the decrease of mean 
shear rate is not observed with decreasing solid fraction. 

The variation of friction coefficient with solid fraction is 
similar to that of the ratio of velocity fluctuation to mean 
velocity. For the smooth and moderately smooth surfaces, the 
friction coefficient is fairly constant. But for the rubberized 
surface, it increases with decreasing solid fraction. As a result, 
the friction coefficient appears to be a linear function of the 
ratio of velocity fluctuation to mean velocity. 

The stress measurements have also been used to study the 
rheological behavior of granular material. In particular, the 
rheological models presented by Lun et al. (1984) have been 
compared. The rheological models for general flow (equations 
(2) and (3)) give good correlation to the present experimental 
data. With the smooth and moderately smooth surfaces, it was 
not possible to create fully developed flow. But some selected 
experimental data with the rubberized surface, which are close 
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to fully developed flow, are well correlated with the Theological 
models for fully developed flow (equations (9) or (10)). Since 
the chute flows of the present experiments are characterized 
by granular conduction, the rheological models for simple 
shear flow (equations (6) and (7)) do not provide good cor
relation for the present experimental data. 
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A Note on Rotor Instability Caused 
by Liquid Motions 
The stability conditions of a hollow rotor partially filled with a Newtonian liquid 
are investigated. The rotor is considered here to be a rigid body, supported by springs 
and dampers, and exposed to an external dynamic force in the shape of actions of 
the encountered liquid. The system has two degrees-of-freedom, defined by deflection 
in two mutually orthogonal fixed directions perpendicular to the rotor axis. The 
fluid motions are described by Navier-Stokes equations and comparison is made 
between the inviscid and viscous case in connection with their predictions of the 
stability conditions. Experiments are performed with two different rigidity ratios 
and results are found to be in agreement with theoretical data. 

Introduction 
Consider a circular cylindrical container, in which an amount 

of liquid is trapped. The container is rotating about its own 
axis at a high angular speed, and in the state of equilibrium 
the liquid is placed along the wall, thereby describing the shape 
of a ring. Experiments have shown that such a system at certain 
speeds becomes unstable, as it starts to vibrate with increasing 
amplitudes. 

This problem has been known for many years and the present 
work was triggered by an application from a local company 
that produces rotating machinery. The wish was to achieve a 
better understanding of the mechanisms that govern the inst
ability phenomena, hereby an examination of the effect of 
anisotropic rotor supports. 

The problem has previously received attention, e.g., by Koll-
mann (1962), Wolf (1968), and Hendricks and Morton (1979), 
just to mention a few. So far, theoretical results have been 
established for a rotor containing a viscous liquid, and with 
the same rigidity and damping in all directions perpendicular 
to the rotor axis. A concept called the reduced critical speed 
(r.c.s.) has been introduced to describe a somewhat amazing 
phenomenon. For the inviscid, undamped rotor system it can 
be proved that, at r.c.s., the rotor will behave as if it were 
completely filled with liquid, no matter how much liquid there 
is actually present in the chamber. The only condition is that 
there is enough liquid to cover the walls during the whirl. 

In this report, the inviscid as well as the viscous flow theory 
is extended as to describe rotor motion with two degrees-of-
freedom (see Fig. 1). This is done by carrying out the linear
ization of the nonlinear liquid motion equations by use of two 
perturbation parameters ei and e2. These quantities, which in 
the algebra are supposed to be complex, describe the deflection 
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of the rotor from the equilibrium position. By using this math
ematically convenient method, we have the possibility of pre
scribing different rigidity and damping coefficients in different 
directions perpendicular to the rotor axis. 

The problem dealing with the inviscid fluid can almost be 
solved analytically, only the final characteristic equation re
quires numerical treatment. The procedure is almost the same 
as the one that Wolf (1968) used in connection with the rotor 
with one degree-of-freedom. The main difference is that here 
it has been found convenient to use a set of auxiliary quantities 
instead of the perturbed pressure and velocity functions. 

If the fluid is viscous, the algebra is much more difficult, 
and the computer is used at a much earlier stage of the solution 
of the fluid motion equations. Instead of making boundary 

Fig. 1 Sketch of principle, showing the rotor with two degrees-of-free
dom 
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layer approximations as Hendricks and Morton (1979), the 
results of this report are obtained directly by using the Navier-
Stokes equations, including all viscous terms. 

In order to make sure that the theory is valid, we have 
performed some experiments with different rigidity ratios and 
quite appealing results have been obtained. A brief description 
of the experimental apparatus is given in the section "Exper
iments." 

General Aspects 
Basically, the analytical formulation leads to an eigenvalue 

problem from which the stability conditions can be deduced. 
From a stable state, the rotor will be exposed to a deflection, 
and waves will be produced in the liquid layer. These waves 
have a net force on the rotor wall depending on the unknown 
eigenvalue and the rotor speed. This liquid force is incorpo
rated into the equations of motion of the rotor, to give the 
condition which must be satisfied if whirl is to take place. 

In all the analyses the following assumptions are made: 
• The rigid liquid chamber has an axisymmetric cylindrical 

shape and is totally balanced. 
• The rotor is driven at constant angular speed Q. 
» The contained liquid is incompressible and surface tension 

effects are negligible. 
9 Gravity forces are not present. 
• The liquid motion is assumed to be independent of the 

axial coordinate. 
8 The whirl motion is described by 

(e(0) = (1) 

where \ = a + ioi, a, and co are real quantities, and i2= — 1. 
Using the complex parameters ei and e2 as perturbation pa
rameters, the free surface of the liquid is described by 

* = * + in(«,0*ei + i?2(*,0'e2 (2) 
where b is the inner radius of the free surface of the liquid for 
a rigid rotation and i\\ and r/2 are response functions to the 
disturbance. 

Liquid Dynamics: Inviscid Case 
By assuming the whirl shape (1), the equations of motion 

referred to a cylindrical coordinate system fixed to the rotor 
are: 

du du v du v2 „ , „ „ 
— + «• — + - • — - — -rQr-2vQ = 
at or r d<f> r 

— -£ - \2ex'(eiCOs(fi^ + 0) + e2sin(fi< + <£)) (3a) 
p or 

dv dv v dv uv „ n 
— + « • — + - • — + — + 2uQ = 
at or r o<p r 

-—~ + \V(eisin(Q* + <£) - e2cos(Qt + <£)) (3b) 
pr d<t> 

where u and v are the velocities in the r and ^-directions, 
respectively, p is the pressure, and p is the liquid density. The 
last terms on the right-hand side of each equation have been 
added to account for the acceleration of the origin of the rotor 
coordinate system produced by the whirling motion. Having 
an incompressible fluid, the equation of continuity takes the 
following form: 

d(ru) dv „ 
dr d(j) 

(4) 

For the inviscid case, we have the three boundary conditions: 

8R 
u(a) = 0; p(fl) = 0; u(R) = — 

at 
(5) 

where "a" denotes the rotor wall and "R" is the earlier defined 
function for description of the free liquid surface (2). At small 
deflections R — b, leading to the more convenient conditions: 

u(ff) = 0;/>(&) = 0; M(&) = — 
ot 

(6) 

The Euler equations (3«)-(3Z?) are nonlinear and, as a result 
of this, it is not possible to give a complete solution by any 
analytical means. To linearize, a perturbation method is em
ployed in which the perturbation parameters are ei and e2, and 
higher-order terms are neglected 

U = Uo + Ul'ei + u2'e2+... 

v=v0+v^e\ + v2't2+... (7) 

Nomenclature 

ei,e2 
A 
a 
01 

R 

b = 

VuV2 

r,4> = 

u,v 

P 
P 
a 

( )a = 

complex deflections 
complex eigenvalue 
parameter of stability 
whirl frequency 
position of the dis
turbed, free surface 
position of the undis
turbed, free surface 
response functions to 
the disturbance 
coordinates in the rotor 
system of coordinates 
velocities in the r and 
^-directions, respec
tively 
pressure 
liquid density 
angular velocity of ro
tor 
inner radius of the ro
tor 
perturbation functions 
(a = 0,1,2) 

7 , (7 

r 
-* *>-* y 

Fx->Fy 

L 
m, 

mr 
Cx,Cy 

kx,kY 

w 

s 

= auxiliary quantities 
= quantity to describe the 

fill ratio 
= liquid actions in the ro

tated system of coordi
nates 

= liquid actions in the 
fixed system of coordi
nates 

= length of the rotor 
= mass of liquid needed 

to completely fill the 
rotor chamber 

= mass of empty rotor 
= external damping coef

ficients 
= rigidities in the main 

directions 
= nondimensional eigen

value 
= nondimensional rotor 

speed 

f* 
K 

Cx,Cy 

0>x 

ttmax 

V 

Or* 
f,g,h,h,l,m 

Ji 

Y, 

A,B 

P 
V 

mass ratio 
stiffness ratio 
nondimensional exter
nal damping coeffi
cients 
empty rotor critical 
speed number 1 
largest real part among 
the eigenvalues 
kinematic viscosity 
shear stress 
auxiliary quantities 
Bessels' function of the 
first kind, first order 
Bessels' function of the 
second kind, first order 
auxiliary quantities to 
describe liquid reactions 
fill ratio 
nondimensional kine
matic viscosity 
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The zero-order solutions corresponding to the undisturbed 
rotor are: 

u0 = 0;v0 = 0;p0 = -pSl\r2-b2). (8) 

After perturbat ion, the momentum equations (3a)-(36) to 
be satisfied by the first-order solutions are 

^ i - 2 i ; 1 Q = - - . ¥ 1 - X 2 c w . c o s ( Q / + 0 ) 
at p or 

~-2v2Q = - - • % ? - X 2 . e x ' . s i n ( f i / + 0 ) 
bt 2 p br v w 

^ + 2 ^ 0 = - - - ^ + X 2-e x ' - s in(& + 0) 
bt pr d<j> 

^ + 2 H 2 0 = -—'^-\2'ex'-cos(Qt + <l>) 
dt pr a<p 

and the corresponding equations of continuity 

b(ruQ dvi^Q. d(ru2) v
dv2_Q 

br b<t> ' br b<j> 

Boundary conditions: 

«i(fl) = 0;«2(a) = 0 

Pi(b) = -pQ2brn; p2(b) = -p0 2 6»/ 2 

by i OV2 .#)-=? :«#)-™ 

(9a) 

(9b) 

(9c) 

(9d) 

(10) 

(11a) 

(116) 

( l i e ) 

After some rather comprehensive calculations, the pressure 
at the rotor wall is found to be 

1 
p(a) = - pQ V - 6 ) - - pKa(ei + ie2) 

7 2 - / 2 f i 7 + Q2 

7 2 r - / 2 f i 7 + 0 2 

1 
p\ a(ei - ie2) 

o2 + i2Qo + Q2 

<72r + /2fl(r + Q2 •e 
,at + itf> 

where 

and 

7 = X - / 0 ; ff = X + /0 

l ' a 2 - b 2 

eit-i<t> 

(12) 

(13) 

(14) 

If X, ei, e2, 7 , and T are replaced by iw, e, -ie, ia, and 7 , 
respectively, the pressure expression (12) will be reduced to the 
one deduced by Wolf (1968), which is valid if the rotor has 
only one degree-of-freedom. 

When the liquid is considered to be inviscid there are no 
shear stresses present, and the net force on the rotor wall is 
found by integrating the pressure on the rotor wall 

n2x 

Fr = a*L I p(a)'Cos4>d<j> (15a) 

Fy = 

0 

{
2ir 

p(a)-sin<l>d<l>, 
n 

(156) 

where L is the length of the rotor . 
Equations (15a)-(156) give the net force in the x and y-, 

directions, i .e., in the rotating system of coordinates. In order 
to be able to set up the dynamic equations of equilibrium, we 
need the net force in the fixed frame of reference X, Y. This 
is found by rotating Fx and Fy in the following manner : 

Fx=F£0$(Q.t)-Fysin(Qt) (16a) 

FY=Fxsm(Qt)+Fycos(Qt) (166) 

Employing (12)-(16) finally gives 

Fx 

Fy 

(A+B); -i(A-B) 

i(A-B); (A+B) 
lt) = -lF]{t) 

where 

A=^mi\2 a2 + 2Uh + Q2 

a2T + 2Qia + n2 

„ 1 , 2 / 7 - 2 0 / 7 + 0' 

2 \ 7 2 r - 2 0 / 7 + 0 2 

(17) 

(18a) 

(186) 

with /«! being the mass of liquid needed to completely fill the 
chamber 

mx=pita2L. (19) 

It is now possible to establish the equations of equilibrium, 
and referring to Fig. 1, the result takes the well-known form: 

[M]ie}+[C]{e] + lS]{e) = -[F]{e) (20) 

[M] = 
mr 

V 0 

0" 

mr\ 
; [C] = 

cx; 0 

L 0 ; CY\ 
; m = 'kx 

L 0 

o~ 
ky\ 

(21) 

By inserting (1) into (20), we get a homogeneous system of 
equations to which nontrivial solutions only exist if the de
terminant equals zero. After some algebra this determinant 
conditions leads to the characteristic equation: 

68 w
8 + 67 w1 + b6w

6 + 65 w5 + 64W4 

+ 63VV3 + 62w
2 + 61w + 6o = 0 (22) 

where 

68 =(r + tf 
67 = r ( r + ^(c^+Cy) 
66 = T(K+ 1)0* + D + 2s2(2/x + T + l)(3it + T + 2) 

+ r 2 c * c y 

65 = r2i 
64 = r 2 A " + ( 1 + ^ ( 2 ^ + 5/*r + 6 r +7i t + 4)y 

+ (2M + r + 1 ) V + 2Cj rC r ( r 2 + 3T + 2)s2 

63 = 2s 2 ( r 2 + 3T + 2)(KCX + CY) 
+ (CX+ Cy)(T + l)(2/t + T + 1)S4 

b2 = 2Ks2(T2 + 3T + 2) + (1 + K)(T + l)(2/t + T + l ) s 4 

+ CxCy(V+l)2s4 

bi =s\T + l)2(KCx+CY) 
60 =Ks\l+T)2. 
The foregoing expressions are shown in a nondimensional 

form, using the following symbols: 

X 0 
w = — ; s = — 

COv. Wx 

•5 = T2(KCX + CY) + s\Cx+ CY)(2T* + 5itr + 6T + 7/* + 4) 

(23) 

/* = K=-

cx= Cx 

m^}x ' 

2 wx 

Cy = 

mr 

Cy 

mro)x 
(24) 

The stability analysis is now performed by looking at the 
largest real part am a x occurring among the eight eigenvalues. 
In agreement with common practice, the system is said to be 

stable if am a x < 0 

critical or marginally stable if am a x = 0 

unstable if a m a x > 0 . 

The solutions to equation (22) can be found in several ways. 
We have used the numerical procedure of Bairstow. Given a 
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polynomial of the nth degree, this method performs a nu
merical decomposition resulting in a number of polynomials 
of the second degree (plus a polynomial of the first degree, if 
n is odd). 

The Bairstow algorithm isn't always applicable as it can be 
quite sensitive to initial guesses. In the region of parameter 
space considered in this work, no problems of that kind ever 
arose. The method was extremely efficient and almost insen
sitive to the initial guesses. 

dt 

dh 

dt' 

pr 

2kQ = 

)/• 9</> \dr2 r2 d<t>2 r dr r2 r2 d<j>J 

(316) 

Liquid Dynamics: Viscous Case 
Contrary to earlier investigations of rotor dynamics, in

cluding viscous effects in the liquid, we have made no boundary 
layer approximations. We directly use the full Navier-Stokes 
equations which here take the form 

du du v du v •) 
— + u—- + -—- — -rQ2 

dt dr r 9 0 r 
-2uQ = 

I dp tfru \_dh± 2du 
p dr + V\dr2+ r1 d<t>2+ r dr' r1 90 

dv dv v dv ... „ „ 
— + u— + -— + — + 2uQ 
dt dr r 9 0 r 

- \2eM(eiCOs(flt + 0) + e2sin(Q/ + 0)) 

uv 

(25a) 

_j_dp 

pr d<j> \ dr 

d2v 1 d2v 2 du 
• + - 5 ) + 1 „ . ? "T " 

rlbtf rl d<t> rl 

\_d_v_ 

r dr 

(25b) + XV(e1sin(Q?+ 0) - e2cos(Qt + 0)) 

where v is the kinematic viscosity, assumed to be constant. 
Besides the boundary conditions (5), two further restrictions 
are present when the liquid is viscous. The velocity in the 0-
direction must be zero at the rotor wall (no slip condition) and 
the free surface of the liquid must be free from shear stresses, 
i.e., 

(\ du dv v\ 
°r4,(b) = pp[-— + - = 0 

r d(j> dr r 
(26) 

which for pv jt 0 gives 

1 9 w dv v 

r d<(> dr r 
= 0. (27) 

The complete set of boundary conditions can therefore be 
written as 

u(a) = 0; v(a) = 0 

dR 
u(b) = —;p(b) = 0 (28) 

bd<t> 
dv 

+ Tr 
v(b) 

= 0. 

The expression to describe conservat ion of mass is the same 
as in the inviscid case because we still have a n incompressible 
stream 

d(ru) d"_ Q 

dr 9 0 ' 
(29) 

(30) 

Again , we pe r tu rb the velocities and the pressure , and by 
defining a n u m b e r of auxiliary quant i t ies 

/ = «i + iu2; g=v{ + iv2; l=P\ + ip2 

h = Ui- iu2\ k=vl- iv2; m =px - ip2, 

the equations of motion can be written: 

i di (d2f 

-pJr+VXP + ^> 
1 92/ 2 9/ 1 

r 2 9 0 2 r dr r2 d<t> 
2 at + i(j> -XV (31«) 

Journal of Applied Mechanics 

1 dm (d2h 1 d2h 2 dh 1 die 
-+v p dr \dr r -2 „2 a , 2 +7¥-^^>-x V '"" (31c) 

dh 
— + 2hQ--
dt 

1 dm (d2k 1 d2k 1 dk k 2 dh\ . , , , , id> 

^I+v \^~2 + -TT2 + -T—2 + - T 7 + i X V ' -* . 
pr 90 \dr r 90 r dr r r 90 / 

(3W) 

(32) 

Conserva t ion of mass : 

dr 9 0 dr d<f> 

Boundary conditions: 

f(a) = 0;h(a) = 0 

1(b)-
pbQ2 

.f(b);m(b)=-
pbQ2 

Kb) 

r 90 dr r 

g(a) = 0;k(a)=-0 

_ / 1 M dk_k 
. ' \r d4> dr r 

(33) 

= 0. 
r = b 

In the expressions it has been used that 

(/. g, /) = (/(/•); g\r), l(r))e°'+i* ; (h, k, m) 

= (h(r);k(r);m(r))e*'~i*. (34) 

By applying (32) in connec t ion with (31) and (33), the p rob 
lem can be converted in to two decoupled b o u n d a r y value p rob
lems 

vr3 •/"" (r) + 6vr2 •/'" (r) + (3 w - or3) • /" (r) 

-3(p + or2)'f'(r) = 0 (35a) 

vr3'h"" (r) + 6vr2'h'" (r) + (3 w - yr3)-h" (r) 

-3(v + yr2)-h'(r) = 0. (35b) 

Boundary conditions: 

f(a) = 0; / '(a) = 0; bf" (b) + / ' (b ) = 0 

X2 

vbf'"(b) + 4vf"(b)-abf'(b) f(b)-\2 = 0 (36a) 

a 

h(a) = 0; h~'(a) = Q; bh"(b) + h'(b) = 0 

X2 

vbh'"(b) + 4vh"(b)-ybh'(b) h~(b)-\2 = 0. (36b) 
7 

Here, " ' " means the partial derivative with respect to r. 
The homogeneous, linear differential equations of fourth order 
(35) are found to have the following solutions: 

Ar)-Cv+Sf+£x.Y,(tk,) ^•J,(i[--r) (37.) 

to-^&rMh.,)^,(lfi.r 
(31b) 
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Fig. 2 Parameter of stability versus nondimensional spin speed, one 
degree-of-freedom, inviscid liquid; Cx=CY=0; K=V, P= 1.5; ji = 0.206 

Fig. 3 Parameter of stability versus nondimensional spin speed, two 
degrees-of-freedom, inviscid liquid; Cx=CY=0; K=2; P=1.5; ^ = 0.206 

in which Jx is the Bessel function of the first kind, first order 
and Yi is the Bessel function of the second kind, first order. 
From (37) it appears that evaluation of / and h implies that 
the Bessel functions have to be calculated for complex argu
ments. This is rather problematic for arguments with big im
aginary parts because the Bessel functions, in these cases, have 
extreme gradients, and numerical treatment is difficult. Phys
ically,/and h reflect velocity fluctuations, which are supposed 
to behave properly, and this means that the Bessel terms in 
some sense must be in mutual balance. 

The conclusion of all this is that a numerical treatment is 
easier to handle if it is brought into action at an earlier stage, 
that is, at the solution of the boundary value problems (35)-
(36). By using a standard finite difference procedure this is a 
practicable task, especially because the problems are one-di
mensional when treated separately. 

In the following, we assume tha t /and # and their derivatives 
are known quantities. By carrying out the same steps as in the 
case of the inviscid liquid, and remembering that the net force 
on the rotor wall now depends on both pressure and shear 
stress in the following form: 

[p(a)cos(</>) + o-^(«)sin(0)]rf^> (38a) 
n 

Fy = aL r [/7(fl)sin«>) - a^(a)cos(0)]c?</>, (386) 

the final expression of equilibrium turns out to be 

0.08 

0.06-

0.01 

0.02 

0.00 

-0.02 

Fig. 4 Parameter of stability versus nondimensional spin speed, two 
degrees-of-freedom, influence of external damping on rotor containing 
inviscid liquid; K=2; P= 1.5;^ = 0.206;(1) Cx= Cy=0.1;(2) Cx = Cr=0.0V, 
(3) Cx=Cr=0.001 

[M]{t}+[C][i}+[S)U} = -[F]{e} 

with 

[M] = 
~mr; 0" 

0 ; mr 

[F} = 

•AC] = 
~cx\ 0" 

0 ;cY_ 

' A+B ; -

J(A-B); 

;[S] = 

KA-B) 

A+B 

~kx\ 0 ' 

0 ;kY_ 

(39) 

(40) 

In order to recreate the same appearance of the system of 
equations as in the inviscid case, we have defined: 

A=\mi(\
2-vaJ'"(a)-lvJ"{a)) (42a) 

(426) B = - /«i(X2- pah'"(a)-3vh"(a)). 

The solution procedure to this problem is1: 
1 A guess is made for the eigenvalue X. 
2 The boundary value problems (35)-(36) are solved, so 

tha t / " ( a ) , / " ' ( a ) , h"(a), and h '"(a) are known quantities. 
3 A and B are calculated. 
4 The characteristic equation now becomes of the fourth 

degree because A and B are given as constants. The four so
lutions, X;, are found numerically. 

5 The eigenvalue X,„ with the biggest real part is compared 
with X from 1. If the quantities are equal, the problem has 
converged, and X,„ is the determining eigenvalue from which 
the stability conditions are deduced. If X differs from Xm, then 
Xm is used as a new guess at 1 and the procedure is repeated. 

The procedure presented above is rather time-consuming and 
sensitive to the initial guess. 

Results 
In our system we have seven basic parameters to control the 

motion of the system: 
s = Q/wx is the non-dimensional spin speed. 
P = a/b is a quantity that describes the amount of 

liquid present in the rotor. P = l corre
sponds to an empty rotor and ̂ = 0 0 cor
responds to a rotor completely filled with 
liquid. 

ix = wpa2L/mr is a mass ratio equal to the mass of liquid 

'The physical meaning of this iteration procedure is to find the values of X 
by which the forced vibrations (caused by the liquid motions) correspond to the 
free vibrations of the rotor. 

808 / Vol. 58, SEPTEMBER 1991 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



^max 
0.018 

0.016 

0.0H' 

0.012 

0.018 

0.008 

0.006 

0. D04 

0.002 

0.O0O-

-0.002' 

Fig. 5 
action 

1: No damping, no v iscosi ty 
2: Damping but no v iscos i ty 
3: Damping as well as viscosity 
4: Viscosity but no damping 

1.19 1.21 1.22 

Parameter of stability versus nondimensional spin speed, Inter-
of damping and viscosity; K=1.0; P=1.5; , .= 0.206 

Fig. 6 Parameter of stability versus nondimensional spin speed, influ
ence of mass ratio on stability conditions; K=1.0; P=1.5; V= 0.0004, 
Cx=CY=0.0V, (1) ,. = 0.1; (2) ,. = 0.2; (3) ,. = 0.3; (4) ,. = 0.4 

Cx 

mroix 

mrwx 

V= v/a2wx 

which would completely fill the rotor, di
vided by the mass of the rotor, 
are the non-dimensional damping con
stants, which characterize the damping due 
to the external dampers in the two main 
directions. 

is a non-dimensional viscosity. 
is the ratio between the rigidities in the two 
main directions. 

•-A 

Of course, V does not occur in the inviscid theory. In the 
graphs, the parameter amax is depicted as a function of the 
nondimensional spin speed s in order to get an overall under
standing of the stability concept. 

Figure 2 shows the behavior of the rotor in the special case, 
where kY= kx, cx=cY= 0, V= 0, i.e., a simulation of the rotor 
with one degree-of-freedom. We observe an unstable frequency 
band represented by a "bulge" on the amax-curve. From Fig. 
3 we discover that if K differs from 1, i.e., if the rigidities in 
the two main directions are not equal, we get two bulges. 
Physically, the first interval of instability corresponds to vi
bration in the direction with low rigidity, and the second in
terval of instability corresponds to vibration mainly in the 
direction of high rigidity. In Figs. 2 and 3, the external damping 
equals zero; but what happens to the predictions of the theory 
if this is not the case? The answer is given in Fig. 4 on which 
the amax-curves are drawn at three different degrees of damp
ing, showing the local behavior near the lower end of the bulge. 

1.1 1.2 1.3 1.4 1.5 l.S 1.7 1.8 1.3 2.0 

Fig. 7 Parameter of stability versus nondimensional spin speed, Influ
ence of damping on stability conditions; K=1.0; P=1.5; ,. = 0.206, 
V=0.0004; CX=CY; (1) C x =C y =0.0010; (2) C x= C r=0.0025; 
Cx= Cy=0.0050; (4) Cx = Cy=0.0100 

-0.005 

Fig. 8 Parameter of stability versus nondimensional spin speed, influ
ence of viscosity on stability conditions. K = 1,0; P = 1.S; ,. = 0.206; 
CX=CY= 0.005; (1) V= 0.0002; (2) V= 0.0004; (3) V= 0.0006; (4) V= 0.0008 

A quite peculiar result appears. The system turns out to be 
unstable at any rate of rotation! This is not a totally unknown 
phenomenon, as Hendricks and Morton (1979) reached the 
same result for a rotor with only one degree-of-freedom2. Their 
Their explanation is that the external damping introduces a 
force on the fluid which is out of phase with the acceleration 
and displacement of the rotor, and that an inviscid fluid has 
no mechanism for countering this force. If we are to get proper 
predictions of behavior of the rotor with external damping, it 
is necessary to take viscosity into consideration. A comparison 
of theories with and without account of viscous effects is shown 
in Fig. 5. From this it will be seen that if damping and viscosity 
occur separately, they will cause the system to be unstable at 
any rate of rotation, but if they occur together, real stability 
will be possible and the limits of instability will differ very 
little from the inviscid, undamped system. 

In the light of the viscous theory it is possible to carry out 
a parameter analysis that examines the effects of the individual 
parameters in connection with stability conditions. Referring 
to Figs. 6-8, where only one quantity is changed while the 
others are kept constant, the following conclusions are made: 

Actually, they have used two degrees-of-freedom in their formulation, but 
by letting the rigidity and the damping be the same in all directions perpendicular 
to the rotor axis, they reduce their system, so that it is actually treated as having 
only one degree-of-freedom. 
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Fig. 9 Parameter of stability versus nondimensional spin speed, illus
tration of the instability—"top" appearing in the viscous case; K=1.0; 
P=1.02; ,< = 0.175; (1) / = 1 0 s , Cx= Cy=0.10; (2) V=0, Cx=Cr=0 

2.75 

2.25-

1.75-

1.25-

0.75 
1.1 1.2 1.3 1.1 1.5 1.6 

Fig. 11 Nondimensional spin speed versus fill ratio, instability areas 
determined theoretically ( ) and experimentally (x); K = 2.29; 
^ = 0.175 

ttWWAV 

Fig. 10 Sketch of principle showing the spring system. The gravity 
force is parallel to the rotor axis. 

Fig. 6—an increase in the mass ratio caused the instability area 
to be wider, and especially the lower limit is seen to 
move considerably, 

Fig. 7—an increase in the external damping tends to make the 
system more stable by narrowing the area of instability 
and making amax more negative at stable rates of ro
tation, and 

Fig. 8—an increase of the viscosity tends to have a destabilizing 
effect, but it appears that the dependence is rather limited. 

As a matter of fact, the results of Figs. 7 and 8 are strongly 
contrary to earlier work by Hendricks and Morton (1979). 
They claim that the dependence on damping of the stability 
conditions is enormous. For some fill ratios, the upper limit 
of the unstable area seems almost to disappear. They have 
likewise found the viscosity to have a great effect, although 
not as noticeable as the damping. Apart from that they con
clude that the damping has a destabilizing effect and the vis
cosity the opposite. 

It is appropriate to point out some of the differences between 
the analysis performed by us and that by Hendricks and Mor
ton (1979). As mentioned previously, we have linearized the 
Navier-Stokes equations, including viscous terms, making no 
assumptions whatsoever about boundary layers. Hendricks and 
Morton have separated their equations into three terms. First, 
they have an inviscid core based upon the classical inviscid 
theory, then they have a boundary layer, and finally a cor
rection term to the inviscid core. They claim that the error 
connected with these boundary layer considerations is suffi
ciently small to determine stability conditions properly. The 
different results are therefore assumed to be caused by the fact 
that we have been dealing with different regions of the pa
rameter space. 

This is not the only difference. In Fig. 9 we discover a further 
instability top, and this phenomenon has never been found by 
a theory dealing with viscosity before. That the top is actually 
there we discovered when we performed our experiments. It 
might turn out to be a better explanation to the phenomenon 
previously named "the reduced critical speed," as the existence 
of that can only be deduced for the inviscid, undamped rotor 

Fig. 12 Nondimensional spin speed versus fill ratio, instability areas 
determined theoretically ( ) and experimentally (x); /C=3.55; 
,. = 0.175 

model with one degree-of-freedom. Experiments show clearly 
that such "tops" are present when dealing with rotors with 
two degrees-of-freedom, and there actually seems to be a top 
connected to every instability bulge. 

The weakness of our procedure is that the numerical treat
ment is rather sensitive to the parameters used, and for some 
reason or other, our program has failed to find the instability 
bulge connected to vibration in the main direction with high 
rigidity. This is presumed to be caused by the iteration pro
cedure in which we actually have no guarantee that we find 
the worst eigenvalue, i.e., the eigenvalue with the biggest real 
part. However, one thing is certain: If the program predicts 
instability, then there will be instability because at least one 
eigenvalue with positive real part has been found by conver
gence. 

Experiments 
Experiments are performed with water in the container, and 

our model can be described schematically as shown in Fig. 10. 
The basis is a flexible shaft with a circular cross-section that 
provides equal rigidity against deflection in all directions per
pendicular to the main axis. To this shaft are attached four 
small cantilever beams so that rigidity against deflection in the 
plane of the paper is increased, while rigidity against deflection 
out of the plane of the paper is unchanged. A motor is placed 
beneath the model in such a way that it can be removed com-
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pletely, so that no disturbance appears from the motor when 
the measurements take place. A guard bearing is placed on 
each side of the fluid chamber to make sure that the deflections 
are limited. This is done partly to prevent the apparatus from 
being damaged, and partly to ensure that the motor is able to 
accelerate the rotor through unstable speeds. The procedure 
for carrying out the measurements can now be listed in the 
following manner: 

1 A measured amount of water is poured into the container 
while it is at rest. 

2 The rotor is driven through the unstable rotation speeds, 
and when rotating supercritically, the motor is removed. 

3 The stability limits are determined when the rotor settles 
down as the speeds of rotation are registered when the tran
sition from stability to instability (or the opposite) is observed. 

4 Points 2 and 3 are repeated, and if the measured results 
are in agreement with each other, point 1 is carried out with 
a new amount of liquid. Otherwise, points 2 and 3 are repeated 
until satisfying results are obtained. 

Two series of measurements were carried out with two dif
ferent rigidity ratios, £ = 2.29 in Fig. 11 and Ar= 3.55 in Fig. 
12. Using water, we got a mass ratio ^ = 0.175, and the empty 
rotor critical speed was 49 rad/s for vibration in the weak 
direction. The small crosses indicate measurements and the 
drawn curves are the predictions based upon the in viscid, un
damped theory with the current rigidity ratio. As it will be 
seen from the figures we have, in our experiments, only been 
able to locate the upper area of instability. This is due to the 
difficulty of separating the "tops" from the "bulges" as men
tioned before in connection with Fig. 9. 

Our purpose with the experiments has not been to perform 
precision measurements. We wanted to obtain a qualitative 
verification of our theory for the rotor with two degrees-of-
freedom. It is our conviction that better results can be obtained 
by use of precision equipment and more accurate control of 
the rotor speed, so that the "tops" can be separated from the 
"bulges." 

Conclusion 
We have found that the inviscid fluid formulation is insuf

ficient when dealing with external damping. By using the vis
cous liquid theory a comprehensive parameter analysis is carried 
out, so that dependence on damping, viscosity, and mass ratio 
is determined in connection with the stability conditions. A 
new sort of instability region has been found, which is greatly 
reminiscent of the well-known reduced critical speed, which 
can only be deduced for the inviscid, undamped rotor system 
with one degree-of-freedom. 

Finally, the theoretical results are qualitatively verified by 
comparison with experimental measurements. 
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Free Fall of a Sphere in a Partially 
Lubricated Cylinder 
The entrainment of lubricant at the entrance of a lubrication zone, such as that of 
a partially starved slider bearing, is analyzed in a closed system using the method 
of matched asymptotic expansions. A sphere falling together with a small lens of 
lubricant in a closely fitting tube is shown to fall under gravity at a speed 

V = (Mg - FC)V[(RC - Rs)/Rc]/(167rVRc), 
where M denotes the total mass of the system, sphere plus lubricant, g the acceleration 
of gravity, Fc the differential contact force, p the viscosity of the lubricant, and Rc 

and Rs the radii of the tube and the sphere, respectively. Potential biological ap
plications and experimental verification are discussed. 

1 Introduction 
This paper introduces a model problem for hydrodynamic 

lubrication between sliding surfaces with a small amount of 
lubricant: the generic starved bearing. The model is that of 
a sphere moving through a closely fitting cylinder. The ge
ometry is closed. The system is axisymmetric rather than planar 
two-dimensional. The small additional complication is more 
than compensated for by making the model realizable in the 
laboratory. This paper is analytic. The outline of an experi
mental procedure is given at the end. Tests in a simple ap
paratus are not inconsistent with the analysis presented below. 

I consider the fall under gravity of a sphere of radius Rs 
inside a cylinder of radius Rc in the presence of a small amount 
of Newtonian lubricant. Both the sphere and its enclosing tube 
are assumed to be rigid, and steady solutions are sought. Figure 
1 shows a static solution, and can serve as a defining sketch. 
In the sketch r,z denote the usual cylindrical coordinates, the 
system is assumed to be symmetric about the z-axis, and 8 
denotes the polar angle. The remaining notation will be defined 
below as needed. 

Static solutions are only possible if the contact angles Pi and 
i82 where the upper and lower liquid lenses intersect the tube 
are unequal. This is discussed in Section 2. The body of the 
paper is Section 3, in which the problem given is solved using 
the method of matched asymptotic expansions. The funda
mental small parameter is the square root of twice the ratio 
between the gap and the cylinder radius 

e = V(2[/?c--RsVRc (1) 
(The apparently odd factor of the square root of two is chosen 
to make the spherical boundary in the lubrication region tidy.) 
I will define a Reynolds number and a capillary number. The 
former must be proportional to e and the latter to e3. Account 
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Fig. 1 Definition sketch tor the sphere in the cylinder. The state cor
responds to that in the fifth line of Table 1. 

is taken of the force that can arise from contact angle hysteresis. 
The fundamental result is that the speed of fall V is given by 

V= {MTg - 27rYi?c(coslg1 _ Cos/32)) e/ {16V27T2txRc] (2) 

where MT denotes the mass of the sphere and its entrained 
liquid, g the acceleration of gravity, and y and LI the surface 
tension and the viscosity of the liquid, respectively. The angles 
@i and 02 denote the contact angles at the upper and lower 
boundary between the liquid and the cylinder. 

The immediate motivation is to begin to understand the 
physics of passive swallowing, the process by which a mass of 
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chewed food, a bolus, passes down the throat. The esophogeal 
environment is mostly air, with a layer of liquid, mostly saliva, 
coating the throat, and permeating the bolus. Swallowing is 
active, though as anyone who has had a bit of food stuck in 
the throat can testify, not terribly so. It involves a flexible, 
active tube and a compliant bolus. The liquid is non-Newto
nian. This complex system is well beyond simple analytic mod
eling. The present work is a first attempt to model that system, 
and it is not entirely satisfactory. The range of validity of the 
model is not well matched by the physiological parameters. 

The model is well suited to understanding entrainment proc
esses for which a free surface and gravity are important. These 
processes are not well understood. The present model offers 
the first closed-system model of this phenomenon, a system 
not requiring simplifying assumptions about two-dimensional
ity. As such it is an improvement over previous work from the 
lubrication community (Bonneau and Frene, 1983; Gans and 
Wang, 1989; Tichy, 1986; Tichy and Bourgin, 1985; Tipei, 
1978) and the blade coating community (Campanella and Cerro, 
1984; Cerro and Scriven, 1980; Hsu et al., 1985; Sullivan and 
Middleman, 1986; Sullivan, Middleman and Keunings, 1987.) 

The plan of the paper is as follows: In Section 2 I dem
onstrate the existence of static solutions if there is contact angle 
hysteresis. In Section 3 I discuss the asymptotic expansion and 
derive equation (2). Finally, in Section 4, I discuss the oral 
biology application, and describe a simple order of magnitude 
experiment. 

2 On Static Solutions 
In this section the conditions for static equilibrium are found. 

For equilibrium the net force on the sphere must be zero, and 
the net force on the sphere-liquid system must be zero. The 
liquid must also be in hydrostatic equilibrium. Consider first 
the system. Forces on the system include gravity, possible adhe
sion between the sphere and the cylinder in the region of close 
approach, and surface tension forces. Symmetry, with respect 
to the sphere's equator, shows that adhesion forces cannot 
balance gravity. Therefore, the contact lines must support the 
weight of the system. This requires a difference between the 
advancing and receding contact angles, and a sufficiently large 
surface tension. 

The (dimensionless) contact force on the system is given by 

Fc= 2ir(cos(3, - cosft>), (3) 

where yRc has been taken as the force scale, y denotes the 
surface tension, 0 the contact angle, and 1 and 2 the top and 
bottom surfaces. Pressure will be scaled by y/Rc and lengths 
by Rc, and the discussion will be conducted in dimensionless 
units. In these units the radius of the cylinder is unity and that 
of the sphere is a. Dimensionless cylindrical coordinates r (ra
dial) and z (axial) will be introduced. For the contact force to 
balance gravity, the top contact angle must be less than the 
bottom contact angle. Imagine /32 to be an advancing contact 
angle and /3| a receding contact angle, as in the analogous case 
discussed by Dussan V. and Chow (1983; see also Dussan V., 
1985, 1987). The question of advancing and receding contact 
angles, and their difference, if any, is an area of active research. 
When a difference is measured between these two angles, the 
advancing is larger than the receding. The difference can be 
large. 

To complete the global equilibrium, the contact force is 
equated to that of gravity: 

MTg/yRc = Bo ( VL + (4/3)xpsa
3) = BoM 

= 2TT(COS/3I-COS/32), (4) 

where MT denotes the total mass of the system, ps the relative 
density of the sphere, VL the liquid volume, M a dimensionless 
mass (or volume), and Bo a Bond number defined by 

Bo = pgRc
2/y. 

The right-hand side of (4) cannot exceed 47r, therefore Bo 
cannot grow without bound; some minimum surface tension 
is require to hold the system in place. 

The pressure in the liquid must be continuous, increasing 
downward at a rate Bo. The pressure at 2 (where r=r2 and 
z = Zi) is BoAz greater than that at 1 (where r = rx and z = Z\\ 
see Fig. 1). These pressures are determined by the curvature 
at the respective points; therefore, the curvatures at the points 
of intersection are related. Let the upper surface be given by 
z = Zj(r) and the lower by z = ZB(r). Denote the mean curvature 
by H. Then 2H= div(TZ), where 

TZ = e rZ'/V(l + Z'2) , (5) 

er denotes the radial unit vector and prime the derivative with 
respect to argument. (This formulation is due to Concus and 
Finn (1974a,b); see also the monograph by Finn (1986). Many 
of the mathematical manipulations in this section are straight
forward extensions of material found in these sources.) 

The equations of the surfaces are 

div(TZi) = BoZi + i>
1, 

div(TZ2)=-BoZ2 + P2 , (6) 

where the P are constants. Since Z measures the height of the 
liquid surface above the reference level, and the pressure in a 
static liquid is given by 

p= jp ( 7+Boz-div(TZ), (7) 

where pa denotes the scaled atmospheric pressure, it can be 
seen P denotes the difference between atmospheric pressure 
and the pressure at the reference level. In the event that the 
liquid lies above the surface, Zis negative, and the discontinuity 
in pressure caused by the curvature of the surface has the 
opposite sign. The net effect is that the curvature term in 
equation (7) has the opposite sign, as written in the second of 
equations (6). This establishes that Pi= -P2 for continuity of 
pressure. 

Further conditions on the pressure constants can be estab
lished by integrating equations (6) over the projected surface 
area lying between r, (the intersection point in each case) and 
unity. This gives 

2TT( ± cos/3,- - rising) = Bo Vf + P,Af, (8) 

where A * = -K{\—IJ) denotes the projected area of each me
niscus and Vf the (positive) cylindrical annulus of volume 
between the meniscus and the midplane of the sphere. The 
upper (lower) sign is taken in the upper (lower) surface. The 
angle c/>, denotes the angle between the surface and the hori
zontal at the intersection (see Fig. 1.) Denoting the polar angle 
8 at each intersection by 0, = sin "'(/•,/a) allows me to write an 
equation relating the various angles: 

4>n = - <?i + ft'; 

*a = 02-&' . (9) 

The primed contact angles need not be identical to the un-
primed contact angles. 

For sufficiently large Bo, the left-hand side of (8) is negligible 
and both Px and P2 will be negative. Their sum cannot vanish, 
and hydrostatic equilibrium is impossible. Dividing the inte
grated equations by the projected area and rearranging gives 

P ,= .P = 2<J/1>-Bo<Z1>, 

P 2 = - P = 2 < / / 2 > + B o < Z 2 > , (10) 

where the angle brackets denote the mean over the projected 
surface in each case, and <Z2> <0 . Adding these two gives 

P 1 + P 2 = P - P = 0 = 2[</71> + <#2>]-Bo<Z>>, (11) 

where <Z>> denotes the mean distance between the two surfaces. 
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Equations (10) show that {Hi) and <//2> must be of opposite 
sign, and (11) that the positive one must be the larger. 

It is also necessary that the sphere be in equilibrium. This 
is assured if the vertical component of the pressure force added 
to the contact line force balances gravity. The former is the 
integral over the surface of cos0 times the gage pressure, and 
the latter the line integral of the surface tension. The gage 
pressure, under conditions of hydrostatic equilibrium, is just 

p-p„= -CP+Bo a cos0), (12) 
where P is the numerical value of Pi = — P2. Integrating equa
tion (12) then gives 

Psa
3Bo = - [3P(̂ f - z?)/4 + Bo(zl - zl)/2] 

+ (3/2)(r1sin</>I + /2sin02)- (13) 
How does this work? In any given case the Bond number 

and contact angles can be supposed given, as can the mass and 
size of the sphere. Equation (4) gives a first cut at deciding 
whether a static solution is possible. If so, one can seek a 
family of solutions to (6) such that hydrostatic equilibrium is 
maintained, and then search through that family for candidates 
satisfying the two equilibrium conditions, equations (4) and 
(13). Thus, it is necessary to solve equations (6). Fortunately, 
that is relatively straightforward numerically. 

Consider the equation 

di\(TZ) = BoZ+P (14) 

subject to boundary conditions on slope at r equal to r, and 
unity, and a boundary condition that Z = z, at r = rh The 
equation is second order in r, so the third condition can only 
be satisfied for specific value(s) of P; this is an eigenvalue 
problem. Solutions have been obtained by creating an artifical 
third-order system with the additional equation P' =0. The 
third-order system is solved implicity after reducing to a set 
of three first-order equations: 

Z'=tan4> 
(sin<f>)' + sin4>/r = BoZ + P 

P'=0 (15) 
using routines found in Press et al. (1986). Once separate 
solutions are obtained for top and bottom they are matched 
to the same absolute value of P, determining sets of inner radii 
satisfying local and global hydrostatic equilibrium. 

As an example, consider a fully wetted sphere of radius 0.95. 
"Fully wetted" means that the contact angle at the inner con
tact lines is zero. Let the upper contact angle be 10 deg and 
the lower be 90 deg. Table 1 shows a set of possible equilibrium 
configurations for a Bond number of unity, for which the 
(scaled) force on the liquid must be equal to the (scaled) liquid 
volume. The total force on the system is equal to 2-7rcos(10 
deg) = 6.1877. The last column shows the force on the sphere, 
increasing as the amount of liquid decreases. One can choose 
sphere densities to match any of these configurations. Figure 
1 has been drawn from the fifth line in the table, for which 
the relative sphere density is 1.3048. 

3 Dynamic Solutions 

3.1 Introduction. Once the equilibrium described in the 

previous section is no longer possible, motion sets in. It is the 
purpose of this section to analyze this motion, and to find 
steady-state solutions for motion. It will be convenient to ana
lyze the dynamic cases from a reference frame attached to the 
moving sphere, and to suppose that the cylinder moves upward 
at some velocity. The contact lines will be in uniform motion 
and therefore force-free. The expression for contact line force 
given in Section 2 above holds. The balance of forces on the 
system will be the difference between the action of gravity on 
the combined system of sphere and liquid and the contact line 
forces, and the shear forces developed between the liquid and 
the wall: 

gravity force = contact line support + viscous drag. 
This will determine the velocity of fall. This analysis is com
pletely different in approach from that of Dussan V and co
workers (Dussan V. and Chow, 1983; Dussan V., 1985, 1987.) 
The essential difference is that the presence of the sphere in
troduces a lubrication region between the rigid surfaces absent 
in the earlier work. These results are complementary to her 
work. The analysis is also different from the usual lubrication 
analysis in that the free surfaces in the entrance and exit regions 
are explicitly included. No ad hoc assumptions are needed. 

Motion generates lubrication pressures between the sphere 
and the wall. If the motion is sufficiently slow, this lubrication 
pressure will be governed by a laminar Reynolds equation. 
That condition will be assumed. This lubrication pressure is 
an intermediary between the two trapped liquid volumes, and 
hydrostatic equilibrium is no longer necessary. Far from the 
sphere, two situations are possible: either the liquid has set
tled into a simple layer of uniform thickness (the infinite liquid, 
perfect wetting, case) or there is no liquid (the finite liquid 
case). These two cases are quite different. In the former, the 
effective top and bottom contact angles will be zero, there will 
be no net contact line force, and there will be a net flux of 
liquid between the sphere and the cylinder. The latter has 
contact line forces, in general, and no net flux. To the order 
to which the problem is solved, details of the motion of the 
contact lines are not important, nor is the distinction between 
infinite volume cases. The latter is characterized by zero contact 
angles. The effects of flux do not appear until higher order in 
the expansion parameter. 

The flow field can be divided into two regions: an inner 
(lubrication) region, in which Reynolds equation provides an 
adequate approximation to the flow, and an outer (capillary) 
region in which the flow has a negligible effect on the pressure 
distribution. The inner region is characterized by contrasting 
length scales in the stream wise and normal directions, allowing 
simple analysis. The outer region does not. In this region one 
should analyze the full (axisymmetric) three-dimensional flow 
under the (unknown) free boundary. This is a formidable task, 
though not necessarily impossible. It is, however, beyond the 
scope of this paper. In this paper the outer region will be 
analyzed by neglecting the liquid motions, allowing the use of 
the analysis outlined in the previous section. This is in the spirit 
of Levich's (1962) analysis of the withdrawal of a vertical plate 
from a pool of liquid. The analysis that follows employs a 
matched asymptotic expansion to make this casual discussion 
rigorous. 

Table 1 Set of possible pairs in hydrostatic equilibrium 
rtop rbottom 
0.250 
0.305 
0.351 
0.390 
0.424 
0.454 
0.481 
0.506 
0.528 
0.548 

0.393 
0.481 
0.541 
0.585 
0.621 
0.650 
0.675 
0.696 
0.714 
0.730 

P<top> 
1. 169 
1.364 
1.559 
1.754 
1.949 
2.144 
2.339 
2.534 
2.729 
2.924 

upper vol 
1.5444 
1.3911 
1.2666 
1. 1617 
1.0700 
0.9926 
0.9239 
0.8654 
0.8137 
0.7667 

lower vol 
0.7279 
0.6101 
0.5326 
0.4747 
0.4317 
0.3921 
0.3657 
0.3413 
0.3188 
0.2950 

total vol 
2.2723 
2.0012 
1.7992 
1.6363 
1.5017 
1.3847 
1.2896 
1.2067 
1.1324 
1.0617 

F 1 i qui i d 
2.2723 
2.0012 
1.7992 
1.6363 
1.5017 
1.3847 
1.2896 
1.2067 
1.1324 
1.0617 

F sphere 
3.9154 
4.1865 
4.3885 
4.5514 
4.6860 
4.8031 
4.8981 
4.9810 
5.0553 
5.1261 
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Begin by writing the steady, incompressible Navier-Stokes 
equations in dimensionless form: 

ReCa[u-u) + V/? = CaV 2 u-Boe z ; div u = 0 (16) 

where u denotes the vector velocity field, the Reynolds number 
Re = pVRc/)i, the capillary number Ca = fiV/y, and ^ denotes 
the liquid viscosity. The velocity scale V is the falling speed 
of the sphere, only known a posteriori. The Bond number is 
that defined in Section 2. The three nonzero components of 
the stress field are 

arr= -p + 2Caur 

ozz=-p + 2Cawz 

orz=Ca(uz+wr) (17) 
where u and w denote the radial and axial components of u, 
respectively. The boundary conditions are those of no slip on 
solid surfaces and continuity of stress on the free surface. 

There are seven free physical parameters: /x, p, 7, g, V, Rc, 
and Rs- The usual arguments from the II theorem say that 
there are four possible independent dimensionless groups. The 
three appearing in equation (16), plus the dimensionless gap 
ratio introduced in Section 1, will be taken to be fundamental. 
Bo will be taken to be of order unity, and e will be treated as 
an asymptotically small parameter about which a matched 
asymptotic expansion can be constructed. (The reader unfa
miliar with this technique is referred to the monograph by Van 
Dyke (1975).) The Reynolds and capillary numbers will be 
taken small, and, to facilitate a single asymptotic expansion, 
write Re = Re, Ca = Ke3, where R and K are of order unity. 
This implies that the velocity-independent parameter Ca/ 
Re = ji2/(pyRc) is of order e2. 

3.2 The Inner Solution. An appropriate set of spatial 
variables x, y in the inner region is defined by 

r=l-(l/2)e2y; 

z = ex. (18) 

The solid boundaries are given by .y = 0 and y= 1 +X2. The 
governing equations in the inner region can be written in terms 
of these variables as: 

px - K[4wyy + e2( - 2wy + wzz)] = - Boe - RKe3( - 2uwy + ewwz); 

- 2py = K[Auyy + e2( - 2uy + uzz)] -RKe3( - 2uuy + ewuz); 

-2Uy + e2u/r + ewx = 0; (19) 

where subscripts have been used to denote partial differentia
tion. Solutions will be sought in the limit that e is small, so 
that the momentum equations can be linearized and the usual 
lubrication approach can be taken. 

The explicit boundary conditions for the set (19) are those 
on the solid boundaries: 

w = 0 ony=l+x2; 

w = l o n . y = 0. (20) 

The boundary conditions in the x-direction take the form of 
matching conditions connecting this solution to that in the 
outer regions. These will be discussed after the solution is given. 

Let p and u be expanded in powers of e, e.g., 

p=p™ + epw + e2p™+.... (21) 

The governing equations for the first three terms are 

/ V 0 ; pm
x = 4Kw%; «<% = 0. (22a) 

pw
y = 0; pm

x=-Bo + 4Kwm
yy; 

um
y = (\/2)w(0)

x. (22b) 

P^y = - 2KlPyy\ / ^ = 4KvPyy\ 

ui2)
y = (\/2)wm

x. (22c) 

Solution of the first two of these is straightforward, and is 
more than adequate for the purposes of this paper. The usual 
approach by which Reynolds equations are derived, integrating 
the axial momentum equation twice with respect to y and 
applying the boundary conditions, gives formal expressions 
for w. The y integrals of these expressions from 0 to 1 +X2 are 
proportional to the flux between the sphere and the cylinder, 
and must be constant. Denoting the constant by q gives 

2qm = 1 + x2 -p{0)
x(l + x2f/24K\ (23a) 

2qw = - (pw
x + Bo)(l + x2)3/24K. (23b) 

These equations are first integrals of the Reynolds equations 
for this problem. (Note that this flux represents the inner 
represention of the actual flux (divided by ir). The outer rep
resentation of the flux is e2 smaller than this.) 

A second integration of the Reynolds equation gives 

p(0) = l2KFi(pc) - 6Kq(0)F2(x) +p(\ (24a) 

pw = - Box-6KqwF2(x) +pm
0, (24b) 

where 

Fi(x) = [x/(\+x2) + tan-1x]; 

F2(x) = 2x/(\ + x2)2 + 3 [x/(l +x2) + tan " lx]; (25) 

and the constants of integration p®\pw represent terms in the 
expansion of the pressure at the midplane of the sphere, x=0. 
The remaining parts of the solution are 

W<°>= 1 -y/^+^+yfy-l - ^ ) [ 3 / ( l + X2)2 

-e^Vo+x2)3]; (26«) 
w ( 1 ) = _ 6 > , 0 ) _ 1 _ x 2 ) ^ ( i ) / ( 1 + x 2 ) 3 . (26b) 

um = 2xy2/(l +x2)2-6qi0)xy2/(l +X2)3 

- 2xy3/(l + x2)3 + 6<7(0 V / ( l + x2)4; (21a) 

u™ = - 6<7(1 V / ( l + x2)3 + 6qwxy3/(i + x2)*- (21b) 

Discussion of the matching conditions will be deferred until 
the outer region has been addressed. 

3.3 The Outer Solution and Matching. The equations in 
outer variables (r,z) are the components of (16) 
pr=Ke3V2u- RKe4(uur + wuz); 

pz= - Bo + Ke3V2w-RKe\uwr+wwz); 

(ru)r + rwz = 0; (28) 

and it is immediately clear that the pressure is given by 

p = ci0)-Boz+ecw + e2c(2\ (29) 

with no viscous effects until the third order in e. The velocity 
field is undetermined at this level. It is not zero, however, as 
will be shown by a consideration of the matching conditions. 
The leading terms of the lowest-order outer representation of 
the velocity will be required for a formal expression of the 
viscous drag, and they will be found later in this section. 

The matching principle is stated succinctly by Van Dyke 
(1975) as 

the «-term inner expansion (the m-term outer solution) = 

the w-term outer expansion (the «-term inner solution). 

The inner expansion of the outer solution is obtained by writing 
the outer solution in inner variables and examining its behavior 
as e~0. Similarly, the outer expansion of the inner solution 
is obtained by writing the inner solution in outer variables and 
taking the same limit. Comparison of the resulting approxi
mations can be made in either system. Matching of the normal 
stresses requires matching of the pressure (the viscous contri
bution being negligible by comparison in both inner and outer 
solutions), which is done by taking the two-term inner expan
sion of the two-term outer solution: 

c(0) - Boz + ec (1)-c (0) - e(Box- c(1)), (30) 
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and comparing that to the two-term outer expansion of the 
two-term inner solution: 

pi0\x) + e p ( V ) - l2KFi(z/e) - 6Ke2qmF2(z/e) 

+p(0)o - e[Boz/e + 6Ke2gwF2(z/e) -pm
0]. (31) 

Inspection of F{ and F2 reduces the two-term outer expansion 
to 

6Kir-Boz+pmo + ep(l)
0. (32) 

Comparison of (30) and (31) shows that the matching condi
tions on the pressure can be reduced to 

cm = 6KTr+p%; 

c"=p%. (33) 

Repeating the analysis in the lower capillary region leads to 
two additional conditions, and two new constants 

cL
m=-6Kir+p' ,(0) 

cL
m=PWo. (34) 

The problem is apparently underdetermined: four equa
tions in six unknowns. One pair is simple, but uninformative: 

C ( 1 ) = C L ( . , = P ( D O . { 3 5 ) 

The other condition relates the sum and difference of the two 
constants in the capillary regions to the central pressure as 
seen in the lubrication region. Recall that the sum of these two 
constants is zero in the absence of a lubrication region. Thus, 
the lubrication region supports a difference of pressure arising 
from a nonideal pairing of volumes and Bond numbers. The 
remaining two degrees-of-freedom, which can be thought of 
as permission to choose p(0)

0,p
il)

0 arbitrarily, are used to satisfy 
the condition of no net force on the sphere after the falling 
speed of the sphere is determined. 

To determine the falling speed of the sphere and its sur
rounding capillary regions, it is necessary to find the integrated 
shear stress between the wall and the liquid. To find the in
tegrated shear stress, it is necessary to find the lowest order 
(at least) part of wr on r = 1 in the capillary regions. 

The lowest-order component of the velocity field in outer 
coordinates (in both the upper and lower capillary regions) 
satisfies the set of differential equations 

pV\ = KV2iP; 

p«\= -Bo/STVV0>; 

(rum)r + rwi0\ = 0. (36) 

The last of these can be eliminated by defining the usual stream-
function, i/s in terms of which 

M = - f e w = (iV-)/r. (37) 

The streamfunction satisfies the fourth-order differential equa
tion 

JD
2!JD

2[^]]=0, (38) 

where 

D1m={(l/r)mr}r+*zz. (39) 

The matching condition suggests seeking solutions in the form 

tf =/oW +/i(')/«2 + • • • +fAr)/zv +..., (40) 

with the functions fj(r) in the form of power series in (1 - / • ) . 
Application of the matching principle on the velocity field gives 

j,= -(l-r) + a02(l-r)2+... 

+ {4( l - r ) 2 + « 1 3( l - / - ) 3+. . . ) /z 2 

+ f - 4 ( l - / - ) 3 + a 2 4 ( l - r ) 4 +. . . } / z 4 

+ {«35(l-/-)5 + . . . ) / z 6 +. . . , (41) 

which also satisfies the no slip boundary conditions on r = 1. 
(Matching conditions on the viscous stress terms are auto

matically satisfied, as can be easily verified directly.) The un
specified constants in this expression are available to satisfy 
the differential equation and/or the boundary conditions on 
the inner edge of the outer regions. In particular, a02 is deter
mined by boundary conditions. Fortunately, it does not enter 
the solution at the lowest order. 

The shear stress on the system is found by constructing a 
one-term composite expansion for w in outer variables. This 
expression for w is inserted into the third of equations (17), 
noting that u and all its z derivatives are identically zero on 
the boundary. The shear stress is then integrated over the 
cylinder surface between Z2 and Zj at the outer edge (called 
Z\ and z2, respectively) at the outer edge and the result equated 
to the gravity force on the system. 

The composite expansion is formed by additive composition 
(Van Dyke, 1975). The inner and outer expansions are added 
and their common part subtracted. That result, after elimi
nating o(l) terms, is 

Vfc' 
(0) = 1 - 8(1 - f)/(e2 + z2) + 12 (1 - r)V(e2 + z2)2 

- (1 -/•)/#• + 2a02(l -r) + 002(1 - rf/r +... 

+ z'2{4(l-rf/r ...) 

+ z~4{ -4(1 -rf/r . . . )+ . . . . (42) 

The boundary shear stress is 

an = Ca[(l - 2<7o2) + 8/(e2 + z2)], (43) 

and the leading term in the integral for the force comes from 
the second (inverse tangent) factor, making 

F~ 16ir2Ca/e. (44) 

Equating this to the difference between the gravitational force 
and the net contact line force, which difference is supposed 
positive (otherwise a stationary solution as outlined in Section 
2 above would be correct), and redimensionalizing gives an 
expression for the velocity of fall: 

V= {Mg - 2iryRdcosl3T- cosfr,)) V[/?c(J?c - Rs)]/ [ 1 6 T T 2 ^ C
2 ). 

(45) 

The analysis is completed by requiring the net force on the 
sphere to vanish. This is obtained by integrating the vertical 
component of the stress over the wetted surface, and adding 
to that the net contact line force. Consideration of the uniform 
composite expansions of w (given above) and u, given by 

uc
m = 4z(l -rf/(e2 + z2f- 16z(l -rf/(e2 + z2f 

+ 2an(l-rf/z3 +..., (46) 

shows that the vertical component of the surface stress is dom
inated by the pressure term. Integration of the pressure term 
leads to a net (scaled) pressure force (correct to O(e)) 

FP=TT[3p0(zl
2-z2

2)-2Bo(zl
3 

-Z2
3)]/3 + 6Kir2(zl

2 + Z2
2). (47) 

To this is added the contact line force on the sphere, given by 
27r(/'1cos01 + r2cos62) as in Section 2. That sum is equated to 
the force of gravity on the sphere, giving the analog of equation 
(14) 

(4/3)7rpsa
3Bo = 27r(r1cos0i + r2cosd2) 

+ Tr[3p0fei2 - Z2
2) - 2Bo(zi3 - z2

3)]/3 + 6&2(z,2 + z2
2) (48) 

which is to be solved for p0. (In the limit that K—0, this is 
exactly equation (14); p0 is that required for hydrostatic equi
librium and there is no motion). 

3.4 Physicalizing the Expansion. As is often the case in 
analyses carried out using matched asymptotic expansions, the 
mathematics obscures somewhat the nature of the solution. 
Before moving on to look at the fall rates of spheres, I will 
spend a little time examining the solution. 

The velocity field in the lubrication region—the gap—is a 
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combination of (slowly varying) Couette and Poiseuille terms. 
For the case of finite liquid volumes, the relative size of these 
two terms is such that the het flux in the gap is zero, as it must 
be for steady motion. (The volume in the upper and lower 
menisci is constant, so there can be no net flow in the gap.) 
For illustrative purposes, the flow is essentially given by w<0), 
written in inner variables as equation (26a). Figure 2 shows a 
set of velocity profiles corresponding to that equation with 
zero net flux. The horizontal axis is x, the inner axial variable, 
and the vertical axis is 1 -* r, where r is the outer radial variable. 
Unit velocity corresponds to one-half unit on the abscissa. The 
surface of the sphere does,not appear spherical because of the 
different scales for the ordinate and abscissa. The surface is 
spherical; the distortion in the r—y transformation has been 
removed. The velocity is a function of the single variable y/ 
(1+x2), lying on (0,1), so all the profiles are "similar," dif
fering only in their scale of variation. 

The outer limit of this solution corresponds to its behavior 
as l*l—oo. The velocity obviously persists into the outer re
gion, as noted above. However, the shear decreases, and its 
divergence decreases even more rapidly. In the inner region 
the divergence of the stress tensor dominates gravity; in the 
outer region the relative roles reverse. Thus, the pressure field 
in the outer region is determined by gravity and surface tension, 
the inner region functioning as a jump condition linking the 
upper and lower menisci. There is a nonzero velocity field in 
each meniscus region, but it is not directly accessible analyt
ically. It is accessible numerically, but that is beyond the scope 
of this paper. The point to be noted is that it does not affect 

the pressure field to lowest order, nor does it contribute to the 
viscous drag on the falling sphere. 

This discussion can be made clearer by an example. Let 
e = 0.1, and choose K such that the pressure jump through the 
gap is T. Figure 3 shows the pressure jump in the gap plotted 
against both x and z. This is, in fact, a plot of F\(x) given by 
equation (25). Pressure changes are confined to the region in 
which 1*1=0(1). 

Figure 4 shows the lowest-order composite pressure expan
sion—the hydrostatic balance plus the gap pressure shown in 
Fig. 3—again for e = 0.1.1 have taken Bo = 1, and I have chosen 
the minimum height of the upper meniscus to be 0.75 and that 
of the lower to be 0.55, the same geometry shown in Fig. 1. 
The pressure in the liquid is everywhere below atmospheric,, 
as determined by the curvatures of the two menisci. The dif
ference in curvature between the two menisci balances the jump 
in pressure through the gap. The flow in the gap is the combined 
Couette and Poiseuille flow shown in Fig. 2. The flow in the 
two menisci is undetermined at this time, but it is most likely 
an axisymmetric roll or vortex with liquid rising along the 
cylinder wall and moving down and across along the spherical 
surface. There will be an inward flow along under the upper 
free surface and an outward flow over the lower free surface. 

4 Discussion 
The analysis presented depends on the two dimensionless 

groups Re and Ca having specified relations to the asymptotic 
parameter e. Are these reasonable? From the previous section 

Fig. 2 Dimensionless velocity profiles. The sphere surface is distorted 
by the scaling, here corresponding to t = 0.1. 

CO 

Fig. 3 Inner solution pressure at lowest order. Both inner coordinate 
x and outer coordinate z are shown for t = 0.1. 

Journal of Applied Mechanics SEPTEMBER 1991, Vol. 58 / 817 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



5 -

4 -

3 -

2 -

1 '-

0 -
u

n
its

 

1 

a
rb

itr
a

ry
 

w 
in 

£ 
Q. 

n 
D 

EI 

E 

• 
El 

El 

" • • • - - - . . ] 

z 

• 1 0 1 

Fig. A Pressure from the lowest-order composite solution with e = 0.1 

V= {Mg - T) V[i?c(tfc - * s)]/ (167rV?c21, 

where T = yRcFc = 27TY./?C(COS|31 - cos/32) and the Reynolds and 
capillary numbers are 

Re = ep{A/g- r ) /{16V2i rV}; (49) 

Ca = e[Mg-r) /(16V2ir27i?c)- (50) 

The former must be comparable to or small compared to e, 
so that the numerical part of (49) can be at most O(l). This 
puts a lower bound on the viscosity. Similarly, (50) puts a 
lower bound on the surface tension, a lower bound dependent 
on e2, the dimensionless gap. This equation can be rewritten 
in a more convenient and suggestive form 

Ca=[A/Bo-Fc)e/(16V27r2), (50)' 

the dimensionless force imbalance times e divided by a large 
numerical factor: 223.32.... For moderate force imbalance, 
the condition on the capillary number is not hard to satisfy. 

The most stringent bounds arise when there is no contact 
angle hysteresis, so that the entire equilibrium is supported by 
the viscous forces. The capillary number is still well behaved 
for moderate Bond number, but the relation between the vis
cosity and the size of the system begins to be quite limiting. 
That can be written 

H2>p2gRc
3[(4/3)icpsa3+ FL]Bo/(16V2A (51) 

For water, for example, n = 1 mPas, p = 1000 kg/m3 and y = 72 
mPam, and the scale for Rc is of the order to a few hundred 
ftm. 

Does too large a Reynolds number compromise the solution 
fatally? The nonlinear term in the inner variables is of the 
order of ReCa, so that a reasonably large Re will not upset 
the solution in that region. If Re = O(l), the nonlinear term in 
the outer region, as in equations (36), will be comparable to 
the viscous terms, but this is not particularly disastrous, as 
that set of equations is not solved, and the representation of 
the outer velocity field in terms of a stream function is still 
valid. Thus, the condition on the Reynolds number can be 
relaxed with the expectation that the solution for the speed of 
fall will remain valid. The condition on the capillary number 
cannot be relaxed. 

The biological application which originally motivated this 
work, swallowing, is worth examining, at least qualitatively. 
The diameter of the esophagus is between one and three cm 
in humans. The viscosity of saliva is about 5 cP. I have been 
unable to find a value for its surface tension; let me use 60 
dyne/cm, a value appropriate to very dirty water. The esoph
agus is certainly wetted and both advancing and receding con
tact angles are likely to be near zero. I assume a spherical bolus 
of unit specific gravity, so that the mass of the bolus in grams 
is equal to its volume in cm3. Combining these assumptions 
gives a capillary number 

Ca«0 .3 . (52) 

The coefficient of e, here 0.3., is meant to be 0 (e ) , so that 
application to swallowing is a bit strained. If, however, the 
attempt is made, one finds that the free fall swallowing speed 
is 

Swallow * 368ecm/sec. (53) 

The actual value of e is indeterminate, but it is likely to be 
quite small. (It is probably determinable by a squeeze film 
estimate taking into account the dynamic behavior of the real 
system: a problem well beyond the scope of this work.) Ac
tual swallowing speeds are faster than that indicated by the 
estimate (53) for any reasonable value of e. The esophagus is 
of the order of 25 cm long,and swallowing certainly takes less 
than one second, perhaps as little as 0.1 sec, giving speeds of 
100-200 cm/sec. These speeds are, however, in the ballpark, 
suggesting that the qualitative aspects of this work are appli
cable to the problem of analyzing swallowing. 

It would be of interest to verify this work experimentally, 
and to measure what happens outside the range of formal 
validity of the analysis. This turns out to be a difficult problem, 
not addressable within the scope of this paper. There is only 
space to report some suggestive early results of experiments 
dropping steel spheres inside small glass tubes using silicon oil 
(Dow-Corning 200 Fluid: density of 970 kg/m3, surface tension 
22 mPam, kinematic viscosity 10 mmVsec) as the lubricant. 
The spheres are chrome steel, and come in diameters of 1.5875 
mm (1/16 in.), 2.38125 mm (3/32 in.), and further increments 
of 0.79375 mm (1/32 in.). Sphericity is given by the supplier 
(Small Parts, Inc.) as 0.635 /wn (0.000025 in.). Common lab
oratory glass tubing is sized by outside diameter and wall 
thickness. The bores are not particularly precise, nor uniform 
in the axial direction, nor very round. 

Several 3/32 in. balls were dropped down a closely fitting 
glass tube. The two major contributions to uncertainty for this 
casual experiment are the inside geometry of the tube and the 
amount of liquid entrained. The outside diameter of the tube 
was measured by caliper to be 4.1 mm. The inside diameter 
was indistinguishable by caliper measurement from the outside 
diameter of the balls. Two ml of 10-cS silicon oil were inserted 
in the tube, and the balls were wetted before insertion into the 
tube. The amount of liquid entrained is hard to judge. It was 
small, but nonzero. If the liquid were uniformly distributed 
over the inside of the tube, it would form a layer a little less 
than 400 nm thick. This is the same order of magnitude as the 
gap. 

After some practice, three balls were dropped without re
plenishment of the liquid. The experiment was video taped 
and the balls were observed frame by frame. The position 
versus time plot was constructed, and the slope of this plot 
was taken to be the speed. The balls ran freely for about 435 
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mm before entering the camera field of view. The observations 
covered about 150 mm. In each case the upper 100 mm showed 
a higher speed than the lower 50. Observed speeds (upper/ 
lower) were 173/134, 192/152, and 196/146 mm/s, respec
tively. The differences between the upper and lower segments 
of each trial are larger than the differences between trials. The 
Reynolds and capillary numbers based on the observed velocity 
are 23 and 0.084, respectively, within the range allowed by the 
analysis. Predicted speeds, based on equation (2), are hard to 
calculate because contact angles, entrainment volumes and gap 
are unknown. Under the balancing assumptions of zero contact 
angle and zero entrainment, equation (2) predicts a speed of 
207 mm/sec, a number suggesting that the analysis is germane, 
but hardly demonstrating its validity. 
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Solutions for Non-Newtonian Flow 
Into Elliptical Openings 
A semi-analytical solution for plane velocity fields describing steady-state incom
pressible flow of nonlinearly viscous fluid into an elliptical opening is presented. 
The flow is driven by hydrostatic pressure applied at infinity. The solution is obtained 
by minimizing the rate of energy dissipation on a sufficiently flexible incompressible 
velocity field in elliptical coordinates. The medium is described by a power creep 
law and solutions are obtained for a range of exponents and ellipse eccentricites. 
The obtained solutions compare favorably with results of finite element analysis. 

Introduction 
Determination of slow closure rates of elliptical openings in 

a nonlinearly viscous media is a problem of considerable in
terest to salt rock and potash mining. Although openings in 
salt rock are rarely excavated in an elliptical shape, develop
ment of fractures around deep openings and subsequent de
tachment of roof and floor slabs and pillar spalling result in 
openings of nearly elliptical shape (Mraz, 1973). Formation 
of an elliptical opening around a rectangular room is sche
matically illustrated in Fig. 1. 

In deep salt and potash mines, where ground stresses are 
high enough to cause fracture of rock around openings, the 
modification of the initial opening geometry occurs within 
several months after excavation. Eventually, a couple of years 
later, the elliptical opening will experience steady-state closure. 

In this paper, a semi-analytical solution for steady-state clo
sure rates of infinitely long elliptical openings in an infinite 
medium is presented. Material behavior is described by steady-
state power creep law. The solution is developed for a wide 
range of ellipse eccentricities. Stress field at infinity is assumed 
to be hydrostatic. 

Closed-form solutions for nonlinear flow problems can be 
only obtained in effectively one-dimensional cases (flow be
tween two plates, closure of a circular opening). FEM analysis 
is rather standard in this area, but computations are numer
ically intensive, and parametric studies that are frequently re
quired in engineering applications are costly in terms of 
computer time involved. 

There are a number of practically important problems that 
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have been addressed in an analytical form by utilizing varia
tional principles for nonlinearly viscous media and using ki-
nematically admissible trial functions with adjustable 
parameters (Lioboutry, 1987 gives several examples). Gilor-
mini and Montheillet (1986) successfully used trial velocity 
fields of a corresponding linear problem to study deformations 
of an incompressible elliptical inclusion in a nonlinearly viscous 
matrix. The problem of flow into an elliptical opening is ad
dressed here in a similar manner, except it is found that velocity 
fields of linear and nonlinear problems are substantially dif
ferent for high exponents of power-law viscosity. 

Material Model 
It is assumed that the material is described by a power creep 

law of the form: 

• , 3 . 

•IJ ' 
aef 

(1) 

where ey is the strain rate, a,y is the stress deviator, aef = 
(3/2oyo(j)l/2 is the so-called "effective stress" assumed to gov
ern creep rates in generalized stress conditions, Mis the power 
law exponent, and a0, e 0 are material constants (only one of 
which is independent). In the subsequent text the inverted form 
of the above creep law will be extensively used: 

roof slab 

1 spalled n̂  w w ^ g 
zone ^ i S f 

'-•SALT or POTASH 

/init ial rectangular mine opening 

LONG MINE ROOM 

-elliptical opening because of 
spalling and slab detachment 

pillar 

, l o o r , „ 2 S ^detachment surface 

"\ 
Fig. 1 Formation of an elliptical opening around a rectangular room 
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Ju • (2) 

wherew = 1/Mand ee/= (2/3 efrky) is the "effective strain 
rate." The definitions of effective stress and strain are such 

that the relationship (1) takes the form ei = e0( — 1 in 
V "o / 

conditions of uniaxial compression. 
It should be noted that the material law (1) is unlikely to be 

applicable for the entire range of stresses and certainly not for 
high stress deviators approaching uniaxial compressive 
strength. It seems that for salt rocks, the expression (1) is 
reasonable for aef < aa « 10 MPa with M = 3. For higher 
stress deviators the creep mechanism changes and can be also 
approximated by a power law, but with a much higher exponent 
(Dusseault et al., 1987). The present study is limited to a single 
mechanism power law, although the technique described below 
is sufficiently general to be applicable for more complex creep 
models. 

Variational Approach to Steady-State Solutions 
In general, exact analytical solution for nonlinearly viscous 

flow can be obtained in effectively one-dimensional cases like 
flow through a pipe or closure of a circular opening. More 
complex problems can be addressed by noting that a velocity 
field in a material obeying the constitutive relationship (1) and 
resulting in an equilibrium stress field minimizes the following 
functional (Hill, 1956) on a set of all incompressible velocity 
fields (dVj/dXi = 0): 

- l 

m+ 1 JK 

eef dV- OijUjVi dB. (3) 

The first term in equation (3) represents the rate of energy 
dissipation within the volume V of the material, while the 
second term is the power of boundary tractions ay rij, where n 
is the outward normal to the boundary B surrounding V. In 
order to apply this principle to a particular problem without 
undue analytical complications, it is necessary to select a suf
ficiently wide set of physically realistic incompressible velocity 
fields specific to the problem. 

Incompressible Velocity Fields in Elliptical Coordinates 

In further analysis, it is convenient to describe the shape of 
the opening and to seek the solution in elliptical coordinates 
that transform the exterior of a circle in (p, 6) polar coordinates 
into the exterior of the ellipse on an x, .y-plane as follows: 

p + — )cosd;y= [p- ^\sm8 (4) 

where 7 is the mean of the ellipse semi-axes a = 7 (1 + e), b 
= 7 (1 — e) and e is the ellipse eccentricity. In further analysis, 
7 will be taken as unity and final results for any size opening 
will be obtained by simple scaling. Figure 2 illustrates families 
of p = const and 8 = const lines that form a mesh similar to 
that used for finite element computations. Elements of length 
dle, dlp in x, y coordinates along 8, p-lines can be calculated 
by differentiating (3) as follows: 

dle = pgd8; dlp = gdp 

( 2e A 1/2 

g = I l - ~ 2 COS20+^4J (5) 

The simplest incompressible velocity field in elliptical co
ordinates physically describes D'Arcy flow through porous 
media. In this case fluid velocities in 0-direction are zero and 
each flow channel between two 8 = const lines carries the same 
quantity of flow dq, i.e., vpdle = const = dq. Considering 
(4), the velocity field of subsequent interest is as follows: 

T-TT 
Fig. 2 Elliptical coordinates 

const 
v„(p,8)=——; ve(p,0) = 0. 

Pg 
(6) 

A somewhat more complex incompressible velocity field cor
responds to a linearly viscous (Newtonian) flow into an el
liptical opening. This solution can be obtained by noting a 
direct analogy between displacements of a linearly elastic in
compressible solid (Poisson's ratio 0.5) and velocities of an 
incompressible viscous fluid in the same boundary value prob
lem. The velocity field obtained using this analogy can be 
derived by extending complex variables elasticity solution (e.g., 
Love, 1927) and is as follows: 

VP(P,8) = v0
 1~^°S2d ft = Y^\; ve(p,8) = 0 (7) 

where v0 is the mean closure rate of the opening (averaging 
over the entire opening surface). 

In the subsequent analysis it will be convenient to charac
terize the response of the opening in terms of the average of 
vertical and horizontal closure rates V = l/2(yvert + vh0Tlz)

 an<^ 
in terms of the relative difference between closure rates in 
vertical and horizontal directions, i.e., x = ( iW ~ vh0TiZ)/ 
(yvert + tfhoriz)- F ° r t n e solution (7), v = v0/(l + e2), x = e. 

In connection with (7), an important question is the extent 
to which the velocity field for non-Newtonian flow is different 
from the velocity field (7) of a corresponding linear problem. 
While one cannot generally expect that both are identical, 
except for a circular opening, the incompressibility of flow 
and identical boundary conditions for linear and nonlinear 
problems do suggest that the velocity fields in both cases should 
be not far different. 

The velocity field (7) has the property that 

vp(p,0) + vp(p,ir/2) = 2vp(p,ir/4). (7) 
Several numerical solutions of nonlinear problems with integer 
exponents (M = 2, 3, 4, 5, 6) all suggest that this property of 
the velocity field of the linear problem is preserved in nonlinear 
cases. Also, detailed analysis of numerical solutions show that 
velocity fields in nonlinear cases generally contain terms of the 
order 1/p2, 1/p3 and possibly of higher orders of 1/p. Never
theless, the variation of the velocity field along the coordinate 
line 8 = T / 4 is exactly according to (7). These observations 
on numerical solutions suggest that the velocity fields for non-
Newtonian flow can be taken in the form: 

VP(P,Q) = V0 

1 /i(cos20) /2(cos20) /3(cos2fl) 
+ + 7 ^~ 3 ~̂  ' 

gP gP gP gP 

(8) 

The fact tha t / i , f2, fi are functions of cos20 follows from the 
symmetry of the opening geometry. Also, since for 8 = 7r/4 
the solution degenerates into (6), /j(0) = /2(0) = /3(0) = 0. 
In the subsequent analysis, both functions will be in the form 
/(cos20) = c,cos20, where c, are constants to be determined 
by minimizing (3) numerically. Minimization, with respect to 
v0 in (8), will be performed analytically. 
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Fig. A Calculation of average closure rates of elliptical openings of 
different eccentricities and power-law exponents 

Before proceeding, it is necessary to determine the form of 
the component v$ associated with the radial component of the 
velocity field (8). The incompressibility condition is sufficient 
to solve this problem. The required expressions for strain rates 
are as follows: 

g dp 

vP d(Pg) 

dp 

2 30 

dv„ 

Pg 

+ 1 

Pg op 
(9) 

2e„» = = P • 
i \pgj 30 \pg 

Pg 

_3 

dp \pg/ dU \pg/ 

These can be obtained from general expressions for strains 
in curvilinear coordinates given in (Love, 1927). Calculation 
of strains for a single term in (8) of the form vp = f(d)/gp" 
and substitution into the incompressibility condition epp + 
eee = 0 gives the following differential equation for ve: 

dve 
— +ve=(n-l)vr. 

The solution of this equation is as follows: 

S(p,0) = ( n - 1 ) - ^ [f(d)dd. 
gp J m 

The above solution must be a single-valued fraction of 0. 
In summary, the following incompressible velocity field will 
be used to describe flow into an elliptical opening: 

JP \gP gP gp> 

ve =v0 

1 . 
- - sin20 

\gp gp 
(10) 

Minimization Procedure 

Minimization of the functional (3) will be carried out in. 
conditions of a hydrostatic stress field at infinity (ay = p„5y)-
In this case the boundary tractions term in (3) becomesp^\BvpdB 
= 2-Rpmv0, This can be demonstrated by noting that the element 
of length in elliptical coordinates is dB = gpdB and 0-related 
terms in (10) result in zero contributions, since integration with 
respect to 0 is between 0 and 2-K. Further, considering that e ef 

is linear with respect to v0, the functional (3) can be written 
in the form: 

D-

, 2 T 

_P* 

2ir J0 Jo 
lPgdpd6, (11) 

where 1ej is the effective strain rate computed with strain rates 
(9) for the velocity field (10) with v0 taken as unity. 

The minimum of (11), with respect to v0, can be obtained 
by equating to zero the derivative of D with respect to v0 to 
obtain: 

vn = eJr'^ (12) 

At the point of minimum with respect to v0, (11) becomes 
M 

- 2ir ——- VoPc with v0 given by the above expression. Further 
M+ 1 

minimization of the functional D with respect to constants cu 

c2, c3 is equivalent to minimizing / i n the form (11). This can 
only be done numerically. 

It is worth noting that for a circular opening (e = 0, C\ = 
c2 = c3 = 0), I in the form (11) can be calculated analytically 
to obtain M{2/\[l)yM/sfi. If / i s normalized by this constant 
to introduce new I0 that is unity for a circular, the solution 
(12) can be rewritten as follows: 

V3 V^ Po 
MI„ Oc 

(13) 

Expression (14) becomes an exact solution for a closure rate 
of a circular opening of a unit radius when e = 0 and /„ = 
1. The function I0(M, e, cu c2, c3) remains close to unity for 
nonzero ellipse eccentricities and for fixed M, e is very insen
sitive to variation of the remaining arguments cu c2, c3, typ
ically changing within one percent within a physically 
reasonable range of values. Because of this feature, minimi
zation of I0 poses considerable numerical difficulties and has 
been carried out using the conjugate gradient method with 
linear search based on a parabolic approximation in the search 
direction and combined with logarithmic gold section and skew 
testing. The integral in (11) has been evaluated numerically 
using Gauss-Legendre quadratures after the transformation Z 
= 1/p that give finite integration limits for z. Figure 3 presents 
a typical variation of I0 in the vicinity of its minimum (for e 
= 1/3 and M = 3). 
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Results 
The final result is convenient to present in the form similar 

to (13), but written for the average of vertical and horizontal 
closure rates v, since this characteristic can be easily determined 
in practical situations of closure measurements. The solution 
for V can be presented in a simple form by redefining I0 in 
(13) as follows: 

e-/f^&r (14) _ -VI 
M oc 

where the form of / (e, M) is shown in Fig. 4 for a range of 
ellipse eccentricities and power-law exponents. Note that (14) 
is presented for an ellipse of an arbitrary mean radius f. 

In practical situations of in-situ closure measurements, hor
izontal (wall-to-wall) and vertical (roof-to-floor) closure rates 
frequently become available. The relative difference between 
vertical and horizontal closure rates x = (v„ - vh)/(vv + Vh) 
is independent on creep parameters e 0, a0 and is presented for 
different ellipse eccentricities and power-law exponents in Fig. 
5. The parameter x was calculated on the basis of coefficients 
Ci, c2, c3 obtained by minimization. In-situ measurements of 
X can be used for determination of the power-law exponent 

while v, calculated according to (14) using / (e, M) from Fig. 
5, can be used for determination of e0. 

Figures 6 and 7 illustrate comparison of steady-state FEM 
solutions with the solution obtained by the described method. 
It should be mentioned that for high values of M, very large 
FEM meshes are required to achieve an accurate solution. This 
is because of a slow decay of shear stresses away from the 
opening (of the order of l /p2 / M . To account for the effect of 
finite boundaries in FEM calculations, the comparison with 
FEM runs has been made with the solution of the form: 

<*» 1 ^ 05) 
_ _ V 3 . -T 

M a0[\-(f/r)"M\ 

. where r denotes the position of the boundary where pressure 
pr is applied. The above formula is equivalent to (14) for r = 
oo. For e = 0 (/ = 1), it is identical to the solution for the 
closure rate of a thick cylinder with inner radius ? and outer 
radius r. It is not difficult to show that the solution technique 
presented in the paper leads to the solution of the above form 
for a problem of a thick elliptical cylinder. 

To appreciate the effects of finite boundaries, it is worth 
giving a numerical example: Presence of a boundary 200 
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mean ellipse radii away from the opening increases the closure 
rate by a factor 7.2 compared to the infinite media case for 
the power-law exponent of 6. The discrepancy between infinite 
media and finite media solutions is still a factor of 2 when the 
boundary is 500 mean radii away from the opening. 

The values of coefficients cu c2, c3, controlling the shape of 
the steady-state velocity field around elliptical openings, are 
illustrated in Fig. 8. It should be noted that for the power-law 
exponents greater than 3, the dominant terms in the velocity 
field are controlled by coefficients c2, c3, while for exponents 
close to unity ct is dominant. 

Closing Remarks 
The described technique for obtaining steady-state solutions 

for closure rates of an elliptical opening in nonlinearly viscous 
materials, like salt rock, is rather general, and can be used for 
more complex constitutive models for steady-state creep. The 
accuracy of the method for the power creep law was assessed 
by comparing solutions obtained by minimizing functional (3) 
with results of FEM computations. 

An interesting qualitative feature of the obtained solution 
is that mean closure rate of an elliptical opening is very close 
to a closure of an equivalent circular opening of a mean radius. 

Also, it is interesting to note that vertical and horizontal closure 
rates differ little for a practical range of power-law exponents 
(M = 3 and higher). The higher the exponent, the less is the 
difference between horizontal and vertical closure rates (Fig. 
5). 
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Downstream Development of 
Viscous Fluid Wakes Behind 
Rod-Like Bodies 

A new theory of viscous fluid wakes behind rod-like bodies is presented and is used 
to study the onset and downstream development of vortex street flows. Analytical 
solutions are obtained for the evolution of wave number, mean centerline velocity, 
vortex velocity, and vortex "spacing ratio" as a function of downstream distance 
in a laminar vortex street. A simple criterion for the onset of oscillations in the far 
wake, which slightly precede vortex street initiation, is also obtained. All of these 
solutions account for the action of viscous diffusion in spreading the street, and 
they are found to compare quite well with available experimental results. 

1 Introduction 
A great many different models of vortex street wakes can 

be found in the literature, e.g., von Karman (1911), Hooker 
(1936), Kida (1982), Saffman and Schatzman (1982a,b). These 
studies employ highly idealized models which are intended to 
mimic the nature of the actual flow patterns within the wake. 
Most existing analytical studies focus on obtaining a criterion 
for vortex street stability, which is usually expressed in terms 
of the vortex "spacing ratio," and do not provide predictions 
for other pertinent features of the street, such as wave number 
and mean centerline velocity, or for the onset of instability in 
initially steady wakes. Also, most existing studies assume in-
viscid flow and do not account for the action of viscous dif
fusion in spreading the street. 

In this paper a new theory of fluid wakes behind rod-like 
bodies is presented which includes viscous effects, and this 
theory is then used to obtain simple analytical solutions for 
the previously mentioned features of vortex street flows which 
are not provided by existing models. A criterion for stability 
of viscous vortex streets is also obtained, and although con
siderably different in form than previous such criterions, it is 
found to agree well with experimental data and to yield nu
merical results for spacing ratio immediately behind the body 
that are quite close to von Karman's classic solution. 

The theory for wake flows in this paper involves a description 
of the wake in terms of certain characteristic features of the 
flow, along with development of equations governing the ev
olution of these features with downstream distance. The gen
eral theory is valid throughout all regions of wakes formed 
behind rod-like bodies of otherwise arbitrary shape, both be
fore and after the onset of vortex shedding from the body; 
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however, specific solutions are obtained only for particular 
regions and regimes of the wake flow. The wake is assumed 
to be both laminar and incompressible, and the flow field is 
assumed to be unbounded in directions normal to the wake. 

The theory is patterned after the directed fluid sheet model 
of Green and Naghdi (1976), which was originally applied to 
obtain wave equations for inviscid water waves in fluid of 
small depth. More general theories using directed fluid sheet 
models have been applied to viscous flow in channels (Green 
and Naghdi, 1984) and to inviscid waves in waters of finite 
and infinite depths (Green and Naghdi, 1986, 1987). In the 
present paper, the wake behind a rod-like body is modeled as 
a surface which is endowed with some number of additional 
kinematical variables call "directors" (i.e., a directed surface), 
and the rod-like body is further modeled as a curve of dis
continuity on the directed surface. These additional variables, 
or their rates, may be identified with characteristic features of 
the wake flow. It is also noted that the present study somewhat 
extends the scope of development of directed fluid sheet the
ories: It is the first such theory (1) to consider a flow which 
does not possess material surface conditions along the lateral 
boundaries and (2) to utilize weighting functions that are func
tions of time and space-dependent variables in addition to the 
coordinate normal to the directed surface. Theories based on 
directed fluid sheet models may be constructed such that in-
variance conditions are identically satisfied and such that jump 
conditions across curves of discontinuity are immediately ob
tained from the governing equations. In particular, the jump 
condition in momentum across the rod is found to provide an 
ideal vehicle by which to relate features of the flow in the wake 
to forces acting on the body. 

An alternative derivation of the wake equations using ap
proximations from the usual three-dimensional theory is out
lined in the Appendix. In this alternative derivation, governing 
equations for the wake are obtained by certain weighted av
erages of the full Navier-Stokes equations, together with a 
plausible representation for velocity variation across the wake. 
These integrated momentum equations include the effects of 
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Fig. 1 Schematic diagram of the wake behind a rod-like body 

viscous diffusion and pressure changes within the wake. Fur
ther, the independent variables that characterize the wake are 
not allowed to vary completely independently, but are instead 
constrained such that the incompressibility condition is sat
isfied identically at every point in the flow field. This alternative 
derivation is used to motivate certain constraints and consti
tutive equations in the directed fluid sheet theory. It is noted, 
however, that this alternative derivation is not unique and that 
relatively few such approximate formulations from the three-
dimensional theory can be represented in terms of a directed 
fluid sheet model. Some further details regarding restrictions 
imposed by the directed fluid sheet model on the weighting 
functions in the alternative derivation of the theory are given 
by Marshall (1987). 

The theoretical development is given mainly in Section 2, 
including a derivation of the governing equations for the wake 
flow. Section 3 deals with specification of certain boundary 
conditions for the independent variables of the theory by con
sidering the effect of forces acting on the rod. Following these 
preliminaries, the theory is used in various applications in 
Section 4, including comparison with previous results for steady 
wakes, prediction of the onset of instability in the far wake, 
and prediction of the evolution of centerline velocity, wave 
number, and "spacing ratio" in a fully developed vortex street. 

2 Derivation of the Wake Equations 
The theory in the present paper deals with fluid flow in 

incompressible laminar viscous wakes behind rod-like bodies. 
For simplicity, the velocity v* in the three-dimensional theory 
is allowed to approach a uniform, prescribed value c = c(?) at 
distances infinitely above and infinitely below the plane of the 
wake. A rod-like body /3r is considered to be any object im
mersed in the flow which is considerably longer in a direction 
normal to c than it is in a direction parallel to c. The axis of 
the body is identified with the volumetric centerlme of &., and 
the body need not necessarily be symmetric about the axis. 
The middle surface 5 of the wake is chosen to be parallel to c 
and to pass through the rod axis, or through the mean location 
of the rod axis if the rod is in motion. 

With reference to a fixed Cartesian coordinate system 
Xj= (x,y,z) and associated base vectors e,-, let e2 be parallel to 
the direction of the axis of the body and let e3 be normal to 
the velocity vector c at infinity. The location of a typical fluid 
particle in the current configuration is denoted by x = xfij. A 
schematic diagram showing a cross-section of the wake in the 
x-z plane is provided in Fig. 1. The usual summation conven: 

tion over repeated tensor indices, such that lower case Latin 
indices take on the values (1,2,3) and Greek indices take on 
the values (1,2), is assumed throughout the paper. Also, a 
superscript star is sometimes used to designate a variable as 
pertaining to the general three-dimensional flow field rather 
than to a particular surface in the flow. 

The wake is modeled by a surface s which is endowed with 
three directors dN=dN(xa,t), N=l,2,3, and their associated 

velocities wN=w^(xa,0. The location and ordinary velocity of 
material points on s are designated by 

r = do = x«e„ + 5e3, v = w0(*a,/). (1) 
where d is a prescribed constant. For sufficiently large values 
of d, the velocity v = xclea of material points on the directed 
surface approaches the uniform value c. The ordinary and 
director velocities of the surface 5 may thus be written in 
component form as 

v = caea, v/i = wlaea + w13e3, 

w2 = w2aea + w23e3, w3 = wiaea + w33e3. (2) 

The first index of quantities associated with the directors (such 
as dN, W/v) indicates the director number and should not be 
confused with tensor indices. At times, the director index N= 0 
attached to a director variable is used to refer to the ordinary 
kinematic surface variables of s. 

In addition to the variables associated with the directors, 
we also admit a function (=((xa,t) called the "decay coeffi
cient" and defined such that i>Q for all xa and t. It is clear 
from the representation (Al) for the velocity field v* of the 
three-dimensional theory that t is related to the inverse of the 
"wake width." In order to facilitate understanding of these 
basic variables a brief summary of these variables, along with 
their physical interpretations with respect to the three-dimen
sional flow illustrated in Fig. 1, is given below: 

ca = ca(t) = prescribed fluid velocity as z—±oo; 
^\a-w\aixa^) = streamwise velocity at the middle surface 

minus the velocity at infinity; 
Wi3 = wn(xa,t) = cross-section velocity at the middle surface; 
w2i = w2i(xa,t) = part of the streamwise velocity which is an

tisymmetric about the middle surface; 
W2i = w2i(xa,t) = part of the cross-stream velocity which is 

symmetric about the middle surface; 
w33 = w33(x0,,^) = part of the cross-stream velocity which is 

antisymmetric about the middle surface and 
vanishes on this surface; 

(= ?{xa,t) = coefficient of exponential velocity decay in 
a direction normal to the middle surface. 

For simplicity, the components w3a if w3 and w22 of w2, which 
do not appear in the velocity representation (Al), are set iden
tically equal to zero. 

Now let <P be an arbitrary part of the surface s bounded by 
a closed curve whose outward unit normal on J is v = vaea. 
Guided in part by the derivation from the three-dimensional 
theory in the Appendix and using a fixed surface area on s, 
an Eulerian form for the balance of ordinary (TV = 0) and di
rector (N= 1,2,3) momentum is postulated as 

{
K r. K 

^pyMN^Mda+ ^pv/M\MN-i>ds <PM=I 3 < P M = I 

r K 

py«MaMNda= (peN-kN)da+ m^s (3) 
6>M=l J<? JSS> 

for N=0,l,...,K, where K=3 in the present theory. The bal
ance law in equation (3) is similar to but somewhat more general 
than that proposed by Green and Naghdi (1986). A complete 
set of balance laws for the directed surface must also include 
balance laws for mass and moment of momentum. These equa
tions, however, are identically satisfied in the present context 
using the constitutive equations and incompressibility con
straint to be introduced presently (see Marshall, 1987), and so 
the mass and moment of momentum equations are not listed 
here. 

The scalar fields yMN and aMN and the vector field vMW in 
(3) are defined in terms of the velocity fields wN and the ge
ometry of the three-dimensional wake flow in (A9) of the 
Appendix. Also, m0 is the force vector, mN (N= 1,2,3) are the 
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director force vectors at the curve d(P, <o is the assigned force 
vector, iN are the director assigned force vectors, and kN 

(N= 1,2,3) are the internal director forces (such that k0 = o). 
By usual procedures, from (3) we obtain 

m ^ M j v ^ (7V=0,1,2,3). (4) 

With use of the two-dimensional analogue of the divergence 
theorem, as well as the mass balance law for the directed surface 
and (4) whenever relevant, the local form of (3) is obtained as 

— ( YjpyMNyVM) +~d~\ S / 0 W M V M W ' e< 

2 P^MOMN = pin ~ kN + MA (5) 

for N=0,l,...,K. In (5) and in the remainder of this paper, 
the notation ( )_„ or ( )it is sometimes used to designate partial 
differentiation with respect to xa or /, respectively. It is often 
convenient to combine the inertia terms on the left-hand side 
of (5) together into a single term p\N, defined in (A10), to 
write the director momentum equation in the more concise 
form 

p\N=p2N-kN+MNa_a. (6) 
It is argued in the Appendix that the condition of incom-

pressibility in the three-dimensional theory imposes certain 
constraints on the director velocities, namely 

ljW2i+fwi3 = 0, 2t?W13 = ftf33 + W2 l , l . 

The response functions kN and MNa in (6) are written as the 
sum of indeterminate (or constraint) parts kN and MNa and 
determinate parts kN and Mjva. With the usual assumption that 
the constraints (7) are workless, forms for the constraint re
sponses may be obtained as 

fnOaP,l3 = ra0,IS> w03/3,(3 = r33,3> ~~ ̂ la + m\u&S =Pl,a ~PlKa> 

-~kn + mnM=p3, - ^ 2 3 + «230,/3= -3#>i (8) 

where ra$, r33, pu p2 and p3 are Lagrange multipliers and mNia 
is defined by 

mNia = MNa-^. (9) 
It is shown in the Appendix that these Lagrange multipliers 
may be identified with various weighted integrals of the pres
sure defect in the wake, as given by (A12), and furthermore, 
that these variables must satisfy 

Pi = to/2, rj3,3 = 0. (10) 
Using (8)-(10), the functionspu p2, and/?3 may be eliminated 

in (6) to obtain the momentum equations for the wake flow 
as 

pYoa = pVoa + fnOat3,0 + ro,pi0, (11) 

pY03 = ptoi + m03l3,l3, (12) 

n/l% 

- UlB + ̂ ( W ) . « + U l a ^ + ̂ («23^/^).„ • (13) 

The five velocity components wla, wi3, w23, and w33 can be 
determined from the constraints (7) and one of (13) with a = 2, 
the remaining velocity component w2\ can be determined from 
(12) and the decay coefficient I can be determined from the 
other of (13) with a= 1. The two equations (11) are used to 
determine rag£, which is necessary in order to estimate the 
forces on the rod in Section 3. 

For two-dimensional flow in the x-z plane, w23 can be elim
inated in the constraints (7)1|2 and the resulting equation in
tegrated to yield 

wn=ec (14) 
where the constant C is related to the drag on the rod (see 
Section 3). Also, in what follows it is convenient to define two 
additional functions of the variables w2l and I as follows: 

w=w21/e,Q = w2i/f. (15) 
From the constraints (7)3,4 and the definition (15)i, the velocity 
w13 is found to satisfy the relation 

Wi3 = wx/2. (16) 
It should also be noted that in the special case of symmetric 
wakes for which ve21 = vf = 0 for all x and t, equation (12) is 
satisfied identically. 

Based on the discussion in the Appendix, constitutive equa
tions for the response coefficients YN, kN, and mN as functions 
of i and w are obtained and are recorded here for the special 
case of two-dimensional flow in the x-z plane as follows: 

Yoi = V r̂ j C, + Y (A*2),* + ̂ T cH-x 

i-(i U ex V2 , Yn=^\-zCl-c
A-uc^+-i-cHx 

(2 2 I 8 

til 

3V2„ , V2\ 
32 ' 16 

Y23=^)—ACd 
lr 3 „ l 

4 - ' r 4 f 
tXl + llcH^ 

-cu^ 
15 

CU ('.* 
3V2^f . 
32 

3V2 .(fiX)2 3>/2 3V2. 2 3V2 <?, 
+ -—-Cr \ +——-wwxx—77-(w,) - —— wwx-32 t2 64 •xx 64 v ,x 32 ' ( 

15V2 ,«U)2 15V2 , 0 
+ l28-^^- l2TM 'TJ : (17) 

#01 = ^03 = 0, 

/cn=y/wti) -ICf-C-
,«U) 

r- f 3 _ 9 IJ^ 45 ^ J 3 ) 

k2i=^]-2ax--c-f+-c^- (18) 

^on = 0, w 0 3 i = - V ^ M ( y ] > rftm= -2\fviiC-jt 
\ / ,xx 

r f 3 ^ 3 („ is j y 2 ] 
m231=Vir/i - - a - - C y + — C - ^ - , (19) 

where U( = c{) is used as the more common designation of the 
"free stream" velocity. 

3 Effects of Forces Acting on the Rod 
The forces acting on the rod influence various structural 

aspects of the rod's wake. We recall at this time the model for 
the wake described in Section 1 in which the rod-like body is 
regarded as a curve of discontinuity on the directed surface s 
which models the wake such that the outward unit normal of 
this curve on the surface s is simply e^ It is assumed, for 
simplicity in this section, that the rod is fixed in space and that 
the flow is two-dimensional in the x-z plane. 

From the global form of the ordinary (N= 0) momentum 
equation (3), the jump in momentum across the rod is obtained 
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using arguments similar to those of Green and Naghdi (1987) 
as 

F = - S n ,pwMvMo-ei-m0 
(20) 

The notation in (20) is defined by fl/Q = / + —f for any quantity 
/ . The force F acting on the rod per unit length by the fluid 
is identified in (20) with the rate of supply - S0 of ordinary 
(N= 0) momentum to the curve of discontinuity from the fluid. 

If we suppose the curve of discontinuity which models the 
rod to be located along the line x=0 on the surface s, then 
using (A5), (A6), (A9),and (8), we find that within the wake 
(i.e., for x>0) 

pV^/, r rV2 \ V2TT 
P^w^i=-j-lU+ — Ce\,py2o-ei = —^-pw, 

PVTT (TTl V2 

mo = Moi = /no;ie, + /w0,1e, = /-1,e1+ — / * l - l e3. (21) 

\ I ,xx 
Upstream of the body (i.e., for x<0) , the velocity in three-
dimensional theory is assumed to be given simply by v* = caea, 
so that 

Vio = V2o = v3o = m0 = o. (22) 
Using (20)-(22), expressions for drag and lift forces acting on 
a unit length of the rod are obtained as 

D=F{ = - V ^ p c (u+ —• a 
2* 

phv +rn, 

i-«-er(7)("+f°')+f'(7 (23) 

where all variables in (23) are evaluated at x = 0 + . 
For two-dimensional flow in the x-z plane, an equation for 

the Lagrange multiplier r n can be obtained from (11) using 
the constitutive equations (17)i and (19)! with 4 = o. Integrating 
this equation over x and requiring the integrated pressure dif
ference in (A12)! to approach zero as x— oo, we obtain a so
lution for ru immediately behind the body as 

/2TT V _ , 1 
2 rn\x=o+=—z-Pe\c? + ~;w' (24) 

Using (23)-(24), the drag and lift forces per unit length on the 
rod are obtained as 

V I 
(25) 

The results (25) can be used to obtain a value for the constant 
C and an upstream initial condition for the variable w. 

4 Applications 
The theory developed in Sections 2-3 is applied in the present 

section to obtain simple analytical solutions to several fun
damental problems pertaining to viscous fluid wakes. As is 
evident from the momentum equations (11)-(13) and the con
stitutive equations (17)—(19) for YN, kN and mN, the governing 
equations for the wake are in general extremely difficult to 
solve. However, in certain regions of the wake and under 
certain simplifying assumptions it is possible to obtain ap
proximate solutions of these equations. For simplicity, all of 
the specific solutions given in this section are developed for 
wakes behind rigid, fixed cylinders of infinite length. The 

"trailing edge" of the cylinder is assumed to correspond with 
the line x = 0 o n the surface 5, and the ordinary and director 
applied body forces lN are set equal to zero. Additionally, the 
velocity c at infinity is assumed to be orthogonal to the cyl
inder's axis, so that we may write 

c = Uei, (26) 

where U( = Cj) is assumed to be a constant. Because all of the 
problems discussed in this section are concerned with two-
dimensional flow in the x-z plane, the middle surface 5 is 
referred to as the "centerline." 

When obtaining specific solutions for fluid flow problems, 
it is often illuminating to express the results as functions of 
certain nondimensional parameters. In this section, various 
such parameters will be used which, for convenience, are de
fined collectively as follows: 

nondimensional downstream distance = x' =x/d, 
Reynolds number = R= pUd/jx, 
nondimensional streamwise centerline velocity 

= u = (U+wn)/U, 
drag coefficient = Cd=D/'ApU2d, 
lift coefficient = CL = amp(L)/,/2pU2d, 
Strouhal number = S = ud/2-irU, 
nondimensional wave number = 8 = kd. (27) 

In (27), d is the "projected" diameter of the cylinder and 
o)/2ir and k are the frequency and wave number, respectively, 
of the vortex street. The lift coefficient is proportional in (27)5 

to the amplitude of the oscillating lift force acting on the 
cylinder per unit length. For vortex street wakes, the value of 
u is based on the mean value of wn. Using (25), and (27)4, the 
coefficient Cis found to be related to the drag coefficient such 
that 

CD= -2V7T—. 
Ud 

(28) 

The prime attached to x in (27)! may at times be dropped if 
the nondimensional character of x is clear. 

4.1 Middle and Far Regions of Steady Symmetric 
Wakes. The middle and far regions of the wake (occupying 
a region x 0<x<oo) are characterized by the condition 
0 < e « 1, where e is a parameter of smallness defined by 

max 
:0<x<oo 

(29) 

To leading order in e, the momentum equation (13) with a = 1 
and the expressions (17)-(19) can be combined to yield an 
equation for ( for symmetric wakes (for which w = 0 and (12) 
is satisfied identically) of the form 

•U-f + 
i 

V2 
« * 

1\s. 
(30) 

Solving for I in (30) and using the results (14) and (28) and 
the definitions (27)^4, a solution for the centerline velocity u 
in the middle and far regions of the wake is obtained as 

« = 1 -
V2 chR 
647T 2x + Ai 

1 + 
CDR 

(3D 

where the prime on x in (27)i has been dropped. As x— °°, the 
centerline velocity in (31) and the solution for i from (30) 
become 

4V^W ' 2\x) •1 (32) 

where (32) i is identical (in slightly different notation) to the 
far wake solution recorded by Chang (1961) when the latter 
is evaluated along the centerline. 

For purposes of illustration, we assume that a stagnation 
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Fig. 2 Centerline velocity prediction in the middle and far regions of 
steady symmetrical wakes behind cylinders of arbitrary cross-sectional 
shape, as predicted from equation (31) and equation (32), and plotted 
with a solid and dotted line, respectively 

point exists at x = x0 such that u(x0) = 0 and use that point as 
a boundary condition to determine the constant Ax in (31). 
The resulting solution for u is shown in Fig. 2 as a function 
of the nondimensional parameter grouping (x-x0)/dRC2

D, 
where for clarity the dimensional distance x is again used 
in Fig. 2. The far wake solution (32) is seen to lie extremely 
close to the more general solution (31) for values of x such 
that (x-xo)/dRC2

D>0.1. 

4.2 Far Region of Steady Antisymmetric Wakes. For an
tisymmetric wakes, the body is assumed to be subject only to 
lift and not to drag, so that from (28) the constant C must 
vanish. In the far region of an antisymmetric wake, the gov
erning equations (12)-(13), along with (17)-(19), reduce to 

Ax 2/*„2 1 

-"?-?'• i'-'Ui-i' 
1 

(33) 

Equation (33)t is obtained by first evaluating the appropriate 
equation for the far region (i.e., letting e—0) and then re
stricting the flow to the antisymmetric case by letting C—-0. 
Integrating (33)i gives a solution for t which is the same as 
the far wake solution (32)2 obtained for steady symmetric wakes 
in Subsection 4.1. Since w is assumed to remain bounded as 
x— oo, a solution for w from (33)2 is given by 

w = A2?=—L(^7n\L*, (34) 
V T 

where the coefficient A2 is chosen such that the resulting so
lution for velocity is identical to the asymptotic far wake so
lution of Chang (1961) for the antisymmetric case. It is not 
possible in this case to evaluate A2 from the expression (25)2 
for the lift since the solution (34) does not remain valid as x 
approaches zero. 

4.3 Near Region of Steady Symmetric Wakes. For small 
values of x in a symmetric wake at sufficiently high values of 
the Reynolds number, the effect of viscosity in the near wake 
region is assumed to be negligible. (This assumption is also 
made in many previous models of the flow in the near wake 
region, as discussed by Wu (1972).) Taking the limit /*—0, the 
momentum equation (13) together with (17)-(19) and with 
w = 0 becomes 

•x 8 •" 4 I f 
V2 

5(Q2 

t 40 
= 0. (35) 

If we divide (35) by &, integrate over x, multiply the resulting 
equation by an integrating factor [ - 8?,X(U+ yJlCUtf/t), in
tegrate over x again, and then write the result in terms of u 

after using (14), (27)i_4 and (28), we obtain an equation for 
the streamwise centerline velocity of the form 

< ^ ^^-u)X(uX + h(u) = 0, (36) 
4TT 

where h is defined by 

h(u) = (l -u)l0A4+ (l-u)l0\ 

I - ^ U - « 

0-«)7 

xl4 + ̂ 2(l-u) + 8Ai(l~u)2}du. (37) 
AT, and A4 are constants of integration, and the prime on x in 
(27)! is again dropped. The solution for u from (36) must satisfy 
a boundary condition at the trailing edge of the cylinder of 
the form 

• • \ - a , (38) 

where a = 1 for an impermeable cylinder and a = 0 for a per
fectly permeable cylinder. 

For appropriate values of the constants A^ and A$, the so
lution for u from (36) has the form of a solitary wave behind 
the cylinder. The minimum value of u in the near wake region 
is obtained by setting ux = 0 in (36) and evaluating the lowest 
positive real-valued root of the function h = h(u) in (37). The 
constants A$ and As, must be specified as functions of other 
constants characterizing the wake, such as R, CD and possibly 
also the shape of the body; unfortunately, however, available 
experimental data for the near wake region is not sufficient to 
determine reliable expressions for these constants. The results 
do, though, indicate that the theory yields a form for u in the 
near wake which is consistent with the common observation 
of a pair of recirculating eddies. 

4.4 Onset of Instability in the Far Wake. The onset of 
instability in the far region of an initially steady wake is studied 
here by considering the growth or decay of a perturbation in 
the variable fl, which is related to the antisymmetric streamwise 
velocity component w2i by (15)2, of the form 

Q=f(x,t)cos(kx-wt + <j>). (39) 
In (39),/is the amplitude of oscillation, kis the wave number, 
to is the frequency, and 4> is the phase angle. In the present 
instability analysis, k, co, and <f> are all assumed to be prescribed 
constants. Using the velocity representation (Al), an oscillation 
of the form (39) for appropriate values of/ is found to have 
the form of two staggered rows of vortices when viewed in the 
three-dimensional flow field (see also Fig. 6). An equation 
governing the evolution of 0 is obtained from (12), (15)2, and 
(17)-(19), after integrating over x, as 

V2 :/*0fJ (40) 

A solution for the oscillation amplitude / is obtained by sub
stituting (39) into (40), using the steady wake solution (32)2 
for I (which is valid for sufficiently small j), and solving the 
resulting system of differential equations to get 

f(x,t)=Asexp\ ^ — 
4 M J0 ) 

•exp 
P 4/iV 2 

V2. 
+ T a - * (41) 

where As is a constant of integration. 
A "characteristic" coordinate xc = x-wt/k is now intro

duced such that the wave has zero propagation speed with 
respect to the characteristic coordinate system. The derivative 
of/ in (41), with respect to t, keeping xc fixed and evaluated 
at xc = 0, i.e., the rate of change of wave amplitude as we 
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follow a single crest, is obtained from (41) after writing 
f=f(x,t) =f(xc,t) as follows: 

2 ^ 
fdt xc=0 

-J^L-Uk-fka 

V2 
xCL 

• ^ ( " 
pUx V2 pxCt 

M /* 
a x . (42) 

The wake is unstable, such that a wave crest grows with time 
as it travels in the x-direction, whenever the time derivative of 
/ in (42) is positive. Using the nondimensional variables (27) 
and the solution (32)2 for I, the result (42) yields the following 
criterion for onset of oscillations in the far wake: 

, 4 r i 1 1 _ n— Q4x „ „ ,/2 
l>-r+2R-x

+16^c^+4(2*) 
S(2irS8-l)2 

,3„l/2 C^R 
sfx, 

(43) 

where the prime on x in (27)] is again dropped. 
The drag coefficient CD can be expressed as a function of 

R and the shape of the cylinder, and the parameters S and 8 
specify characteristics of the unstable waves. In general, the 
determination of the region of instability in the far wake entails 
finding the range of x for which, at given values of R and S, 
a value of 6 can be found such that (43) is satisfied. For 
instance, as /?—0 the term \/2Rx-~<x for any finite x, and so 
the wake is stable for all waves. As x— °°, the last two terms 
on the right-hand side of (43) approach positive infinity, so 
that the wake always becomes stable for sufficiently large x. 
As R — oo, (43) becomes 1 > A-KS/8, which implies that the wake 
is always unstable in this limit since 8 can always be chosen 
to satisfy the criterion. 

The region of instability depends on the relationship assumed 
between CD and R, and hence on the shape of the cylinder. 
For flow past a circular cylinder with Reynolds number in the 
range OA<R< 1000, experimental values of the drag coeffi
cient are well fit by the empirical expression (see data presented 
by Fleischmann and Sallet, 1981) 

C D =10.0 /? _ 3 / 4 + 0.95. (44) 

Using a Newton-Raphson iteration method to determine x from 
(43), with the use of (44), the greatest values of x for which 
a value of 8 can be found such that the wake is marginally 
stable for specified values of R and S, are plotted in Fig. 3. 

Experimental evidence usually indicates the onset of vortex 
shedding from stationary circular cylinders at about i? = 41, 
although oscillations in the far wake are commonly observed 
somewhat before this value. Under certain circumstances, such 
as for a slightly vibrating cylinder, the onset of vortex shedding 
has been observed for Reynolds numbers as high as R = 48 and 
as low as R = 20 (see the review by Fleischmann and Sallet, 
1981). The lowest values of S observed for wakes behind fixed 
circular cylinders lie between S=0.10 and 5=0.15, where S 
increases with increasing R until it levels off at about S = 0.21. 
Also, most vortex streets (even for low values of R) are ob
served to exhibit oscillations in the velocity field for distances 
of 70 to 100 diameters downstream of the cylinder. 

For an instability region of x/d<80 and a Strouhal number 
of S=0.13, the results in Fig. 3 predict onset of instability in 
the far wake at about R = 30, and the shedding of vortices 
from the near wake would be expected to occur at somewhat 
greater values of R. This result agrees well with the observations 
of Taneda (1956), who found the onset of small oscillations 
in the far wake at R = 30 while the near wake was still observed 
to be completely stable. It is recalled that the effects of the 
near and middle regions are neglected in the calculations lead
ing to Fig. 3 and will tend to stabilize the wake for sufficiently 
small values of x and R. The results in Fig. 3 also indicate that 
if the Strouhal number is slightly reduced (for instance, by 
vibrating the cylinder slightly at appropriate frequencies), the 
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Fig. 3 Curves of marginal stability in the far region of the wake behind 
a circular cylinder, as predicted from equation (43) 

Reynolds number at the onset of wake instability is also re
duced. For instance, if S = 0.10 and again for an instability 
region of x/c?<80, Fig. 3 indicates that the wake will become 
unstable at R = 20. 

4.5 Fully Developed Vortex Streets. A fully developed 
vortex street is considered here to be a periodic flow pattern 
for which the amplitude of oscillation of land 0 at any location 
x behind the rod is constant in time. In addition to the smallness 
measure e in (29), two parameters a and 8 are defined by 

o-= max \Q?/U\,8= max \kjk2\, (45) 
Xn<X<&> Xn<X<& 

where Q is again assumed to be of the form (39) with co and 
<t> constant but k = k (x,t). An approximate solution is obtained 
for the vortex street in which it is assumed that e « 1, 8 « 1 
and that both e and 5 are smaller than or of the same order 
as a. These approximations correspond physically to assuming 
that the downstream variation of wave number and wake 
"width" (evaluated over a distance corresponding either to 
the wavelength or the wake "width," respectively), are small 
compared to their local values, and that both of these quan
tities, when nondimensionalized by their local values, are 
smaller than or of the same order as the amplitude of the 
antisymmetric streamwise velocity (which is responsible for 
driving the staggered vortex motion) divided by the free stream 
velocity. Put another way, it is consistently assumed that 
changes in the flow pattern due to viscous effects occur over 
a much longer downstream distance than the wavelength of 
the vortex street. We do not, however, assume here that 
a « l , which would be equivalent to restricting the analysis 
to very weak vortex streets. 

The leading order equations in e for U and I, obtained from 
(12)-(19), are given by (40) and 

Sl
Ci_c^-uci-f+^c2ix+^e2Q2ex 

(2 • l I 8 32 
yfl, \[2 V2 

+ "77" t OO,* + ~7T ™",Kt— "77" *",x",x* 
16 64 64 

—IJSLj-^lJXl. J =2/tCP. (46) 

Substituting the form (39) into (40) and using the asymptotic 
simplifications stated in the previous paragraph, a solution for 
Q is obtained as 

Q =Acos(kx- cor + 4>)exp 
p(w - yUk)x 

2/j.k 

xexp 
(pyU(w-yUk) p(o-yUk)2_nk2) ' 

I ink + ^ixk2
 P y 

(47) 

where A is a constant of integration, 7 = Y(X,0 is a parameter 
defined by 

7 = 1 - ^ ( 1 - " ) . (48) 
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and u is the nondimensional mean streamwise centerline ve
locity defined in (27)3. For a fully developed vortex street the 
amplitude of 0 must be constant at a given value of x, so (47) 
implies that 

pyU(w -yUk) p(u-yUky tik2 

= 0. (49) 
2\ik ' Afik2 p 

Solving (49) for k, using the nondimensional variables (27) 
and denoting the resulting nondimensional wave number for 
a stable vortex street by 8S, we obtain 

64irS2\U2Vn J*S 
y 

-^yR]-l + 1 + 
RV 

(50) 

The result (50) thus provides a criterion for stability of a vortex 
street which is valid for all downstream distances. 

The variable 1= t(x,t) in (46) is written as the sum of a time-
averaged mean part ~t=~l(x) and an oscillating part I' =t'(x,t), 
where we assume that V «'l Substituting (47) into (46), av
eraging the resulting equation over one period of oscillation 
while neglecting higher-order terms in ("/fand using (14), (28) 
and the nondimensional variables (27), we obtain an equation 
for the downstream evolution of u as 

RCh 

4-7T 

V2 N -sJlirA2 

i - « ) 

+ - ^ - ( 1 - M ) \e 

where the parameter a in (51) is defined by 

1 (2-wS \ IT2 S2 

= (1- M ) 3 , (51) 

(52) 

Consistent with the previously stated asymptotic assumptions 
we note that a « 6S for the range of S and R found in vortex 
streets. The constant A in (51) and (28) may be evaluated from 
the result (25)2 for lift and the boundary condition (38) on u. 
Substituting (47) into (25)2 and again using the previously stated 
asymptotic simplifications, an expression for A is obtained as 

A = 
\firyds "2x3/2S' 

(53) 

The differential equation (51), together with (48), (50), (52), 
and the boundary condition (38) for u, can be used to solve 
for u in the vortex street given prescribed values for the con
stants R, S, CD, and CL which characterize the wake. A sample 
calculation for w in the wake behind a circular cylinder is shown 
in Fig. 4 for/? =150,5 = 0.183, CD=IA8, and CL = 0.50, where 
the values of S, CD, and CL chosen here are based on various 
experimental observations for R= 150 as collected by Fleisch-
mann and Sallet (1981). Also plotted in Fig. 4 are the vortex 
street wave numbers, calculated from (50), and the nondi
mensional vortex velocity us, defined by 

co 2irS 

'"ukr~e7' (54) 

= 2TTS (55) 

The equation (51) for u indicates that w—1 as x^oo, as 
expected, so that from (50) the vortex street wave number has 
the limiting value 

a V2 f / 64rf2 \ ' / 2M/2 

e'-TR{-1+{l+-ir) 
as x—co. The limit (55) provides the minimum value of 8S for 
a given value of S, which in turn is a function of R and the 
cross-sectional shape of the cylinder. Using experimentally de
termined values of S for wakes behind circular cylinders, the 
minimum value of ds calculated from (55) is plotted in Fig. 5 
along with experimental data of Taneda (1959) for various 
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Fig. 4 Downstream development of the mean centerline velocity u, 
wave number 0S, and vortex street velocity us for a vortex street behind 
a circular cylinder with R = 150, S = 0.183, CD=1.18, C t = 0.50, as pre
dicted by equations (50)-(54) 

Reynolds Number, R 

Fig. 5 A lower bound for wave number in the vortex street formed 
behind a circular cylinder as predicted (shown by a solid line) by equation 
(55) and as given by the experimental data of Taneda (1959) 

values ofR. The data of Taneda (1959) were taken in the range 
x/d<50, although Taneda does not specify the exact location 
at which his data were taken, so the experimental values are 
expected to be slightly higher than the minimum value of 6S 

predicted by (55). From Fig. 5, we see that for low values of 
R, the street has nearly attained the asymptotic far field wave 
number given by (55) at the point of measurement, whereas 
for large values of R, the street takes longer for the wave 
number to approach its asymptotic value. 

From (47) and the definitions (15), the antisymmetric stream-
wise velocity component w2\ is obtained as 

W21 

U' 

2Cr 
-e~ax(l-u)2co&(6sx-2TtSt+(l>), (56) 

V^rCiS 

where / is nondimensionalized by the convective time scale 
d/U. Substituting (56) into (15)-(16) and again making the 
same asymptotic simplifications, the cross-stream centerline 
velocity component wn is obtained as 

W l 3 _ CL 

u 
-e-°°'es(\-u)sin(esx-2TcSt + 4>). (57) 

2irCDS 

It is observed that the condition (50) for vortex street stability 
is considerably different than the stability criterion of von 
Karman (1911), or even later modifications of von Karman's 
criterion. In particular, the stability condition (50) is obtained 
in terms of the wave number of the street rather than the 
"spacing ratio" of the vortices in the street, as used in the von 
Karman criterion. Of course, using the velocity representation 
(Al) in the alternative derivation of the theory, as well as the 
results (28) and (56) and the stability criterion (50), the apparent 
spacing ratio denoted by a, may be estimated as 

*=2Tr^)Vv (58) 

Values of predicted spacing ratio at several downstream lo-
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Table 1 Predicted values of apparent spacing ratio from 
equation (58) at several downstream locations for the same 
case as that examined in Fig. 4 

Downstream Distance Predicted Spacing Ratio 
x/d from equation (58) 
io 0.254 
20 0.276 
30 0.362 
40 0.414 
50 0.480 

cations are given in Table 1 for the same case as that estimated 
in Fig. 4. The street was observed by Taneda (1959) to break 
down at about x/d =50, so no spacing ratio estimates for 
x/d> 50 are recorded in Table 1. The predicted values of ap
parent spacing ratio are close to von Karman's value 0.281 
immediately behind the cylinder and increase to 0.48 before 
the street breaks down. This range of values for spacing ratio, 
as well as the tendency of the spacing ratio to increase sus-
tantially with downstream distance, is compatible with exper
imental results of several investigators as summarized by Wille 
(1960). The gradual predicted increase in wavelength with 
downstream distance (approaching an asymptotic value at in
finity) is also in line with the observation of Wille (1960, p. 
280). 
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Fig. 6 Downstream velocity variation across a vortex in a vortex street: 
O, experimental data of Timme (1957, Fig. 17); , velocity repre
sentation (A1) with C2 = 0, C= -0.632 cm2/sec (set from equation (28)), 
£=0.38 1/cm, w2i=0.68 cm/sec. Figure 1 of Timme (1957) is used to 
estimate the apparent location of the vortex center. 

A P P E N D I X 
An alternative derivation of the governing equations for the 

wake from the usual three-dimensional theory is presented in 
this Appendix. This alternative derivation serves to motivate 
constitutive equations and certain constraints for the directed 
fluid sheet model presented in Section 2. 

As stated previously in Section 2, the wake is characterized 
by certain features which serve as independent variables in the 
theory. In order to derive appropriate equations governing the 
evolution of these features of the wake flow, it is necessary to 
assume some representation for the velocity v* in the three-
dimensional theory as a function of the independent variables 
of the theory and of the coordinate z normal to the middle 
surface s. A representation for v* is selected in this paper as 

* _p2_2 _ j>2-2 _ _elJl 

vf =c1 + wue + w2\&e z, v$ = c2 + w2le
 z , 

v$ = wne'lh2+ w2i(ze-'2z2 + w33f^'V. (Al) 
The form (Al) is found to reduce in special cases to the exact 
far-field solutions for velocity in steady symmetric and anti
symmetric wakes. This representation also compares well with 
data of Timme (1957) for velocity profile through a vortex 
center in a vortex street, as shown in Fig. 6. 

The usual governing equations for incompressible fluid flow 
in the three-dimensional theory are 

PW + vf v*) = pb +1,,,-, v*i = 0, (A2) 

t,- = -p*e, + o-jjej, t = njtj, ay = n(vfj + vfj), (A3) 
where t,- are the stress vectors and p is the constant fluid density. 
The stress is composed of a pressure/?*, which is determined 
by the solution of (A2)J|2, and a deviatoric stress response ay, 
which is specified by the constitutive equation (A3)3 for New
tonian fluid flows. The velocity representation (Al) satisfies 
the condition of incompressibility (A2)2 identically at every 
point of the three-dimensional flow field only if the inde
pendent variables satisfy the restrictions (7) for all xa and t. 

It is convenient to write the representation (Al) for v* in 
terms of the weighting functions \M as 

K _ 

v*=J]\MwM(K=3), (A4) 
M=0 

where w3a = woi = w22 = 0 and where the weighting functions 
AM are defined by 

X0=l, X, = e - f V , A2 = teTf2^ X s ^ z V ^ 2 . (A5) 
A different set of weighting functions XN are also introduced 
for integration of the balance laws and are defined by 

\ , = 1, X ^ f V , X2 = *¥ . (A6) 
It is noted that the class of functions from which the weighting 
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functions \N and X ,̂ may be selected is significantly restricted 
by the requirement that the constraint response functions de
termined both by the derivation from (A2)-(A3) and the direct 
approach in Section 2 be equivalent (see Marshall, 1987). 

Assuming that the prescribed velocity c = c(0 at infinity sat
isfies the momentum equation (A.2)! identically, the expression 
(A.2)i evaluated at infinity can be subtracted from the same 
equation evaluated at an arbitrary point x in the three-dimen
sional space to obtain 

p(y* + vh*i - c , = p(b - b„) + (t, -1,*,),,-, (A7) 

where the subscript <» indicates the value of a variable as 
Z-~ ± t» . Substitution of (A4) into (A7) and multiplication of 
the resulting equation by \N yields 

— I YJP^MV/M~P^NC\ +J~) 1EJP^MV*V/M-pX/^V 

Also, the function YN in (6) is identified in the alternative 
derivation of the theory as 

*N=\ \ v W + v/v; j -c>fc . (A10) 

Using (A3) and (A9)5,6, we can identify the constraint and 
determinate parts of kN and mN as 

kjv=-e,j ~(P*-Pt)dz, 

'(£ 

^ p X M w M - p c 
dt 

^p\MvfYrM- pcpbmc 
LMtO 

dX^ 

dXi 

dXj 

mN= - e , j \ \f4p* -pt)dz vaSk 

(All) 

= pXA ,(b-b„) + — X^a-Uoi) - ( t , - t „ , ) f ^ . 
dXil ) I dXj) (A8) 

Integration of (A8) across the wake over the entire range of 
Z gives an equation identical in form to (5), where we define 
the functions yMN, aMN, \MN, fa> kN, and mN in the three-
dimensional derivation of the theory by 

)>MN= \ *-N^M<iZ, aMN= ^M\~aT J It—j z' 

S CO „00 

XNXMt>*cfe, (N= \ X^b-b^dz, 
- o o J - o o 

J-oo dxi 
- t„,)dz, mN= i: X A M • - tai)dz v„bia 

(A9) 

After using the weighting functions (A6), the constraint parts 
kN and mN in ( A l l ) u can be written in the form (8), where 
the Lagrange multipliers are identified by 

{
oo ™oo 

<M/>* -pVjdz, r33,3 = - (p* -pS,),idz, 
- o o J _ o o 

{oo „oo 

flp'-ptfdz, P2=-2t\ z2(p*-pt)dz, 
-oo J_oo 

Pi = 2?[ z(p*-pl)dz. 
J - » (A12) 

From the identifications (A. 12), the functions r33j3, plt andp 2 

are found to satisfy the restrictions (10). 
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Stress Field Around a Rounded Crack Tip 

C. R. Chiang1 

A method based on the eigenfunction (Williams stress func
tions) expansion is developed to examine the stress distribution 
around the tip region of a macrocrack which has some specific 
micro configuration. In particular, a macrocrack running into 
a micro hole under mode I condition is analyzed in detail. The 
coefficients associated with each eigenfunction are determined 
by a collocation procedure and the convergence of the nu
merical results is shown to be quite satisfactory. 

1 Introduction 
The present article aims at investigating the stress distri

bution around a "crack" possessing some specific micro con
figuration. The (macro) crack is assumed to run into a (micro) 
hole as depicted in Fig. 1. The radius of the hole p is much 
smaller than any other macro dimensions such as specimen 
size, crack length, etc. Therefore, the loading condition can 
be considered to be characterized at infinity by the singular 
stress field associated with the macro crack without the hole. 
For simplicity, we further assume the mode I symmetric loading 
is prevalent so that only Kt is participating. 

Considering a blunt crack-tip region as a parabola (an el
liptical hole or hyperbolic notch), Creager and Paris (1967) 
has derived an expression valid for 8 — 0. Recently, a more 
general analysis has been presented by Benthem (1987) con
cerning the stress distribution near a rounded corner. However, 
their formula are not strictly valid for the crack configuration 
depicted in Fig. 1. This seems to be overlooked in a well-known 
handbook (Tada, Paris, and Irwin, 1985). In order to solve 
this particular boundary value problem, a Trefftze's approach 
is employed here (Chiang, 1989). The stress distribution is 
assumed to be a linear combination of the Williams functions 
(Williams, 1952) which satisfy the field equations and the 
boundary condition of the crack surfaces. If we assume that 
the desired Airy stress function has the following product form, 

0x = /A + 1 / (0 , X), (1)' 

where r and 8 are the polar coordinates with the origin at the 
crack tip. The well-known result indicates that the eigenvalues 
correspond to the roots of 

sin2XTr = 0. (2) 

'Associate Professor, Department of Power Mechanical Engineering, National 
Tsing Hua University, Hsinchu 30043, Taiwan. 
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Accordingly, X = n/2, where n is any integer. The proper 
restriction must be placed on the selection of n. 

2 Selection of Eigenvalues 
We assume that the outer expansion $° (which is valid for 

r » p, disregarding the boundary condition on the micro hole) 
of the Airy stress function 4> has been found, i.e., 

8°(r, 8; P) = 4>0(r, 0) + /tf,(r, 8) + . . . (3) 

where <j>o, <j>i- • • may, if necessary, be expanded in terms of 
4>x with the proper restriction on X (here, X> 1/2 due to the 
finite value of the displacement at r = 0). 

Now, by introducing the inner variable r* =r/p, we expand 
the solution as 

«'(r, Oi P) = 4>o (r*, 8) + ptf (r* ,8)+... (4) 

where <f>$, 4>* >• • • etc. can be expanded in terms of <£x with 
proper restriction on X (here, X< 1/2). The coefficients as
sociated with each eigenfunction are determined by enforcing 
the traction-free boundary condition on the micro hole and 
the matching condition 

l im0°=l im </>'. (5) 
r - 0 r—oo 

In particular, this condition provides the proper boundary 
condition (at infinity) for the inner expansion. 

3 Inner Expansion and Collocation Procedure 
For each stress function <j>\, there will be the stress com

ponents /^_1Sy (8, X) corresponding to it. It is noted that the 
origin of the polar coordinates (r, 8) is at 0 (Fig. 1). Now the 
stress field (in cartesian coordinates) is assumed to be the 
following form 

V(2^0 
(^Tf(&)+A^(^Tf(8) 

1 U (8) (6) 

Fig. 1 The micro configuration of the macro crack 
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Table 1 Convergence of the numerical results with reference to the 
maximum stress a. yy 

numer o r 

c o l l o c a t i o n 

p o i n t s 

max 

K j / v / U * / ) ) 

2 4 6 8 10 

1.478 3 .011 2 . 9 9 1 2 .990 2 .991 

12 15 20 

2 .991 2 .991 2 .991 

Table 2 The hoop stress am along the perimeter of the micro hole 

Kj/vT^TT 
2.991 2.675 1.871 0.9330 0.2376 0.1859 0.5672 3711 0.9299 

0 
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117 
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135° 
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144 

- 0 . 0 0 9 5 

153° 

- 0 . 0 3 1 0 

162 

- 0 . 0 3 8 0 

0 

171 

- 0 . 0 1 8 6 

o 
180 

0 
( t h e o r e t i c a l 

va lue) 

where functions 7ya> (0) are 

7<a) _ 
xx ' 

fM -

xxy ' 

+ 2 + ( - l ) a 

•f-<-.r 
a 
2~ 

(-D° 

»g-l).-g-l)«g-3), 

-(r'>+(f-')c°s(r3)8 

ta(f-.),+ fj-.)<.(j-,).. 
(6') 

Explicit introduction of p and a/2 is just a matter of conven
ience and consistency. It is noted that as r/p — o°, only the 
leading (first) term would remain which is nothing but the 
known boundary condition at infinity. Since each term in equa
tion (6) satisfies the field equations of linear elasticity and 
essential boundary condition on the crack surfaces, so does 
their linear combination. What we have to do now is to adjust 
the coefficients Ai0\ A^~l),. . . etc. in terms of K, so that the 
remaining boundary condition on the micro hole (i.e., r = p) 
is satisfied. To be practical, only TV* unknown coefficients are 
sought. The collocation method is employed to accomplish this 
numerical task. Each collocation point would provide two 
equations (i.e., arr = 0, a^ = 0), except point A (since according 
to equation (6) a^ automatically vanishes at A). Consequently, 
M collocation points could be used for the determination of 
2*M— 1 unknown coefficients. 

4 Results and Discussions 
In Table 1, the results for ayy at point A are listed to illustrate 

the rapid convergence of the present approach. Apparently, 
only 10 (equally spaced) collocation points are sufficient to 
yield an accurate result. It is shown that 

2.99LK, 

V(2TT7) 
(7) 

for the present micro configuration. On the other hand, for 
the parabolical configuration, it was shown by Creager and 
Paris that 

$r 
K/A27CX) 

2 -

P 
Fig. 2 The variation of »„, along the x-axis 

2V2X7 2.828J:/ 

A/(2TTP) V(2irp) 
(8) 

Therefore, if we use equation (8) in place of equation (7) to 
discuss the stress distribution for the present crack configu
ration, there will be about 0.163Ay y (2itp) error in magnitude 
in estimating crmax. 

In the interest of reference, the hoop stress aes distribution 
of the micro hole are recorded in Table 2. In addition, the 
variation of ayy ahead of the micro hole along the A:-axis is 
plotted in Fig. 2. 

5 Conclusions 
A simple and effective method based on the eigenfunction 

expansion method has been described that enables one to in
vestigate the interaction between the macro crack and micro 
defects. The present method is illustrated by a specific example 
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of a macro crack running into a micro hole. The convergence 
of the numerical result is satisfactory. According to the present 
results, it is concluded (as expected) that the stress field around 
a macro crack depends on the "whole" crack-tip region, not 
simply on the radius of the curvature of the blunt tip. 
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Formulas for Generating Prescribed Residual 
Stress Distributions in Center-Wound Rolls 

Zine-Eddine Boutaghou2 and Thomas R. Chase3 

Altmann's equations for describing the residual stresses in 
center-wound rolled webs are solved to determine the winding 
stress necessary to produce prescribed residual stress distri
butions in the finished roll. A solution for constant circum
ferential stress is expanded to control the peak winding stress. 
Two example winding problems are discussed. 

Introduction 
Webs are sheet materials that exhibit negligible bending 

stresses when wound into rolls. Paper, magnetic tape, plastic 
wrap, photographic film base, adhesive tape, and metal foils 
are common examples. Webs are wound into rolls for proc
essing, transport, and storage. Controlling in-roll stresses is 
important to prevent damage to the web due to excessive plastic 
deformations within the roll and to provide rolls that are suf
ficiently robust to withstand shock during handling. 

Altmann (1968) derives exact integral expressions for stresses 
within a center-wound roll from basic stress-strain relation
ships. The Altmann model is commonly used as a linear or-
thotropic model for predicting in-roll stresses developed by a 
specified winding tension. However, Altmann's model has not 
been exploited for the "inverse problem" of prescribing a 
desired stress state in the finished roll and solving for the 
winding tension required to produce that stress state, as dis
cussed here. 

Two earlier authors have presented isotropic formulations 
for the winding tension necessary to produce prescribed resid
ual in-roll stress distributions. Southwell (1936) solves for the 
winding tension necessary to obtain prescribed stress distri
butions in rolls of wire. Catlow and Walls (1962) solve for the 
winding tension necessary to obtain a constant residual tension 
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in rolls of yarn wound on rigid cores. Catlow and Walls' 
equations are reproducible as a degenerate case of the general 
inverse formulas presented here. 

Several authors discuss the importance of controlling wind
ing tension to obtain acceptable in-roll stresses. Harland (1967) 
presents an analytical comparison of isotropic rolls wound with 
constant tension, constant torque, and constant in-roll tension. 
Rand and Eriksson (1973) recommend an in-roll stress distri
bution for newsprint on the basis of their analysis and exper
iments for determining in-roll stresses. Monk et al. (1975) 
compare in-roll stresses generated in rolls of cellophane by 
constant torque, constant tension, and tapered tension winding 
profiles. 

The following section presents the "inverse equations" for 
generating prescribed residual stresses in the finished roll. The 
next section examines practical limits associated with a solution 
for constant circumferential stress (i.e., constant in-roll ten
sion). Finally, the inverse equations are demonstrated with two 
examples. 

Base Equations 
Simplified forms of the residual stress formulas developed 

by Altmann (1968) are presented. These equations are then 
manipulated to determine the winding stress required to pro
duce a roll with a specified residual radial or circumferential 
stress distribution. 

The assumption of linear elasticity intrinsic to the Altmann 
model enables simplifying Altmann's original equations by 
applying Maxwell's reciprocal theorem4: 

Ee/Er = ver/vre = P2 (1) 

where Ee, En v9n and v^ correspond to Altmann's E,, En ft,, 
and fir, respectively, and (32 is the modulus ratio. All remaining 
assumptions of Altmann also apply here. 

The in-roll radial stress, o>, and circumferential stress, ae, 
then simplify to5: 

rw + a [r° ow(s) sp 

a'= --J^~\r s^T~adS (2) 

r20 - a [r° aw{s) s13 , 
o-e = ojr) - 0 rfi+l j 2̂/3 + a ds (3) 

where r is the radius ratio6 to the point where the stresses are 
measured and r0 is the outer radius ratio of finished roll. 
Winding stress, a„(r), is the tension per unit area of web cross-
section as the web initially enters the roll, and s is a variable 
of integration. Web material and core parameter, a, is defined 
as: 

= fl - "er - E$/Ec 

0 + ver + Eg/Ec 

where Ec is the effective radial modulus of the core. 
The winding stress required to produce a prescribed radial 

stress distribution is obtained by taking the derivative of equa
tion (2) with respect to radius ratio, r: 

0 (r2g - a) - (r2& + a) dor 
aw(r) = - 20— o> + r —- . (5) 

r + a dr 

The associated circumferential stress is obtained directly from 
the basic force equilibrium equation for the roll7: 

4See, for example, Tauchert (1974). The necessity of asserting equation (1) to 
satisfy strain energy constraints is also demonstrated by Willett and Poesch 
(1988) and noted by Hakiel (1987). 

'These equations correspond to equations (10) and (11) in Altmann. Param
eters r0, r, <7„, ae, and -a, correspond to Altmann's R, r, T„, T, and P, re
spectively. 

6Radius ratio, r, is the actual radius divided by the outer radius of the core. 
'Altmann's equation (15). 
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of a macro crack running into a micro hole. The convergence 
of the numerical result is satisfactory. According to the present 
results, it is concluded (as expected) that the stress field around 
a macro crack depends on the "whole" crack-tip region, not 
simply on the radius of the curvature of the blunt tip. 
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Formulas for Generating Prescribed Residual 
Stress Distributions in Center-Wound Rolls 

Zine-Eddine Boutaghou2 and Thomas R. Chase3 

Altmann's equations for describing the residual stresses in 
center-wound rolled webs are solved to determine the winding 
stress necessary to produce prescribed residual stress distri
butions in the finished roll. A solution for constant circum
ferential stress is expanded to control the peak winding stress. 
Two example winding problems are discussed. 

Introduction 
Webs are sheet materials that exhibit negligible bending 

stresses when wound into rolls. Paper, magnetic tape, plastic 
wrap, photographic film base, adhesive tape, and metal foils 
are common examples. Webs are wound into rolls for proc
essing, transport, and storage. Controlling in-roll stresses is 
important to prevent damage to the web due to excessive plastic 
deformations within the roll and to provide rolls that are suf
ficiently robust to withstand shock during handling. 

Altmann (1968) derives exact integral expressions for stresses 
within a center-wound roll from basic stress-strain relation
ships. The Altmann model is commonly used as a linear or-
thotropic model for predicting in-roll stresses developed by a 
specified winding tension. However, Altmann's model has not 
been exploited for the "inverse problem" of prescribing a 
desired stress state in the finished roll and solving for the 
winding tension required to produce that stress state, as dis
cussed here. 

Two earlier authors have presented isotropic formulations 
for the winding tension necessary to produce prescribed resid
ual in-roll stress distributions. Southwell (1936) solves for the 
winding tension necessary to obtain prescribed stress distri
butions in rolls of wire. Catlow and Walls (1962) solve for the 
winding tension necessary to obtain a constant residual tension 
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in rolls of yarn wound on rigid cores. Catlow and Walls' 
equations are reproducible as a degenerate case of the general 
inverse formulas presented here. 

Several authors discuss the importance of controlling wind
ing tension to obtain acceptable in-roll stresses. Harland (1967) 
presents an analytical comparison of isotropic rolls wound with 
constant tension, constant torque, and constant in-roll tension. 
Rand and Eriksson (1973) recommend an in-roll stress distri
bution for newsprint on the basis of their analysis and exper
iments for determining in-roll stresses. Monk et al. (1975) 
compare in-roll stresses generated in rolls of cellophane by 
constant torque, constant tension, and tapered tension winding 
profiles. 

The following section presents the "inverse equations" for 
generating prescribed residual stresses in the finished roll. The 
next section examines practical limits associated with a solution 
for constant circumferential stress (i.e., constant in-roll ten
sion). Finally, the inverse equations are demonstrated with two 
examples. 

Base Equations 
Simplified forms of the residual stress formulas developed 

by Altmann (1968) are presented. These equations are then 
manipulated to determine the winding stress required to pro
duce a roll with a specified residual radial or circumferential 
stress distribution. 

The assumption of linear elasticity intrinsic to the Altmann 
model enables simplifying Altmann's original equations by 
applying Maxwell's reciprocal theorem4: 

Ee/Er = ver/vre = P2 (1) 

where Ee, En v9n and v^ correspond to Altmann's E,, En ft,, 
and fir, respectively, and (32 is the modulus ratio. All remaining 
assumptions of Altmann also apply here. 

The in-roll radial stress, o>, and circumferential stress, ae, 
then simplify to5: 

rw + a [r° ow(s) sp 

a'= --J^~\r s^T~adS (2) 

r20 - a [r° aw{s) s13 , 
o-e = ojr) - 0 rfi+l j 2̂/3 + a ds (3) 

where r is the radius ratio6 to the point where the stresses are 
measured and r0 is the outer radius ratio of finished roll. 
Winding stress, a„(r), is the tension per unit area of web cross-
section as the web initially enters the roll, and s is a variable 
of integration. Web material and core parameter, a, is defined 
as: 

= fl - "er - E$/Ec 

0 + ver + Eg/Ec 

where Ec is the effective radial modulus of the core. 
The winding stress required to produce a prescribed radial 

stress distribution is obtained by taking the derivative of equa
tion (2) with respect to radius ratio, r: 

0 (r2g - a) - (r2& + a) dor 
aw(r) = - 20— o> + r —- . (5) 

r + a dr 

The associated circumferential stress is obtained directly from 
the basic force equilibrium equation for the roll7: 

4See, for example, Tauchert (1974). The necessity of asserting equation (1) to 
satisfy strain energy constraints is also demonstrated by Willett and Poesch 
(1988) and noted by Hakiel (1987). 

'These equations correspond to equations (10) and (11) in Altmann. Param
eters r0, r, <7„, ae, and -a, correspond to Altmann's R, r, T„, T, and P, re
spectively. 

6Radius ratio, r, is the actual radius divided by the outer radius of the core. 
'Altmann's equation (15). 

Transactions of the ASME 

Copyright © 1991 by ASME
Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

°6 <j, + r -
dar 

~dr 
(6) 

Note that the associated circumferential stress is a function 
only of the prescribed radial stress; i.e., it is not directly de
pendent on the material properties of the roll. 

The radial stress corresponding to a prescribed circumfer
ential stress can be found by solving equation (6) for ar: 

ar = <je ds. (7) 

The winding stress required to produce the prescribed circum
ferential stress distribution is found by substituting equation 
(7) into equation (5): 

13 r20 - a fr° 
ow(r) = ag + - -2g—— ae ds. (8) 

+ a 

As above, the associated radial stress is independent of the 
material properties of the roll. 

Note that the user may prescribe a desired radial or circum
ferential stress state in the finished roll, but not both. 

Limiting the Peak Winding Stress for Constant Circumfer
ential Stress 

Winding a finished roll for constant circumferential stress 
has particular practical value, since circumferential compres
sion of the web is prevented and longitudinal deformation of 
the web is uniform throughout the roll (Harland, 1967). How
ever, the solution for constant circumferential stress leads to 
a peak winding stress at or near the core. This peak may be 
severe enough to damage the web. Controlling this peak is 
addressed here at the expense of limiting the outer radius ratio 
of the finished roll. Stiffening the core will be shown to enable 
increasing the outer radius ratio to a limited extent. 

The basic constant circumferential stress solution is obtained 
by simply prescribing ag to be a constant, aeo, in equation (8), 
yielding8: 

- , .2/3 

ow(r) = 1 + j3- ,20 + a 
(9) 

The radius ratio where the winding stress peaks, rP, is found 
by setting the derivative of equation (9) to zero. Eliminating 
r0 between the result and equation (9) yields a quadratic equa
tion in Pp , The analysis given in the Appendix proves that at 
most one root to this equation can exceed one. In this case: 

I 

/> = 
b + 0(1+£) 

£ + 0 ( 1 - 8 

20 
(10) 

where: 

£ = 1 - oeo/aWP 

b = V«40 2 + {) 

(11) 

(12) 

and aWP is the peak winding stress. Otherwise, inspection of 
equation (9) indicates that the peak circumferential stress must 
occur at the core surface (/>= 1). The condition for /-/.exceeding 
one is (from equation (10)): 

a>-b-TWTJ)- (13) 

If the peak winding stress occurs at the core surface, the 
outer radius ratio associated with prescribing a peak winding 
stress, oWP, is (from equation (9)): 

/ • „ = ! + 
1 1 + a £ 
0 1 - a l - £ 

Otherwise: 

£ + 0 ( l - £ ) 6 + £(20+l) fe + 0(l + £) 
£ + 0 ( 1 - 8 

2/3 

(14) 

(15) 
0 ( l - £ ) 6 + £ (20 - l ) 

Inspection of equations (14) and (15) reveals that the max
imum outer radius ratio can be increased somewhat by stiff
ening the core. However, examination of equation (4) reveals 
that material and core parameter, a, is not arbitrarily variable; 
rather, a must fall within the bounds: 

• 1 < a < 
"Or 

0 + V6r 
< 1. (16) 

The lower limit corresponds to an infinitely soft core (Ec = 
0) and the upper limit corresponds to a rigid core (Ec — °°). 
The maximum possible value for the outer radius ratio can be 
determined by evaluating equations (14) and (15) for a rigid 
core. 

Example 1: Winding a Roll of Cellophane for Constant Cir
cumferential Stress 

The inverse equations for circumferential stress are dem
onstrated by applying them to a roll of cellophane. The basic 
constant circumferential stress solution produces a high peak 
winding stress. Therefore, the outer radius ratio is controlled 
to limit the peak winding stress. 

Monk et al. (1975) suggest Eg, Er, Ec, and v9r values of 2.10 
GPa, 34.5 MPa, 689 MPa, and 0.10, respectively, for cello
phane. They present data for winding such a roll to a radius 
ratio, r0, of 2.8. Winding this roll for constant circumferential 
stress using equation (9) produces a peak winding stress having 
a magnitude over 11 times the prescribed constant circumfer
ential stress. 

The peak winding stress is controlled by limiting it to five 
times the constant circumferential stress. Inequality (13) then 
determines that the peak winding stress occurs above the core. 
Equation (15) fixes the outer radius ratio, ra, at 1.78. 

The winding stress ratio9 obtained from equation (9) is 
graphed in Fig. 1(a). The winding stress peaks at a radius ratio, 
/>, of 1.11. 

Figure 1(b) illustrates the circumferential stress for several 
states of winding10. The circumferential stress is shown to move 
smoothly to the final prescribed constant stress. Note, how
ever, that the circumferential stress does not become constant 
until the roll is fully wound. Also note that the circumferential 
stress remains at or above the prescribed constant level for all 
states of winding. 

Figure 1(c) illustrates the corresponding radial stress for 
several states of winding. The radial stress steadily decreases 
to the final state of: 

or = fato/r) (r - r0) (17) 

predicted by equation (7). According to the observations of 
Connolly and Winarski (1984) and Frye (1967), this distri
bution appears desirable for avoiding slippage near the core. 

A rigid core would enable increasing the outer radius ratio 
to a maximum of 1.88 for the prescribed winding stress limit. 
Therefore, the outer radius of the core would have to be in
creased to store the same amount of web as Monk et al.'s 
original roll. The actual roll diameter would increase propor
tionally. 

"Note that if r2" » a then: ro„4.r) = aeo[r(l -/5) + /3/-J; i.e., the constant 
circumferential stress profile can be approximated by linearly varying the winding 
torque as a function of radius. 

*A11 stresses in Fig. 1 are made dimensionless by dividing by the specified 
final circumferential stress, oeo. 

,0The curves in Figs. 1 (6) and (c) were obtained by substituting the prescribed 
winding stress into equations (2) and (3). 
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Fig. 1(a) Winding stress ratio versus radius ratio 
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Fig. 1(b) Circumferential stress ratio versus radius ratio for several 
states of winding 

Example 2: Winding a Roll of Paper to Obtain a Prescribed 
Radial Stress Distribution 

Frye (1967) suggests a radial stress profile for paper rolls". 
His profile is designed to prevent slipping near the core and 
the associated winding defects. Equations are developed to 
represent Frye's suggested profile. These equations are then 
used to determine the winding stress required to obtain this 
profile with center winding. The associated circumferential 
stress distribution is also illustrated. 

Frye presents his recommended radial stress profile as a 
graph for a 750 mm (30 in.) radius roll wound on a 100 mm 
(4 in.) diameter core. The following functions of radius ratio 
were developed to approximate his curve: 

-236.8[2.260e -0.2011 (7--1) + l])KPa 

1 < r < 14 (18) 

o> = (268.9(r-14)3-0.7923(r-14)2 

+ 7.880(r-14)-276.0)KPa 14 < r < 15 (19) 

These functions are illustrated in Fig. 2(a). 
Two functions were joined at an actual radius of 700 mm 

(r = 14) to duplicate a sharp change in Frye's recommended 
profile at that point. The exponential function was fit to the 
radial stress at the core, the radial stress at 700 mm, and the 
slope at 700 mm measured from Frye's profile. Continuity of 
the magnitude and slope of the winding stress at 700 mm was 
guaranteed by using three constants of the cubic polynomial 
function to match the exponential function through the second 
derivative. The fourth constant of the cubic polynomial drives 
the radial stress to zero at the outer surface of the roll. 

Values for Ee, Er, and ver of 4.82 GPa, 31 MPa, and 0.01, 
respectively, are suggested for paper by Altmann (1968). A 
core modulus, Ec, of 387 GPa produces a convenient material 
and core parameter, a, of zero12. 

The winding stress plotted in Fig. 2(b) is obtained by sub
stituting equations (18) and (19) in equation (5). Note that the 
sudden increase in radial stress prescribed near the outer sur
face requires a corresponding surge in the winding stress. The 
winding stress peaks to a value of 12 MPa (3.5 pli for 2 mil 
caliper paper) at the outer edge. This peak may limit the prac
ticality of producing this profile with center winding. 

The circumferential stress plotted in Fig. 2(c) is obtained by 
substituting equations (18) and (19) in equation (6). Most of 
the paper in the roll is subjected to a very small compression, 
as recommended by Rand and Eriksson (1973). The area under 
the zero stress line is small, as recommended by Hussain et al. 
(1968). 

Radius Ratio, r 

Fig. 1(c) Radial stress ratio versus radius ratio for several states of 
winding 

Fig. 1 Winding a roll of cellophane with constant circumferential stress 

Conclusion 
The linear in-roll stress equations developed by Altmann 

(1968) are manipulated to enable determining the winding stress 
necessary to produce prescribed stress states in the finished 
roll. The roll modulus in the radial direction is known to exhibit 
nonlinear behavior (Pfeiffer, 1979 and 1987; Hakiel, 1987; 
Willett and Poesch, 1988). Furthermore, temperature and ag
ing effects are known to alter the initial wound-in stress state 
(Tramposch, 1967; Umanskii and Shidlovskii, 1983; Connolly 
and Winarski, 1984; Lin and Westmann, 1989). Nevertheless, 
the linear inverse equations presented here can be used to 
provide a starting point for developing inverse solutions that 
include these effects in addition to their usefulness for rolls 
that exhibit essentially linear behavior. 

(5). 

"Fig. 8 in Frye (1967). 
^Specifying an overly stiff core produces negative winding stresses in equation 
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Fig. 2(a) Prescribed radial stress versus radius 
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Fig. 2(c) Circumferential stress versus radius 

Fig. 2 Winding a roil of paper to obtain a prescribed radial stress dis
tribution 
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A P P E N D I X 

Analysis of the Peak Winding Stress Radius Ratio for Constant 
Circumferential Stress 

This Appendix determines the at tr ibutes of the peak winding 
stress radius ra t io , />: 

20 ^ 0(1 +1) ± V€(4r+f) 
rp= a I^Tt) • (A1) 

The fractional expression in equat ion (Al ) must be positive 
when adding the discriminant . Therefore, if parameter a is 
negative, rP will not be real . If parameter a is positive, rP will 
exceed one when inequality (13) is satisfied. 

Now, consider the fractional expression in equat ion (A l ) 
corresponding to subtract ing the discriminant to be a function 
o f f : 

/(£) = 
0(1 +£) ~ V£(4/32 + g) 

€ + 0(1-0 
(A2) 

Since the magnitude of parameter a is less than one, rP will 
be less than one or imaginary when subtracting the discriminant 
if the magnitude of /(£) is always less than or equal to one. 
This is proven by demonstrating that the magnitude of /(£) 
must be less than or equal to one for the extreme values of £ 

and proving that cannot change sign for intermediate 

values. 
Evaluating/(|) at the extreme values of £ yields: 

/ « = 0) = 1 (A3) 
-1 <M = l)< 0. (A4) 
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BRIE;F NOTES
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The derivative of equation (A2) has a double pole and a
double zero at: .

in addition to a pole at zero. However, since {3 exceeds one,
equation (A5) must produce a value of ~ exceeding 1. There
fore, the slope must have the same sense for all values of ~

between zero and one; Q.E.D.

o 10

Riemannian Stress-Free Configuration and Deformation of the
Artery

We shall consider the deformation of a thick-walled cylin
drical model for the artery. The wall material is assumed to
be homogeneous and incompressible (Carew et al., 1968), and
is the uniform strain hypothesis.

It is assumed that there are only normal components of strain
in the cylindrical coordinate system [r, (J, z; grr= 1, gee=r2

,

gzz= 1, gkl=O (k~l)l. Here, r, (J, z denote the radial, circum
ferential, and longitudinal coordinates, respectively; gkl (k,
1= r, (J, or z) are the components of metric tensor of the cylin
drical coordinate system. The coordinates represent the po
sition of a material point p in a pressure loading and
longitudinally stretched state. The deformation is given as fol
lows:

result of an adaptation to the physiological load, the condition
at which the uniform strain occurs may change depending on
the physiological circumstance. For instance, the intraluminal
pressure at which the uniform strain occurs in normotensive
animals may differ from that of hypertensive ones. Even in
an individual the condition may change depending on the age,
and if the individual is suffering from a disease.

A version of the continuum theories of dislocations is an
appropriate means to analyze a solid undergoing residual stress
(Takamizawa and Matsuda, 1990). In this paper the defor
mation of the areterial wall is analyzed by this theory. The
important result obtained from the theory is that we can take
a Riemannian manifold as a stress-free reference configura
tion. In this sense the theory is an extension of the ordinary
continuum kinematics of solids. The fundamental equations
based on this theory are the same as the ones in the orthodox
continuum mechanics in the form of a general tensor.

The determination of the Riemannian metric is equivalent
to the determination of the residual strain. This implies that
we must evaluate the distribution of the residual strain or
assume a certain principle to determine the Riemannian metric.
The uniform strain hypothesis is one such principle.

Rtfi<' sr:"1.. 1' ~'n c f r r. ll~ . t t horo , t ( cor r«

11

r=r(R), (J=e, z=exZ, (1)

where ex is a constant, and R, e, Z represent the position of
the material point p in a physiological normal state, which is
adopted as a reference configuration. The components of the
metric tensor of the cylindrical coordinate system at (R, e, Z)
are denoted by OKL'

The infinitesimal length dS between (R, e, Z) and (R +dR,
e + de, Z + dZ) in the stress-free state is given as follows:

dS2 = H RRdR
2 + H eede

2 +H zzdZ
2

+ 2 (HezdedZ +HZRdZdR+HRedRde). (2)

We shall call the manifold defined by the coordinates R, e,

(A5)~ = {3/ ({3-1)

Stress-Free Configuration of a Thick-Walled
Cylindrical Model of the Artery: An Appli
cation of Riemann Geometry to the Biome
chanics of Soft Tissues

Introduction

Many researchers have taken account of the finite defor
mation and the nonlinearity in cardiovascular tissues. They
have assumed that living organs are free from stress when the
organs are unloaded. Fung (1984) called this assumption "zero
initial stress hypothesis" and criticized. Living organs never
experience an unloading condition when they are in a living
body. The tissues in those organs develop and resorp through
the metabolism of cells. The metabolism of cells may depend
not only on their chemical circumstances, but also their me
chanical conditions (Leung et al., 1976)-stresses and strains
in the living organs. Since all processes are performed under
loading conditions, the cells cannot take account of a no load
condition. An optimal condition of an organ is differentfrom
those where there remains no stress in the unloading state.
This implies that it is not plausible for an organ, which receives
certain mechanical loads under a normal condition, to be free
from stress when the organ is unloaded. Indeed, recent inves
tigations (Fung, 1984; Vaishnav and Vossoughi, 1987) have
experimentally shown that there are residual stresses in arteries.
For example, after longitudinal cutting, the arterial ring soaked
in a physiological salt solution springs open and become a
shape like a sector as shown in Fig. 1. This implies that there
remains compressive stress in the inner side and tensile stress
in the outer side in the circumferential direction before the
arterial ring was longitudinally cut. Thus, we cannot simply
take an unloading state as a stress-free reference configuration
in biomechanics.

The residual stress in living organs may be due to an ad
aptation to physiological loads. It has been shown that the
residual stresses in the cardiovascular tissues considerably re
duce severe stress concentrations under physiological condi
tions which occur if there are no residual stresses.

Chuong and Fung (1986) analyzed the stress distribution and
the residual stress in the arterial wall by directly taking the
sector configuration obtained from the experiment as a stress
free configuration of the artery. On the other hand, Taka
mizawa and Hayashi (1987) assume the uniform strain distri
bution as a result of an adaptation to physiological loads in
the arterial wall. That is, the residual stress and strain are not
the first assumption in their study, but the secondary results
from the uniform strain hypothesis. The hypothesis asserts
that the circumferential strain uniformly distributes through
the wall thickness at a physiological loading configuration,
which is the state of the mean blood pressure and the in vivo
axial stretch.

Since the condition of uniform strain is assumed to be a

iJ Department of Biomedical Engineering, National Cardiovascular Center
Research Institute, 6-7-1 Fujishiro-dai, Suita, Osaka 565, Japan.

Fig. 1 The left panel shows a ring specimen 01the rabbit thorac ic aorta
soaked In the Krebs solulion kept at 37°C. After longit udinal culling,
the ring specimen springs open as shown In the right panel.
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Z and the metric tensor HKL Riemannian stress-free configu
ration. Referring to the Riemannian stress-free configuration, 
the Green's strain tensor of the deformed state is defined by 

Eia, = -
dxk dx1 

gkldXK dXL' 
HK (3) 

where the coordinate X1 = R, X= G, X3 = Z represent the ma
terial point p in the reference configuration—and those of a 
deformed configuration xl = r, x2 = d, x3 = z. The radial, cir
cumferential, and longitudinal stretching ratios of the de
formed state, referred to the stress-free configuration, are given 
as follows: 

(4) 

If we set r=R and z = Z in the above equations, they give 
the stretching ratios A^ of the physiologically normal state 
referred to as the Riemannian stress-free configuration: 

Az=.hr£- (5) 

If there is no shear in the residual strain, we obtain the metric 
tensor from the above equations: 

HR 
_1_ 

"AI' 
HG "AV HZZ~A^ 

HKL = 0(K*L). (6) 

The uniform strain (stretch) hypothesis means that Ae is con
stant through the wall thickness. Since the incompressibility 
AflAeAz= 1, and Az is constant, the radial stretching ratio AR 

is also constant through the wall thickness. 
In contrast with a similar spherical model of the left ventricle 

(Takamizawa and Matsuda, 1990), the Riemann-Christoffel 
tensor, which indicates the curvature of the stress-free config
uration, vanishes for this thick-walled model of the artery. 
This is evident from the following transformation of the co
ordinates: 

R = AeAzR,Q-
1 

A|A; e, z-
1 
-z. (7) 

iz Az 

With this transformation, the metric tensor of the Riemannian 
stress-free configuration is transformed into 

HRR=\, Hee = R2, Hzz = 1, HKL = 0(K*L). (8) 

This coordinate system [R, 9 , Z; HRR=\, Hee = R2, Hzz= 1, 
HKL = ® {K^L)} coincides with the cylindrical coordinate sys
tem in Euclidean space, although © can take only a value 
between 0 and $ = 2ir/(AoAz) while 9 lies between 0 and 27r. 
The Riemannian stress-free configuration is a flat space, but 
not globally Euclidean. Indeed, it is the product space of one-
dimensional Euclidean space and a zone of a cone. The de-
velopment of this zone of a cone is shown in Fig. 2. It should 
be noted that the cross-section (Z= constant) is regarded as 
continuous at 9 = 0 and 9 = #. In this cross-section, the parallel 
translation of a vector along any closed curve, including the 
Z-axis, makes the angle ^ = 2w - $ between the starting vector 
and that of returning to the start point. The section of the 
Riemannian stress-free configuration is isometric to a sector 
with the angle $, which is the development of the zone of a 

Fig. 2 Cross-section of the stress-free configuration for the cylindrical 
model of the artery obtained from the uniform strain hypothesis. It is 
isometric to the sector with a constant thickness, which is a develop
ment of a zone of a cone. Then a parallel translation of a vector along 
a circle, including the top of the cone, makes an angle between the 
vector at the starting point by the translation. 

cone in Fig. 2. Thus, the present analysis is compatible with 
that of Chuong and Fung (1986) and Takamizawa and Hayashi 
(1987, 1988). 

Strain Energy Density Function 
We shall take the following strain energy density function 

for the arterial wall (Chuong and Fung, 1986) 

^ = C - e x p & (9) 

Q = -cr EKLEMN, 

where C is a constant which has the dimension of energy 
density, and a*KLMN the contravariant components of tensor 
of rank 4 in the Riemannian stress-free configuration. The 
physical components of this tensor represent the material con
stants of the arterial wall. 

For the incompressible material, Cauchy's stress is derived 
from the strain energy density function as follows: 

t"=-ng"+ 
dxk dx1 dW 

dXK dXL dEKL 

- n / ' + C - e x p g -
dx" dx' 
bXK 3XL a " (10) 

where II is the hydrostatic term introduced from the incom
pressibility condition. 

Conclusion 
Since it is very plausible that there are residual stresses in 

living organs, the continuum theory of dislocations based on 
Riemann geometry may be an appropriate tool in biomechan
ics. But it should be noted that we need to estimate the dis
tribution of residual strain, or a principle, in order to determine 
the metric tensor of the stress-free configuration—because the 
continuum theory of dislocations gives only a kinematical 
framework of the analysis. The uniform strain hypothesis is 
one of such principles. Nevertheless, the hypothesis may not 
be applied to a complex shape model. A principle which is 
applicable to a general shape has been proposed in a paper by 
Takamizawa and Matsuda (1990). 
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Bending of a Thin Reissner Plate With a 
Through Crack14 

P. F. Joseph15 and F. Erdogan15' 

The title problem was first considered by Knowles and Wang 
(1960) and was shown to be related to the solution given by 
the classical plate theory. This solution is actually the outer 
solution of a singular perturbation problem, and therefore is 
valid only away from the crack-tip region. Within a boundary 
layer of order h/a, where h is the plate thickness and a is the 
half-crack length, the two theories differ considerably. In this 
study the leading order solution is obtained for h/a^0 and it 
is shown that the limiting stress intensity factor given by the 
Reissner plate theory is more than 50 percent higher than the 
asymptotic result (l + v)/(3 + v) which is obtained from the 
displacement field as given by the classical plate theory. 

1 Introduction 
The problem of bending of an elastic plate with a crack as 

formulated by the Reissner plate theory was first presented by 
Knowles and Wang (1960) in terms of a singular integral equa
tion. An important contribution from their work was to show 
that for a vanishingly thin plate, the Reissner plate theory for 
bending predicts a stress field near the vertex of a crack that 
is in accordance with the theory of elasticity. They thus showed 
that the Reissner plate theory can compensate for the well-
documented deficiencies of the classical theory (see Williams, 
1961). In the case of a thin plate, or when the ratio of the plate 
thickness h to the half-crack length a approaches zero, Knowles 
and Wang obtained an approximate closed-form solution to 
the integral equation by formally setting h/a equal to zero in 
the Fredholm kernel. This limit transforms the nonsingular 
Fredholm integral into a singular integral which, in this case, 
is valid everywhere except within an order of h/a of the crack 
tips (see Joseph and Erdogan, 1989). The approximate 
"asymptotic" solution which results, and which is identical to 
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the solution as given by the classical plate theory, is therefore 
not valid when close to the crack tips. As pointed out by 
Simmonds and Duva (1981) it is interesting that Knowles and 
Wang were able to obtain their results, which are valid in the 
near field, by using a solution valid only in the far field. 

The problem is one of singular perturbation with pertur
bation parameter h/a. There exists a boundary layer of thick
ness h/a at the crack tips and the classical plate theory solution 
is the leading order outer solution. The boundary layer dif
ference between the theories exists because the Reissner plate 
theory allows forthe satisfaction of three boundary conditions 
on the crack surfaces (/V,2 = 0, Vx = 0, Mn = 0), while the clas
sical plate theory, which uses the Kirchoff assumption, satisfies 
only two (Nn = 0, V\ + dMn/dx2^G). This is true for all h/a, 
including the limit as h/a-*0. In a region near the crack tips 
the two solutions must be different; away from these bound
aries they asymptotically agree. Consequently, it may be shown 
that the stress intensity factors obtained from the two theories 
(as defined in terms of the crack surface displacement in the 
case of the classical plate theory) are different; that is, the 
stress intensity factor given by the Reissner plate theory as 
h/a~0 is not (1 +i>)/(3 + c). 

The Fredholm kernel of the singular integral equation is 
sufficiently complicated to allow only a numerical solution for 
a given Poisson's ratio v and plate thickness to half-crack length 
ratio h/a. In terms of numerical convergence, the problem 
becomes increasingly difficult as h/a—0. Hartranft and Sih 
(1968) and Wang (1968) were the first to numerically obtain 
a solution for finite h/a. In both studies the problem was 
formulated in terms of dual integral equations and the argu
ment presented by Knowles and Wang (1960) was followed to 
obtain the "thin plate limit." Some doubt about this limit was 
raised in a paper by Krenk (1978). Basar and Erdogan (1982), 
with the help of more refined numerical solutions for h/a as 
small as 0.01, also suggested that the thin plate limit (1 + v)/ 
(3 + v) may not be valid. See also Simmonds and Duva (1981) 
for a discussion of this boundary layer problem and other 
references. 

In this study the h/a^0 limit of the integral equation for 
the derivative of the crack surface rotation as defined by the 
Reissner's plate theory is obtained and numerically solved. The 
problem is also set up for the determination of higher-order 
terms in the perturbation series. Limiting values of the stress 
intensity factors are presented and the solution is compared 
to small h/a numerical solutions in order to show the boundary 
layer nature of the problem. 

2 Formulation 

Consider a homogeneous elastic plate of thickness h that 
contains a through crack of length 2a in the .x^-plane and is 
subjected to uniform bending MU=M0 away from the crack 
region. By applying the Reissner plate theory, the nondimen-
sional integral equation for the derivative of the crack surface 
rotation ft. is found to be (Knowles and Wang, 1960): 

7r J _ ] t—y 2ir(\ + v) J_! 

= - 1 , \y\<\,y = x2/a, (1) 

where 

K(z) ==¥ + - + -K2(\zl), 
z z z 

z = -(t-y), e = A/(VT0a), (2) 

K2(\z\) is the modified Bessel function of the second kind 
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Bending of a Thin Reissner Plate With a 
Through Crack14 

P. F. Joseph15 and F. Erdogan15' 

The title problem was first considered by Knowles and Wang 
(1960) and was shown to be related to the solution given by 
the classical plate theory. This solution is actually the outer 
solution of a singular perturbation problem, and therefore is 
valid only away from the crack-tip region. Within a boundary 
layer of order h/a, where h is the plate thickness and a is the 
half-crack length, the two theories differ considerably. In this 
study the leading order solution is obtained for h/a^0 and it 
is shown that the limiting stress intensity factor given by the 
Reissner plate theory is more than 50 percent higher than the 
asymptotic result (l + v)/(3 + v) which is obtained from the 
displacement field as given by the classical plate theory. 

1 Introduction 
The problem of bending of an elastic plate with a crack as 

formulated by the Reissner plate theory was first presented by 
Knowles and Wang (1960) in terms of a singular integral equa
tion. An important contribution from their work was to show 
that for a vanishingly thin plate, the Reissner plate theory for 
bending predicts a stress field near the vertex of a crack that 
is in accordance with the theory of elasticity. They thus showed 
that the Reissner plate theory can compensate for the well-
documented deficiencies of the classical theory (see Williams, 
1961). In the case of a thin plate, or when the ratio of the plate 
thickness h to the half-crack length a approaches zero, Knowles 
and Wang obtained an approximate closed-form solution to 
the integral equation by formally setting h/a equal to zero in 
the Fredholm kernel. This limit transforms the nonsingular 
Fredholm integral into a singular integral which, in this case, 
is valid everywhere except within an order of h/a of the crack 
tips (see Joseph and Erdogan, 1989). The approximate 
"asymptotic" solution which results, and which is identical to 

l4This study was supported by NSF Grant MSM-8613611 and by NASA-
Langley under Grant NAG-1-713. 

"Department of Mechanical Engineering and Mechanics, Lehigh University, 
Bethlehem, PA 18015. 

"Tellow ASME. 

the solution as given by the classical plate theory, is therefore 
not valid when close to the crack tips. As pointed out by 
Simmonds and Duva (1981) it is interesting that Knowles and 
Wang were able to obtain their results, which are valid in the 
near field, by using a solution valid only in the far field. 

The problem is one of singular perturbation with pertur
bation parameter h/a. There exists a boundary layer of thick
ness h/a at the crack tips and the classical plate theory solution 
is the leading order outer solution. The boundary layer dif
ference between the theories exists because the Reissner plate 
theory allows forthe satisfaction of three boundary conditions 
on the crack surfaces (/V,2 = 0, Vx = 0, Mn = 0), while the clas
sical plate theory, which uses the Kirchoff assumption, satisfies 
only two (Nn = 0, V\ + dMn/dx2^G). This is true for all h/a, 
including the limit as h/a-*0. In a region near the crack tips 
the two solutions must be different; away from these bound
aries they asymptotically agree. Consequently, it may be shown 
that the stress intensity factors obtained from the two theories 
(as defined in terms of the crack surface displacement in the 
case of the classical plate theory) are different; that is, the 
stress intensity factor given by the Reissner plate theory as 
h/a~0 is not (1 +i>)/(3 + c). 

The Fredholm kernel of the singular integral equation is 
sufficiently complicated to allow only a numerical solution for 
a given Poisson's ratio v and plate thickness to half-crack length 
ratio h/a. In terms of numerical convergence, the problem 
becomes increasingly difficult as h/a—0. Hartranft and Sih 
(1968) and Wang (1968) were the first to numerically obtain 
a solution for finite h/a. In both studies the problem was 
formulated in terms of dual integral equations and the argu
ment presented by Knowles and Wang (1960) was followed to 
obtain the "thin plate limit." Some doubt about this limit was 
raised in a paper by Krenk (1978). Basar and Erdogan (1982), 
with the help of more refined numerical solutions for h/a as 
small as 0.01, also suggested that the thin plate limit (1 + v)/ 
(3 + v) may not be valid. See also Simmonds and Duva (1981) 
for a discussion of this boundary layer problem and other 
references. 

In this study the h/a^0 limit of the integral equation for 
the derivative of the crack surface rotation as defined by the 
Reissner's plate theory is obtained and numerically solved. The 
problem is also set up for the determination of higher-order 
terms in the perturbation series. Limiting values of the stress 
intensity factors are presented and the solution is compared 
to small h/a numerical solutions in order to show the boundary 
layer nature of the problem. 

2 Formulation 

Consider a homogeneous elastic plate of thickness h that 
contains a through crack of length 2a in the .x^-plane and is 
subjected to uniform bending MU=M0 away from the crack 
region. By applying the Reissner plate theory, the nondimen-
sional integral equation for the derivative of the crack surface 
rotation ft. is found to be (Knowles and Wang, 1960): 

7r J _ ] t—y 2ir(\ + v) J_! 

= - 1 , \y\<\,y = x2/a, (1) 

where 

K(z) ==¥ + - + -K2(\zl), 
z z z 

z = -(t-y), e = A/(VT0a), (2) 

K2(\z\) is the modified Bessel function of the second kind 
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Fig. 1 Normalized crack surface rotation in a plate with a through crack, F i g 2 T h e r i g n t . n a n d s j d e s f i ( y ) ^ a n d ^ ( Q r , h e i n , e g r a | e q u a t i o n s 

-a<x2<a, under pure bending, M „ = M„; , = 0.3, <7 = 6M„/h2 <14>' <22>' a n d <25>- respectively. Dashed lines correspond to hla-0. 

which has small z behavior that cancels the apparent singular 
terms of the Fredholm kernel, K(z). For small z, 

K{z) = -z\og{\z\/2) + 0(z). (4) 

The integral equation for the classical plate theory is 

ki(Xi) 

based on the definition 

1 +V X) 
3 + v/i/l' 

(11) 

ttlL 1 i^dt= _h (5) kl(x3) = _ i i m | V 2 ( ^ 
l + V TT J _! t-y x2~" Z 

x2) — «i (0, x2, x3)> x 2 <a, (12) 
dx2 

where 

(6) 

The subscripts r and c refer to the Reissner and the classical 
plate theories, respectively. Note that equation (5) can be ob
tained by formally substituting e = 0 into equation (1). Equa
tion (5) has a closed-form solution given by 

l + v -y 
gAy) 3 + "V 

from which it follows that 

4<r 1 + v 1 

1 - / 

&O0 = E 1 + vh 
yff^k 

(7) 

(8) 

We also note that the right-hand sides in equations (1) and (5) 
represent the bending moment Mn (0, x2) for \x2\ >a as well 
as \x21 < a. Thus, from equations (5) and (7) the stress intensity 
factor at the crack tip x2 = a may be obtained as 

*i(*3) = ^ °yfc (9) 

based on the definition 

*j(x3) = lim V2(x2-o) an (0, x2, x3), x2>a, (10) 
x 2 -» 

and 

where it is assumed that ux = x3/3c. Needless to say, in continuum 
elasticity solutions, (10) and (12) would give identical results. 

The numerically obtained solution of (1) for p = 0.3 and 
VTo € = hi a = 0.1,0.01 and 0.001 is compared with the expres
sion given by equation (8) in Fig. 1. It may be observed that 
as e~0 the two curves approach each other everywhere except 
very near the crack tip as shown in the lower figure where this 
region is expanded. If we now let 

gtf) = gc(0 + g(t), (13) 

and then substitute this expression into equation (1) while 
making use of (7), we obtain an integral equation for the 
difference between the two theories as follows: 

1 „> , M 
e r g(0 
7T J . t-y 

dt + 
1 

2ir(l + v) 
g{t)K{z)dt 

- 2 e 1 f 
3 + v + 27r(3 + c) J 

tK(z) 

_ _-2_ 
~ 3 + v 

dt 

-fe j-,00, (14) 

where 

>«-^('-^i:,^4 v r ^ " - (15) 

The function rx(y) is given at the top of Fig. 2 for vTo « = 
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h/a = 0.l, 0.01 and 0.001. As e — 0 the only nonzero contri
bution of ri(y) is within a region of order t of the crack tip. 
As will be shown below, this contribution cannot be ignored 
if the correct solution near the crack tip is desired. Note that 
this figure clearly shows the boundary layer nature of the 
problem, and why for small values of e, the solution of equation 
(1) is difficult to obtain by using standard numerical techniques 
which treat the domain - 1 <y< 1, on a nearly equal basis. A 
method that expands the boundary layer region is obviously 
required for small e. This difficulty is common to many other 
crack problems that can be defined by a small geometry pa
rameter such as e. 

Noting that g(t) is an odd function of t, the relation 
, i 

-y)-U-t-y)]dt, (16) ( g(t)L(t-y)dt = [ g(t)[L{t-

which is true for any function L, may be used to change the 
support of the integrals in equation (14) from - 1 to 1, to 0 
to 1. Then from equation (14), after making the variable change 

t = 1 - er, 
y= l - e s , (17) 

we obtain the following integral equation valid for all e, 

Li 
T J0 

h(r) 
dr -

1 I f"e 

h{r) 
27r(l + c) J0 

K[\s-r\] - K[\r + s-2/e\] + 
2(1 + v)e 

2-(r + s)e 
dr 

where 

ri(y),y=l-es,0<s<l/e, (18) 

(19) 

3 + v 

h{r) = VI g(t). 

These transformations are made so that r = 0 corresponds to 
the crack tip and /•= 1/e (later r—• oo) corresponds to the crack 
center while the right-hand side, rl(y) = rl(s), decreases for 
increasing s (later ri(s)-~0 for S—oo). 

At this point we consider the solution of equation (18) for 
small e. Before we solve the problem for the limit as e-*0, 
which is the purpose of this study, we consider a more rigorous 
method that would solve the asymptotic problem for small e. 
One possible approach for small e would be to use the sub
stitution 

l + u 
1 - u + 2e , s = 

l + v 
l - y + 2e 

(20) 

which would convert the integral equation (18) to an equation 
valid for - 1 < (u,v) < 1. The asymptotic behavior of the kernels 
and right-hand side of the resulting equation would then have 
to be determined. Once these expressions have been found, a 
proper choice of an asymptotic expansion of the unknown can 
be made. Substitution of this expansion into the integral equa
tion would give individual equations for the determination of 
the terms in the series, which are then hopefully solved nu
merically. Unfortunately, this procedure becomes very com
plicated after the leading-order term because of the behavior 
of the kernels at v=l (or 5= 1/e) which corresponds to the 
center of the crack. For higher-order terms perhaps a matching 
technique would be more appropriate. This would separate the 
boundary layer solution from the solution for the central por
tion of the crack. The technique of asymptotic matching is not 
used in this study. 

A second method that may give approximate solutions to 
higher-order terms would be to set the upper limits of the 
integrals in equation (18) to infinity. The justification for this 
is that we are only interested in the stress intensity factor which 
comes from the solution for 5 = 0. This approximation to the 

integral equation would have its greatest influence on the un
known for 5— oo where we are not really interested in the 
solution. Recall that the boundary layer to the original problem 
is at s = 0 and that the solution decays to zero for large values 
of s. In this case in order to determine the form of the per
turbation series for h{r), only the small e behavior of rt(y) 
must first be obtained. The leading term of rt(y) is of order 
one. From numerical studies it appears that the second term 
is of order e, not Ve as may first be assumed by a casual 
inspection of equation (15). Therefore, the following expres
sion will be chosen to represent h(r) for small e, (and perhaps 
r « l / e ) , 

h{r) = h0(r) + e A,(r) + (21) 

By using standard perturbation methods, this expression may 
be substituted into equation (18) to obtain integral equations 
for each of the /!,(/•), where /?,•(/•) is dependent on the solutions 
hj(r) for/ = 0, 1, . . . , / - 1. For example, the integral equation 
for h0(r) is determined by simply retaining terms of order one 
as e—0. Once h0(r) is known, the integral equation for hx(r) 
can be obtained by retaining the order e terms, and so on. The 
equation for h0(r) is: 

7T J r 

ho(r) dy 1 
r-s 27r(l + P) L 

h0(r)K{s-r)dr 

3 + v 
r2(s),0<s<oo, (22) 

where 

r2(s) = lim rx{y) = lim yfe 
€-0 £ - 0 

x 1 
1 1-er K(s-r)-K{s + r-2/t) 

A%\fe Jo V1 - er/2 

_ - l r i 
4TT J0 s/Yr 

dr 
•s[2r 

K{s-r)dr,y=l-es. (23) 

The function r2(s) is given by the dashed line in the center plot 
of Fig. 2. Also included in the figure is r^y) for h/a = 0.l 
(y= 1 -es, e = /!/(Vl0«)). The two curves for h/a = 0.01 and 
0.001 lie between these two lines and are not included. 

The integral equation for h\{r) is similar to equation (22) 
except that its right-hand side is more complicated. In addition 
to the contribution coming from ri(y), namely 

l i m - \ri(y) + -j- \ -^=K(s-r)dr i r i 
4ir J0 42r' y l-es, (24) 

the contribution from h0(f) due to the second and third terms 
of the Fredholm kernel of equation (18) must also be taken 
into account. The solution for hi(r) will not be given in this 
study. 

3 Solution and Results 
The leading order solution h0(r) will now be determined. A 

second change in variables is used to rewrite equation (22) in 
a more convenient form for numerical solution as follows; 

I 

•K J _ 

f{u)du 

(1 -u)(u-v) 

- T 1 — (' 7 ^ Kfft.v) du = ^ - r3{v), (25) 
7T(1 +V) J_, ( l -« ) 2> + V 

where 

\+u l+v 
r = , * 1 - H l-v' 

(26) 

844 / Vol. 58, SEPTEMBER 1991 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.248. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

E h ( / 8 r - /8C) 

Table 1 The effect of Poisson's ratio v and crack-length-to-
plate-thickness ratio h/a on the normalized bending stress in
tensity factor; a=6M0/h

2 

ks(h/2) 

h/a 
—»<X 

20.0 
10.0 
4.0 
2.0 
1.0 
0.5 
0.25 
0.10 
0.01 
0.005 
0.001 
-0 

a \[a 

P = 0 
1.0000 
0.9851 
0.9583 
0.8735 
0.7804 
0.7020 
0.6518 
0.6211 
0.5984 
0.5803 
0.5790 
0.5777 
0.5774 

i/=.3 
1.0000 
0.9885 
0.9676 
0.8992 
0.8193 
0.7475 
0.6997 
0.6701 
0.6481 
0.6306 
0.6292 
0.6280 
0.6277 

v=.5 
1.0000 
0.9900 
0.9717 
0.9111 
0.8383 
0.7707 
0.7247 
0.6960 
0.6746 
0.6575 
0.6562 
0.6550 
0.6547 

Fig. 3 Difference between the normalized crack surface rotation of the 
Reissner's plate theory and the classical plate theory for a plate with a 

00 
through crack, -a<x2<ai under pure bending, M„ = Ma; v = 0.3, <? = 6Af0/ 
/ I2 , x2 = a(1 - es), e = hlJVOa 

1. 

€ .5 

o. 

( l - r v ) / ( 3 t v ) 

_J I 1 1 I t 1 1 1 1 1 J 1 L-

O 1 
h/a 

.7 

. 65 

.6 

.55, 

.O 

j i i i 

O. .06 
h /a 

Fig. 4 Normalized stress intensity factors in a plate under bending, 
<r = 6M0/h 

it s - 2(1 - t/)2(l - y)2 2 
K(u,v) = : + iv-uY v — u 

4 
•K, 

v-u 

2(v-u) 
(1-«)(!-«) 

^ = j T ^ ' ^(M) = h°^-

, (27) 

(28) 

The right-hand side of equation (25) is given at the bottom of 
Fig. 2. 

Equation (25) is numerically solved by letting 

Table 2 The effect of Poisson's ratio v on the normalized 
bending stress intensity factor for the limiting case of A/a—0 
for the Reissner's plate theory; o = 6M0/h

2 

v kt(h/2) 

0.0 
0.1 
0.2 
0.25 
0.3 
1.3 
0.4 
0.5 

a Va 

0.5774 
0.5957 
0.6124 
0.6202 
0.6277 
0.6325 
0.6417 
0.6547 

and writing 

f(u) (l-«)a / x 

\-u (1 + H) 

q(u) = J]AnP^-U2)(l 

(29) 

(30) 

where Pi™''3, are Jacobi polynomials. The value of a that gives 
the weight function associated with the solution of equation 
(25) is +1/2 . The equation can be solved for the unknown 
coefficients by using the collocation method (see collocation 
method and Sec. 5.10 in Baker, 1977). The computational 
effort required for solving equation (25) is more extensive than 
the numerical solution of equation (1) for h/a = 0.01, but less 
difficult than for h/a = 0.001. The unknown given by equation 
(29) could also be represented by using a = - 1/2. For this case 
the extra condition q( + 1) = 0 must be imposed on the solution. 
In terms of convergence and numerical efficiency, there is very 
little difference between using a = +1 /2 or a= - 1 / 2 . The 
advantage of using a = + 1/2 is that a nonzero value of q( + 1) 
is obtained. 

In order to compare the boundary layer solution to the 
solution for small e, we first use the definitions (3), (6), and 
(13) along with substitutions from (17), (19), (26), (28), and 
(29) to obtain the following expression for the difference be
tween the two plate theories in the limit as e—0: 

Eh f1 

! < , (l + K)1' 
q(u)du. (31) 

In Fig. 3 this quantity, divided by Ve, is compared to that 
obtained from equations (1), (3), and (8) for VlOe = h/a = 0.1, 
0.01, and 0.001. The dashed line in this figure corresponds to 
equation (31). 
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From the solution of equation (25) we can also obtain the 
contribution to the stress intensity factor corresponding to g(t) 
which is defined by equation (13). The total stress intensity 
factor may then be determined from equation (12) as follows: 

x3 

h/2 

1 + v 
21 + a<?(-l) (32) 

The stress intensity factors obtained from the Reissner's plate 
theory for x3 = h/2 and i> = 0.0, 0.3, 0.5 as functions of h/a 
are given in Table 1 and Fig. 4. The lower part of Fig. 4 shows 
that no discontinuity in the stress intensity factor exists for the 
limiting case of h/a-*0. The boundary layer effects do not 
seem to be apparent in this quantity. They are, however, ap
parent in the solution gr(f) of the integral equation (1) as can 
be seen from Figs. 1 and 3, (see also equation (3)). In Table 
2 the limiting stress intensity factors for various Poisson's 
ratios are given. It should be emphasized that, unlike the clas
sical plate theory, with the Reissner plate theory both defi
nitions (10) and (12) would give the same results (Joseph and 
Erdogan, 1989). It should also be pointed out that the through 
crack results in a plate under bending considered in this study 
and elsewhere are meaningful only if the plate is under tensile 
membrane loading of sufficiently high magnitude to keep the 
crack surfaces fully open. The contact problem for a plate 
under bending was recently considered by Joseph and Erdogan 
(1989). 
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Ratwani {1974) first considered the interaction between an 
isolated circular inclusion and a line crack embedded in infinite 
matrix. As commented by Erdogan et a/., their model is ap
plicable to the composite materials which contain sparsely dis
tributed inclusions. For composites filled with finite 
concentration of inclusions, it is commonly understood that 
the stress and strain fields near the crack depend considerably 
on the microstructure around it. One notable simplified model 
is the so-called three-phase model which was introduced by 
Christensen and Lo (1979). The three-phase model considers 
that in the immediate neighborhood of the inclusion there is 
a layer of matrix material, but at certain distance the heter
ogeneous medium can be substituted by a homogeneous me
dium with the equivalent properties of the composite. Thus, 
for the problems of which the interest is in the field near the 
inclusion, it can reasonably be accepted as a good model. The 
two-dimensional version of the three-phase model consists of 
three concentric cylindrical layers with the outer one, labeled 
by 3, extended to infinity. The external radii a and b of the 
inner and intermediate phases, labeled by 1 and 2, respectively, 
are related by (a/b)2 = c, where c is the volume fraction of the 
fiber in composite. 

In this Note, we shall confine ourselves to the crack which 
is located on the x-axis in the interval {f\, t2). The governing 
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From the solution of equation (25) we can also obtain the 
contribution to the stress intensity factor corresponding to g(t) 
which is defined by equation (13). The total stress intensity 
factor may then be determined from equation (12) as follows: 
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The stress intensity factors obtained from the Reissner's plate 
theory for x3 = h/2 and i> = 0.0, 0.3, 0.5 as functions of h/a 
are given in Table 1 and Fig. 4. The lower part of Fig. 4 shows 
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where the coefficients a„'s and a„"s are determined by solving 
a set of linear simultaneous equations given by Luo and Chen 
(1989), and 
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Stress intensity factors are readily derived from the stress 
field due to dislocations. The dimensionless stress intensity 
factors are defined by k*(tj) = ki(tj)/(o\fs)v/here i, j=l, 2, a 
is the remote uniform stress and s = (?2-^i)/2. 

The singular integral equations are solved numerically (Er-
dogan and Gupta, 1972). The fiber-reinforced composite with 
^i//i2 = 23, 1^=0.3, V2 = 0.35 and t\ = 1.05a, t2= 1.35a is con
sidered. The effective moduli of the composite (the elastic 
moduli of the outer phase) are evaluated based on the modified 
Mori-Tanaka method suggested by Luo and Weng (1989). 
Figure 2 shows the dimensionless stress intensity factors k*(t{) 
versus volume fraction of fiber for the above composites under 
uniaxial tension along the direction perpendicular to the crack 

(4) face. For comparison, the results calculated based on the two-
phase model (Erdogan et al. 1974) are also depicted. It is seen 
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that the volume fraction of fiber has considerable influence 
on the stress intensity factor of the crack. 

It is of interest to study the respective influence of the elastic 
property and the geometric parameters on the behavior of the 
matrix crack. Figure 3 shows the variation of k*(ti) versus ^3/ 
fi2 for a solid with /̂ 1 = 20/i2, vi = v2 = vi = 0.3, a/b=l/8, 
?, = 3.5a and t2 = 4.5a under uniaxial tension. Figure 4 shows 
the variation of k*(ti) versus b/a for a solid with Li! = 20^2, 
1̂3 = 10/x2, vl = v2 = vi = 0.3, t\ = 3.5a and t2 = 4.5a under uniaxial 
tension. As ^3/^2 increases, the solution of the three-phase 
model has an asymptotical value which corresponds to the case 
where the outer-phase is rigid. In Fig. 4 it is observed that the 
results for the three-phase model approach those of the two-
phase model remarkably slowly as the thickness of the inter
mediate matrix-phase increases. This is because the thickness 
of the outer phase, which in this case is harder than inter
mediate phase, is always infinitely large. 
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Buckling and Initial Post-Buckling Behavior 
of Laminated Oval Cylindrical Shells Under 
Axial Compression 

G. Sun19 

Introduction 
The influence of the laminate configuration on the per

formance of various composite plate, panel, and shell struc
tures has received extensive attention in the literature. Of the 
papers contributed to the stability of anisotropic laminated 
shells, the majority pertains to the stability and optimum design 
problem of laminated composite circular cylinders (e.g., Ten
nyson et al., 1971; Booton, 1976; Onoda, 1985; Zimmerman, 
1986). Recent studies (Tennyson and Hansen, 1983; Sun and 
Hansen, 1988) have shown that both the buckling load and 
the degree of imperfection sensitivity of composite circular 
cylinders are significantly affected by the wall laminate con
structions. However, the literature dealing with the stability 
problem of noncircular cylinders is meager in comparison. 
Early investigation on the buckling and post-buckling of iso
tropic oval cylinders was performed by Kempner and Chen 
(1976). Using the general theory of elastic stability which was 
first introduced by Koiter (1945) and later written in an equiv
alent version in terms of the principle of virtual work by Bu-
diansky and Hutchinson (1964), Hutchinson (1968) has studied 
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the initial post-buckling behavior of isotropic oval cylinders, 
indicating that oval cylinders fabricated from isotropic ma
terials are highly sensitive to small geometric imperfections. 
The buckling and vibration of laminated composite, noncir
cular cylindrical shells has been analyzed.by Soldatos and Tzi-
vanidis (1982), Soldatos (1984), and Hui and Du (1986), among 
others. 

The present study extends the development of Hutchinson 
(1968) to include oval cylinders made of anisotropic composite 
laminates without imposing any restriction on the lamination 
scheme. The shell analysis is based on Donnell's shallow shell 
theory and the post-buckling ^-coefficient is employed to in
dicate the sensitivity of laminated oval cylinders to asymmetric 
geometric imperfections. The intention of this work, however, 
is to examine the effects of the laminate configuration as well 
as the eccentricity of the oval cross-section on the buckling 
and initial post-buckling behavior of laminated composite oval 
cylinders. 

Analysis 
Let the midsurface of the cylindrical shell be the reference 

surface. The coordinates x and y are measured in the axial and 
circumferential directions, respectively. As shown in Fig. 1, 
noncircular cylindrical shells with two types of cross-sections 
are considered in this study. They are: (1) elliptical cross-
section and (2) nonellipsoidal oval cross-section. The points 
on the middle surface of a cylinder with an elliptical cross-
section satisfy 

i / \ 2 

(1) i' + B 
* =1 

where A and B are semi-lengths of the major and minor axes 
of the ellipse. The circumferential radius of curvature at any 
point on the ellipse is given by 

A1 

1 1 - - 7 7 
B2\?(y) 

(2) 

The cylinder with a nonellipsoidal oval cross-section, which 
was considered by Kempner and Chen (1967) and is referred 
to as an "oval" cylinder in the following context, is charac
terized by the circumferential radius of curvature 

R(y) = 
R„ 

\-e cosily/R0) 
(3) 

where e is the eccentricity parameter. At one limit (e =? 0) the 
oval reduces to a circle, while at the other (e = 1) corresponds 
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Fig. 1 Cross-section geometry 
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that the volume fraction of fiber has considerable influence 
on the stress intensity factor of the crack. 

It is of interest to study the respective influence of the elastic 
property and the geometric parameters on the behavior of the 
matrix crack. Figure 3 shows the variation of k*(ti) versus ^3/ 
fi2 for a solid with /̂ 1 = 20/i2, vi = v2 = vi = 0.3, a/b=l/8, 
?, = 3.5a and t2 = 4.5a under uniaxial tension. Figure 4 shows 
the variation of k*(ti) versus b/a for a solid with Li! = 20^2, 
1̂3 = 10/x2, vl = v2 = vi = 0.3, t\ = 3.5a and t2 = 4.5a under uniaxial 
tension. As ^3/^2 increases, the solution of the three-phase 
model has an asymptotical value which corresponds to the case 
where the outer-phase is rigid. In Fig. 4 it is observed that the 
results for the three-phase model approach those of the two-
phase model remarkably slowly as the thickness of the inter
mediate matrix-phase increases. This is because the thickness 
of the outer phase, which in this case is harder than inter
mediate phase, is always infinitely large. 
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Introduction 
The influence of the laminate configuration on the per

formance of various composite plate, panel, and shell struc
tures has received extensive attention in the literature. Of the 
papers contributed to the stability of anisotropic laminated 
shells, the majority pertains to the stability and optimum design 
problem of laminated composite circular cylinders (e.g., Ten
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1986). Recent studies (Tennyson and Hansen, 1983; Sun and 
Hansen, 1988) have shown that both the buckling load and 
the degree of imperfection sensitivity of composite circular 
cylinders are significantly affected by the wall laminate con
structions. However, the literature dealing with the stability 
problem of noncircular cylinders is meager in comparison. 
Early investigation on the buckling and post-buckling of iso
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the initial post-buckling behavior of isotropic oval cylinders, 
indicating that oval cylinders fabricated from isotropic ma
terials are highly sensitive to small geometric imperfections. 
The buckling and vibration of laminated composite, noncir
cular cylindrical shells has been analyzed.by Soldatos and Tzi-
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is to examine the effects of the laminate configuration as well 
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to an oval with B/A » 0.485. A reference radius R0 is defined 
to be the radius of the circle with exactly the same perimeter 
length as the ellipse or the oval. Nondimensional parameters 
are introduced as follows: 

(x,y)=(x,y)/sfRJ 

w=W/t 

R(y)=R(y)/R0 

{Afjt Bfj, Dfj) = (EntAfj, Bf,/t, Dfj/(En?)) 

F=F/(Ent
3) ( U = l , 2 , 6) 

N^NxRo/iEni1). (4) 

In the above it is noted that a symbol with an overbar is 
dimensional, while the same symbol without an overbar is 
nondimensional. Further, Afj, Bf), and Dfj are laminate coef
ficients as defined in Ashton et al. (1969), tis the wall thickness, 
W is the normal deflection of the shell middle surface, F is 
the Airy stress function, En is the elastic modulus of a lamina 
in the fiber direction, and Nx is the axial stress resultant. 

The buckling analysis is based on Donnell-type compatibility 
and equilibrium equations for "generally" laminated noncir-
cular cylindrical shells written in terms of the normal deflection 
Wand the stress function F. They are (Tennyson et al., 1971) 
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in which the operators are defined as 
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Following the method outlined in Hutchinson (1968), an 
asymptotic perturbation expansion of the solution valid in the 
neighborhood of the bifurcation point is assumed to be of the 
form 
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where A^ is the pre-buckling axial stress resultant (positive for 
compressive stress), Wlt F\ are the buckling field, W2, F2 are 
the second-order field, and e is the normalized amplitude of 
the buckling mode Wi and serves as the perturbation param
eter. As a first approximation to the problem the analysis 
neglects the effects of boundary constraints at both ends of 

the shell and the prebuckling normal deflection W0 and thus, 
in effect, treats the case of an infinitely long cylinder. Sub
stituting (6) into the governing equations (5) and setting the 
coefficients of e to zero yields the following eigenvalue problem 
for the buckling stress N°xc and Wi and F\: 
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Equating the coefficients of e2 to zero yields the equations for 
the second-order field 
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A solution of equations (7) is possible by means of separation 
of variables whereby, 

Wl(x,y) = w(y)e'Mx 

FAx,y)=f(y)eMx (9) 

where w(y) and/(.y) are complex functions of y. Equivalently, 
the solution can also be assumed in a separable form of real 
functions 

W\ (x,y) = W] (y)cos(Mx) + w2(y)sin(Mx) 
Fi(x,y) =fl(x)cos(Mx) +f2(y)sin(Mx). (10) 

Substituting (10) into equations (7) leads to four coupled fourth-
order ordinary differential equations for W[(y), w2(y), f\(y), 
a n d ^ O ) (see Sun, 1986). They are discretized using the finite 
difference technique. The normalized axial wave number M 
can be treated as a continuous variable since an infinitely long 
cylinder is considered. This eigenvalue problem can be solved 
for a number of values of M to find for each value the lowest 
eigenvalue A^c and the associated eigenfunction W\, w2,fu and 
f2. It is convenient to restrict the analysis to a one-quarter 
segment of the circumference running from y = 0 to y = q0 

= \/R0/tir/2(Fig. 1). The circumferential boundary conditions 
are determined in consideration of continuity and symmetry 
with respect to the major and minor axes. It can be concluded 
from the four ordinary differential equations that in case WiOO 
a n d / , 0 ) are symmetric with respect to one of the axes, w2(y) 
and f2(y) are antisymmetric with respect to the same axis and 
vice versa. Thus, the buckling mode can be identified as one 
of the following four groups according to the symmetry con
dition of functions Wi(y) and/iCy) only: SS (symmetric at both 
axes), SA (symmetric at the minor axis and antisymmetric at 
the major axis), AS (antisymmetric at the minor axis and sym
metric at the major axis) and AA (antisymmetric at both axes). 
These abbreviations for circumferential boundary conditions 
have been used by Hui and Du (1986). The boundary conditions 
at either the minor axis (y = 0) or the major axis (y = q0) for 
the " S " mode are 

wUy = 0, 
w2 = 0, 

WUyyy-

W2,yy = 

; 0 , f\,y — 0, fl,yyy — 0 
0, / 2 = 0, f2,y 0. (11) 
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Fig. 2 Buckling load and fa-coefficient for elliptical cylinders with (a) 
(90,0,0,90), (b) (90,45, - 45,90), and (c) (45,0, - 45,90,90,45,0, - 45) lami
nation 

The boundary conditions for the " A " mode are 

Wi=0, WUyy = 0, / i = 0 fl,yy = ° 
W2,y = 0, W2,yyy = Q, f2,y = 0, fl,yyy = Q- (12) 

The nonhomogeneous terms on the right-hand sides of the 
second-order field equations (8) are quadratic in W1 and Fu 

Thus, solutions to these equations are sought in the separable 
form 

W2(x,y) = w3(y) + w4(>')cos(2Mx) + w5(y)sin(2Mx) 
F2(x,y) =My) +My)cos(2Mx) +My)sin(2Mx) (13) 

where Mis predetermined in the buckling analysis. Substituting 
equations (13) into (8) leads to two coupled fourth-order or
dinary differential equations for w3(y) and My), and four 
coupled fourth-order ordinary differential equations for w4(y), 
w5(y), My)> a n d / 5 0 0 . T n e nonhomogeneous terms to all 
these ordinary differential equations are quadratic in wu w2, 
/ 1 , and/ 2 , and are symmetric with respect to the major and 
minor axes. Accordingly, the boundary conditions for w3,f3, 
w4, and / 4 are symmetric about both axes while the boundary 
conditions for w5 and / 5 are antisymmetric about both axes 
for all four buckling modes, that is (Sun, 1986), 

W3,y=0, W3,yyy = 0, f3,y = 0, Myyy = ® 
W4j.= 0, W4jw,= 0, A,y = 0 fi,yyy = 0 

W5 = 0, W 5 w = 0, / 5 = 0, f5,yy= 0. (14) 

Solutions to problems (7) and (8) are used to express the equi
librium relation of applied axial load Nx to normalized buckling 
deflection e in the vicinity of the buckling load N%. as 

^ = l + * e 2 + . . . (15) 

where the postbuckling coefficient "b" is in the form 

b= ]2 j \Fl,„W1„W2,, + Fi.xyW2,xWl,x-Fl»ty(W1,xW2,y 

+ WUyW2,x)]dS+ \ lF2>XXWiy + F2,yyWJ,x 

-2Fitx,WitxWlty\ds\ + U & j W\>xdS . (16) 

A general development of this theory and the significance of 

N°xc .835 .714 .625 .55 .5 
2 1 , , 1 1 r 

Fig. 3 Buckling load and ^-coefficient for oval cylinders with (a) 
(90,0,0,90), (b) (90,45,-45,90), and (c) (45,0,-45,90,90,45,0,-45) lami
nation 

the post-buckling coefficient "b" can be found in Hutchinson 
(1968). 

Results and Discussion 

One of the important findings reported by Tennyson and 
Hansen (1983) is that some laminated graphite/epoxy circular 
cylinders can withstand compressive load more than twice as 
high as some other circular cylinders of the same size and 
material, yet different wall laminate configuration. Their post-
buckling character also differs substantially from each other. 
Naturally, it is of interest to examine how laminated cylindrical 
shells will behave when eccentricity effect is taken into account. 
The shells considered are assumed to be made of graphite/ 
epoxy laminates with lamina elastic properties Eu = 14.1 x 
1010N/m2, £22 = 0.97 x 1010N/m2, Gl2 = 0.41 x 1010N/m2, 
and vi2 = 0.26, and geometric parameter R0/t = 165. As a 
check on the analysis and numerical procedure developed, the 
buckling load and ^-coefficient obtained using isotropic ma
terial properties coincide well with that presented by Hutch
inson (1968). 

The effects of the eccentricity parameter (B/A) on the buck
ling load A^c and the value of the post-buckling coefficient b 
are shown in Fig. 2 for laminated elliptical cylinders with three 
laminate configurations: (a) (90,0,0,90), (b) (90,45,-45,90), 
and (c) (45,0,-45,90,90,45,0,-45). (Numbers in parenthesis 
are orientations of each ply from the inner wall of the shell 
out; the degree sign notation has been omitted.) In Fig. 3, the 
results of A^c and b versus the eccentricity parameters e are 
plotted for laminated oval cylinders with these three lamina
tions. It was found that in every case studied, the results for 
both N°xc and b of the SS and SA modes, which are plotted in 
thick lines in Figs. 2 and 3, are indistinguishable, while the 
results of the AS and AA modes are indistinguishable too. 
They are plotted using thin lines of the same line style in Figs. 
2 and 3 if their divergence from the results of the SS and SA 
modes is distinguishable. It should be noted that for a given 
group of circumferential boundary conditions, the buckling 
mode shape also varies in axial wave length with the increase 
of eccentricity. It was found that the discontinuities of b-
coefficient curves for (45,0, - 45,90,90,45,0, -45) cylinders in 
Figs. 2 and 3 are caused by a jump in axial wave length of the 
buckling mode. The discontinuities of postbuckling curves for 
(90,0,0,90) cylinders, however, are caused by a shift of a buck-
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ling mode with w{ •& 0, H>2 = 0 to a buckling mode with w{ 
= 0, w2 7

s 0, or vice versa. All the A ĉ curves appear to be 
continuous for the full range of eccentricity because the buck
ling loads are not susceptible to these changes. Obviously, the 
buckling loads for both elliptical and oval cylinders with 
(45,0, - 45,90,90,45,0, - 45) lamination are about twice as high 
as the other two laminations for the full range of eccentric
ity. The 6-coefficients for cylinders with (90,0,0,90) 
and (90,45,-45,90) laminations are positive, showing their 
stable postbuckling behavior. The "b" curves for 
(45,0,-45,90,90,45,0,-45) cylinders indicate that they are 
slightly postbuckling unstable for the range of small eccen
tricity and highly post-buckling unstable for sufficiently large 
eccentricity. It can also be seen from Figs. 2 and 3 that in the 
higher range of "e ," the buckling load of an oval cylinder is 
much lower than that of an elliptical cylinder with the same 
minor-major axis ratio (B/A). 

From the above examples we may conclude that the buckling 
load and the initial post-buckling behavior of laminated com
posite noncircular cylinders, like laminated circular cylinders, 
are significantly affected by the wall laminate configuration. 
An optimization procedure for the selection of wall laminate 
structure is crucial in the design of laminated composite non-
circular cylinders for buckling. 
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Stress Analysis of Smooth Polygonal Holes 
via a Boundary Perturbation Method 

Boundary Perturbation Method 
This note presents an analysis of smooth polygon holes in 

an elastic sheet via a boundary perturbation method that can 
be formulated by the following steps. Let a sheet containing 
a circular hole be subjected to a fixed loading system and an 
additional point force P, at a position (x, y), with PjbUj(x,.y) 
equal to the work done by the force at an incremental dis
placement 6UJ(X, y). Imagine that the hole boundary, initially 
at the circle r = a, is perturbed to a neighboring position by 
some variable normal distance 8a(d') (Fig. 1). Treating 8a(d') 
as infinitesimal, the change in the total energy T is 

wba(6')ad6' (1) 
o 

where w is the strain energy density along the unperturbed 
circular hole boundary. For plane stress conditions, vc is related 
to the hoop stress aee by 

w=<&/2E. (2) 
The energy variation due to the shape change of a void or hole 
was first studied by Rice and Drucker (1967). Let equation (1) 
be rearranged into the following form known as the Legendre 
transformation: 

S(Piui-T)=ui8Pi+(\ wg{d')add'\bA (3) 

where ba(Q') has been written as g(9')8A. The right side of 
equation (3) being a perfect differential, the coefficients of <5P, 
and 8A must satisfy the Maxwell reciprocal relation 

S-si(I>'>-') 
= 4 [ coe(0')Vee(6'\x,y)g{6')ade'. (4) 

Here we have identified daM/dP; as the stress Green's function 
T,'m(d'\x, y), i.e., the stress at a boundary point 8' due to a 
unit point force in / direction at x, y. Multiplying both sides 
of (4) by 8A and letting P, = 0 yield 

SUi(x,y)=^\ a0ee(d')Ei
ee(d

,;x,y)8a{d')add' (5) 

where ale denotes the original stress field in absence of the 
point force P,. 

Equation (5) provides a first-order boundary perturbation 
formula for calculation of the displacement field of a nearly 
circular hole. In the perturbation analysis, a hole with a com
plex shape r = a(6') is viewed as being perturbed from a 
reference circular hole by a small perturbation ba(d'). The 
displacement field for the actual hole is written as 

u,(x, y) = i4(x, y) + 5UJ{X, y) (6) 

where ifi (x, y) is the reference solution (of a circular hole) 
and 5 Uj(x, y) is given by (5). This perturbation procedure 
parallels an earlier development of a crack perturbation theory 
by Rice (1985). 
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ling mode with w{ •& 0, H>2 = 0 to a buckling mode with w{ 
= 0, w2 7

s 0, or vice versa. All the A ĉ curves appear to be 
continuous for the full range of eccentricity because the buck
ling loads are not susceptible to these changes. Obviously, the 
buckling loads for both elliptical and oval cylinders with 
(45,0, - 45,90,90,45,0, - 45) lamination are about twice as high 
as the other two laminations for the full range of eccentric
ity. The 6-coefficients for cylinders with (90,0,0,90) 
and (90,45,-45,90) laminations are positive, showing their 
stable postbuckling behavior. The "b" curves for 
(45,0,-45,90,90,45,0,-45) cylinders indicate that they are 
slightly postbuckling unstable for the range of small eccen
tricity and highly post-buckling unstable for sufficiently large 
eccentricity. It can also be seen from Figs. 2 and 3 that in the 
higher range of "e ," the buckling load of an oval cylinder is 
much lower than that of an elliptical cylinder with the same 
minor-major axis ratio (B/A). 

From the above examples we may conclude that the buckling 
load and the initial post-buckling behavior of laminated com
posite noncircular cylinders, like laminated circular cylinders, 
are significantly affected by the wall laminate configuration. 
An optimization procedure for the selection of wall laminate 
structure is crucial in the design of laminated composite non-
circular cylinders for buckling. 
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Stress Analysis of Smooth Polygonal Holes 
via a Boundary Perturbation Method 

Boundary Perturbation Method 
This note presents an analysis of smooth polygon holes in 

an elastic sheet via a boundary perturbation method that can 
be formulated by the following steps. Let a sheet containing 
a circular hole be subjected to a fixed loading system and an 
additional point force P, at a position (x, y), with PjbUj(x,.y) 
equal to the work done by the force at an incremental dis
placement 6UJ(X, y). Imagine that the hole boundary, initially 
at the circle r = a, is perturbed to a neighboring position by 
some variable normal distance 8a(d') (Fig. 1). Treating 8a(d') 
as infinitesimal, the change in the total energy T is 

wba(6')ad6' (1) 
o 

where w is the strain energy density along the unperturbed 
circular hole boundary. For plane stress conditions, vc is related 
to the hoop stress aee by 

w=<&/2E. (2) 
The energy variation due to the shape change of a void or hole 
was first studied by Rice and Drucker (1967). Let equation (1) 
be rearranged into the following form known as the Legendre 
transformation: 

S(Piui-T)=ui8Pi+(\ wg{d')add'\bA (3) 

where ba(Q') has been written as g(9')8A. The right side of 
equation (3) being a perfect differential, the coefficients of <5P, 
and 8A must satisfy the Maxwell reciprocal relation 

S-si(I>'>-') 
= 4 [ coe(0')Vee(6'\x,y)g{6')ade'. (4) 

Here we have identified daM/dP; as the stress Green's function 
T,'m(d'\x, y), i.e., the stress at a boundary point 8' due to a 
unit point force in / direction at x, y. Multiplying both sides 
of (4) by 8A and letting P, = 0 yield 

SUi(x,y)=^\ a0ee(d')Ei
ee(d

,;x,y)8a{d')add' (5) 

where ale denotes the original stress field in absence of the 
point force P,. 

Equation (5) provides a first-order boundary perturbation 
formula for calculation of the displacement field of a nearly 
circular hole. In the perturbation analysis, a hole with a com
plex shape r = a(6') is viewed as being perturbed from a 
reference circular hole by a small perturbation ba(d'). The 
displacement field for the actual hole is written as 

u,(x, y) = i4(x, y) + 5UJ{X, y) (6) 

where ifi (x, y) is the reference solution (of a circular hole) 
and 5 Uj(x, y) is given by (5). This perturbation procedure 
parallels an earlier development of a crack perturbation theory 
by Rice (1985). 
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reference circular hole 

Sa(e') 
perturbed hole 

a(8)= i+ cos n e / ( l + n ' z ) 

Fig. 1 A nearly circular hole with radius a(0') that deviates slightly from 
constancy; the reference circle with radius a{$) at the observation 
point 6 

A ii 

(a) 

b/c 

Fig. 2 (a) An elliptical hole subjected to remote uniaxial tension T; (b) 
pertubation versus exact stress concentration factor S" (0) at the semi-
long axis. 

The stress field can be further derived from (5), (6) by 
Hooke's law. For proper integral convergence in the calcu
lation of stress at a chosen boundary point 0, it is necessary 
to choose the reference circular hole at r = a (0) so that 8a(0') 
= a(6') - a(0) vanishes when 0' = 6. Using the solution 
for the Green's function L'ee in the literature (e.g., Green and 
Zerna, 1968) we have obtained the following first-order result 

cr„(0) = <&(0) 

-ir I 2n 

0 

cos(0'-0) 4,(0')[«(n-««?)] 
sin2[(0'-0)/2] m 

dO' (7) 

for the hoop stress distribution along the given hole boundary 
at r = a (0'). Here "P V" denotes principal value in the Cauchy 
sense and o°m (0') is the hoop stress distribution for the reference 
circular hole under the same loading conditions. 

Elliptical Hole 
To evaluate the accuracy of the perturbation formula (7), 

consider, for example, an elliptical hole subjected to uniaxial 
tension T (Fig. 2). The maximum stress occurs at the semi-
long axis 0 = 0. Define the stress concentration factor of the 
elliptical hole as S = a„ (Q)/T. Then the exact result for S is 

S?=\+2b/c. (8) 

n = 3 n=4 

(a) 

n=5 n=6 

Fig. 3 Polygonal shapes s imula ted by s inusoidal wavy shapes: 
(a) equilateral triangle, (b) square, (c) pentagon, (d) hexagon 

The shape function of an ellipse can be written as 
be 

a(6')=- (9) 
V&^nV+^cos 2©' 

Substituting (9) and the known reference stress distribution 
ogfl(0')=r(H-2cos20') (10) 

into the perturbation formula (7) leads to the following first-
order result for the stress concentration factor (at 0 = 0): 

Sf 
2ir Jn 

^(l+2cos20')cos0, 

sin2(0'/2) 

l)dd'. (11) 
.V(&/c)2sin20'+cos20' 

As plotted in Fig. 2(b), the perturbation result calculated from 
(11) shows agreement with the exact solution (8) for the aspect 
ratio b/c as large as 1.6 within five percent error and for b/c 
as large as 2 within ten percent error. 

Smooth Polygon Holes 
It is interesting to consider holes with the following cosine 

shape function 
a(0) =a0 + Acosnd (12) 

(A/a0 < < 1). The case n = 1 corresponds to a rigid translation 
of the circle r — a0 and n = 2 corresponds to slightly squeezing 
the circle into an ellipse. The above cosine function can also 
simulate polygon shapes with smoothed corners as shown in 
Fig. 3 for n > 3. The polygon shapes are best approximated 
by (12) when the curvature is required to vanish at the most 

• concave locations where cos nd = - 1, corresponding to 
having 

A=a0/(\+n2). (13) 
The fact thsAA/aa < 0.1 when n > 3 indicates that the polygon 
shapes given by (12), (13) represent small perturbations from 
a circle, and suggests use of the boundary perturbation formula 
(7) to estimate the stresses. When the holes are subjected to a 
remote tension u"y = T, the perturbation formula (7) predicts 
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a„m = 1+ 2cos20 

A r2" 
_- pv\ 

2ira0 J0 

cos(0' - 0)( 1 + 2cos20' )(cos«0' - cosw0) 

sin2[(6»' — 6»)/2] 
dd'. 

(14) 

(15) 

(16) 

Carrying out the integration yields the final result 

^ ^ = 1 + 2cos20 - — sin26»sin6» 
T a0 

for translation mode n = 1, 

^ r = 1 + 2cos20 + —(2cos40 + cos20 - 1) 
T a0 

for elliptical mode n = 2 and 

^ 9 = l + 2 c o s 2 0 + — [(«-l)cos20 
T a0 

+ 2(« - 2)cos20cosn0 - 4sin20sin«0] (17) 

for polygon modes n > 3. Maximum stress concentration for 
the smooth polygons (« > 3, A/a0 = 1/(1 + «2)) occurs at 0 
= 0 with the stress concentration factor 

S = 3 + 2(3r t -5) / ( l+n 2 ) . (18) 

The above S equals 3.8 for the triangular shape n = 3 and 
approximately 3.82 for the square shape n = 4, then it mon-
otonically decreases toward the asymptotical value 3 as the n 
is increased to approach the circular limit (a convex polygon 
with infinite number of edges). Therefore, the smooth shapes 
given by (12), (13) compromise between reasonable stress con
centration factor (3 < S < 3.82) and closely matching polygon 
shapes (Fig. 3). These polygon shapes may find useful appli
cations in a practical design process. 

A Fourier analysis for a nearly circular hole can be developed 
based on our perturbation results. Assume a shape function 
which is symmetric about the x-axis and given by the series 
expansion 

a (0) = a0 + ^A „cos«0 (19) 

where 

{
2TT n2ir 

a(d)dd, itAn = a(d)cosnddd. (20) 
o Jo 

Then it follows from (17) that the stress concentration factor 
(at 0 = 0) is 

2An S=3+Y,—- ( 3 « - 5 ) . 
n= 1 u 

(21) 

By standard theorems on Fourier series, the last expression 
will converge when da(6)/dd is continuous at 0 = 0. 

Conclusion 
The boundary perturbation formula (7) seems to give rea

sonable predictions for the stress distribution of a nearly cir
cular hole in an elastic sheet. Of particular interest are the 
cosine shape functions (12), (13) which have been found to 
give closely matching polygon shapes with only minor stress 
concentration factor. These shapes may thus find practical 
applications in a design process. 

The methodology developed here provides a perturbation 
approach to study holes, voids, inclusions, surfaces and in
terfaces with complex shape profiles, based on known solutions 
for a simple geometry such as a flat surface or a circular hole. 
The method has recently been applied to study the stress con

centration effect of an undulating surface morphology by Gao 
(1991). 
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Closed-Form Solution for the Composite 
Sphere Subject to Quadratic Eigenstrains 
With Radial Symmetry 

Mauro Ferrari21 

Introduction 
This paper contains the closed-form solution for the problem 

of a biphase sphere, in the presence of a polar symmetric 
eigenstrain field, represented by a quadratic polynomial in each 
phase. In general, the determination of the residual stress field 
generated in composite structures during service, as well as 
during deposition and forming procedures, is essential for fail
ure analysis and for an effective design of these procedures. 
In particular, the present problem is relevant in the analysis 
of glass-fiber-reinforced polymers with an inhomogeneous ma
trix moisture absorption, and of plasma-sprayed ceramic coat
ings on metallic substrates (Ferrari and Harding, 1990). 

A comprehensive discussion of eigenstrain problems is given 
in Mura's treatise (1982). The case of polynomial eigenstrains 
in a subdomain of an infinite body is also presented there. 
The problem of a three-phase spherically concentric solid, sub
ject to polynomial eigenstrains in the included core only, is 
solved by Luo and Weng (1987) using a procedure of Eshelby's 
(1957). Multilayered bodies, subject to an homogeneous tem
perature change, are considered by Mikata and Taya (1986). 
The analysis of a solid or hollow sphere subject to a radially 
symmetric eigenstrain, of thermal nature, can be found in 
Chapter 9 of (Boley and Weiner, 1985). This fundamental text 
also contains an extensive literature review on the problem of 
the thermally loaded sphere. An approximate analysis of ther
mally-induced stresses in multilayered structures is found in 
(Suhir, 1988). 

The General Eigenstrain Problem 
Given a body B + dB, of boundary dB, subject to an eigen

strain field e*, the field equations governing the displacement 
,u, the strain e, and the stress T are: 
the strain-displacement relations 
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This paper contains the closed-form solution for the problem 

of a biphase sphere, in the presence of a polar symmetric 
eigenstrain field, represented by a quadratic polynomial in each 
phase. In general, the determination of the residual stress field 
generated in composite structures during service, as well as 
during deposition and forming procedures, is essential for fail
ure analysis and for an effective design of these procedures. 
In particular, the present problem is relevant in the analysis 
of glass-fiber-reinforced polymers with an inhomogeneous ma
trix moisture absorption, and of plasma-sprayed ceramic coat
ings on metallic substrates (Ferrari and Harding, 1990). 

A comprehensive discussion of eigenstrain problems is given 
in Mura's treatise (1982). The case of polynomial eigenstrains 
in a subdomain of an infinite body is also presented there. 
The problem of a three-phase spherically concentric solid, sub
ject to polynomial eigenstrains in the included core only, is 
solved by Luo and Weng (1987) using a procedure of Eshelby's 
(1957). Multilayered bodies, subject to an homogeneous tem
perature change, are considered by Mikata and Taya (1986). 
The analysis of a solid or hollow sphere subject to a radially 
symmetric eigenstrain, of thermal nature, can be found in 
Chapter 9 of (Boley and Weiner, 1985). This fundamental text 
also contains an extensive literature review on the problem of 
the thermally loaded sphere. An approximate analysis of ther
mally-induced stresses in multilayered structures is found in 
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strain field e*, the field equations governing the displacement 
,u, the strain e, and the stress T are: 
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e = sym(grad(u)), (la) 

the constitutive equations 

T = C(e-e*), (lb) 

and the equilibrium conditions 

d iv r + f = 0. (Ic) 

Here, C and f denote the elastic stiffness tensor field, and 
the body force vector, respectively, while div(.), grad(.) and 
sym(.) are the divergence, the gradient, and the symmetric part 
operators. 

Appropriate boundary condition for the field equations (1) 
are specified as 

r n = t on dB, (2a) 

where n is the outward unit normal, and 

u = u on dBu. (2b) 

In equations (2), t and u are assigned tractions and displace
ment vectors, respectively, and dB, and dBu are complementary 
portions of dB. 

The field equation system (1) may be reduced to the form 

div[C sym(grad(u))] = div(C «*) - f. (3) 

The case of zero-body forces and applied boundary tractions 
is studied below. By virtue of the linearity of the field equa
tions, the solution for the eigenstrained body with applied 
external forces may be obtained upon superposition of the 
solution for the eigenstrained body with no external loadings 
and of the solution for the externally loaded body with no 
eigenstrains. 

The Eigenstrained Composite Sphere 
Let the spherical region 0 < r < i ? i be occupied by material 

1, and the surrounding region R\ <r<R2 be occupied by ma
terial 2. Both materials are isotropic and homogeneous, and 
are subject to the eigenstrain fields 

et=ai(Air
2 + Bir+Cl)I /= 1,2. (4) 

Here, I is the identity tensor, A,, B,, and C, are specified 
eigenstrain parameters, and a, is a material constant, corre
sponding to the type of eigenstrain. The assumption of material 
isotropy and the polar symmetry of the problem reduce the 
equilibrium requirements (3) for the z'th phase to the single 
equation 

'*" - - • - • - ~ ; = i , 2 , (5) 

T2- = 0 &tr = R2 

d2 u 2 
drr+r dr 

,ai3h±2*i2Air+mt 
X/ + 2/1 j 

in the ;'th phase radial displacement «,-. Here, the A, and m are 
Lame's constants. Equation (5) is expressed in a spherical polar 
coordinate system (r, <p, ff). This is employed throughout the 
present work. 

The solution of (5) is, for the ith phase, 

3X/ + 2/t, 
«/ = «.• 20(X/ + 2/i() 

(4 A, r+5Bd r2 + kar + ki2/r
2, (6) 

where the ky are constants of integration. The normal stresses 
in the radial and transverse directions are, respectively, 

T?=-(3X,- + 2ft) a, 
m(4A,r+5Bd 

5(X,- + 2/0 
r+C, ~kn 

T J = - ( 3 X , + 2/,,) a,-
/*,-(16/4,-r+lS£f) 

10(X, + 2/*,) r+C, -kn\ + 

" r 3 

(7) 

2ixiki2 

The constants of integration are determined upon imposing 
boundary, interface and boundedness conditions: 

Ui = U2) 
a.tr = R 

r\ = rr
2) 

«! = 0 a t r = 0 . 

(8) 

It is noted that the vanishing of U\ at the origin is equivalent 
to its being infinite there, and mathematically given by the 
vanishing of k\2. 

Upon imposing equations (8), the integration constants are 
found: 

kn = 
1 

5Dt 

k2,=-
1 

{all3nlLn[P2i(^-^)R2 + ^l3l2Rl] + 

+ a2 /32I flu /x2 (M22-M2i)} (9) 

(a, j8n fe /*2 Afn + 
15 D h 

+ a2 021[022 i>,2 (L22 R\-L2X R]) + 5 Bn N2]} (10) 

k22 = (Pn #1/20 D 023){ai 0„ 023 M21 + 

-a2R\[4^ix2 L2i+ +021 fe 2,21 + 20 0n N2]}. (11) 

For these equations, the following definitions are intro
duced: 

Material parameters 

0/i s 2/*,-+3 X, = 3 kj 

Pa = 2iij+3 X/ + 4/i,- = 0/i + 4 w > i*j (12) 

0/3 = 2 /X/+X/ 

/34 = 0 n - 0 2 i . 

Loading-geometry parameters (no sum on repeated indices) 

L^lA^Rj+SB^Rj 

Mij= [3 Ly + 20 Q]R] (13) 

^ , = 0/3 C, 

and 

£> = (02, 022#2 + 4M2^4#l) /3. (14) 

In equation (12), kj is the bulk modulus of the jth phase. 
For a solid or hollow sphere, the solution (6)-(7) with (9)-

(14) may be obtained following the method of Boley and 
Wiener (1985, Section 9.14). If the outer phase is not subjected 
to eigenstrains—i.e., if A2 = B2 = C2 = 0 - then the above 
solution is a special case of the general solution given by Luo 
and Weng (1987) for the inclusion problem in a three-phase 
spherical concentric solid: Our solution may be obtained from 
that memoir upon letting the moduli of their ' 'c'' phase vanish, 
and letting 7V=3 in their equation (4.1). 

In the presence of a spatially uniform eigenstrain throughout 
the composite sphere (At = Bi = 0, C, = C, i = 1,2), the 
stresses may be put in the simple form 

Tr
i = T\ = C(ai-a2)(l-R

i
2/Rl)P 

Tr
2 = C(al-a2)(l-R

i
2/r

3)P (15) 

T'2 = C(al-a2)(l+Rl/2ri)P 

where P is defined as 

P = 4 0,i w R\/(A 04 v.2 fl? + 02, 022 Rl). (16) 

It may be noted that (15) implies that 
sign(ri) = sign(r2) = =sign(Ti)= -sign(r2), that is, the normal 
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stresses in the t? - and <p - directions in the cover material are 
tensile whenever all other stresses are compressive, and vice 
versa. 

For the case of a thin film, upon introducing a measure of 
smalmess € = (R\-R\)/R], from (16), one deduces that 

P(e) = 4 ^ 2 

ft>i + 4 fi2 
1 4 fel fa /*2 

.fa+^2 
(17) 

to first order in e. Equation (15) then shows that all other 
normal stresses are negligible, with respect to T'2, in the linear 
theory. 
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Contact of a Smooth Flat Indenter on a 
Layered Elastic Half-Space: Beam on an 
Elastic Foundation Model 

T. W. Shield22 

Our previous work (Shield and Bogy, 1989; SB89 in the 
following) considered the elastic contact of a rigid flat indenter 
on a layered elastic half-space. It was found that there are 
three possible contact region configurations depending on the 
geometrical and material properties. In the case of a single 
layer the type of solution depends on the layer thickness to 
indenter half-width ratio, h* =h /a , and the shear modulus of 
the layer relative to the substrate, /** = /*,//*„ where m is the 
shear modulus of the layer and ns is the shear modulus of the 
substrate. Because the calculations involved in the full elastic 
solution are extensive, it is of interest to consider simplifica
tions of the problem. The problem is greatly simplified if the 
elastic system is modeled by an elastic beam on a Winkler 
foundation. The complicated system of partial differential 
equations for the problem reduces to a single ordinary differ
ential equation in the surface displacement. However, as will 
be shown, many features of the solution are lost. 

This simplified problem has already been considered in an
other context. The equation for the normal displacement of a 
beam on an elastic foundation is identical to the equation for 
shrink-fit problems involving cylindrical shells with a simple 
redefinition of the parameters. The case of a finite length elastic 
ring shrunk-fit around a cylindrical shell was first considered 
by Paul (1962). Becker (1962) in a discussion of Paul's work 
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noted that separation was possible between the ring and the 
shell for a range of the parameters. Becker and Paul only 
considered the case of a single region of separation, although 
Becker noted a two region configuration was possible. Bogy 
(1987) considered problems involving rigid plugs shrunk-fit 
inside cylindrical shells that have one or two regions of sep
aration. These two cases are the only configuration found to 
exist by Bogy. The configuration with no regions of separation 
is not admissible because simple shell theory does not permit 
the displacement kink (slope singularity) that would be needed 
to allow the shell to conform to the plug at all points. The 
finding that there are no solutions with more than two sepa
ration regions agrees with the argument presented in SB89 that, 
there are only three possible contact region configurations. 

To allow comparison, the shrink-fit problem considered by 
Bogy will be reformulated as indenter problem and then his 
results will be presented along with the results of SB89. Figure 
1 shows the geometry of the shrink-fit problem and the cor
responding indentation problem. The ODE that governs the 
behavior of the shell is equation (1) of Bogy (1974), 

(?v//dx* + Atfw = Z/D , (1) 

where w is the normal displacement of the shell and the Z is 
the loading. The bending stiffness, D = Eh*/12(1 -v1), is un
changed in our application, only the definition of /3 needs to 
be modified. In the case of a cylindrical shell, /3 depends on 
the shell radius and Poisson's ratio. For the case of an elastic 
foundation we have 

p = $K/4D, (2) 
where A'is the stiffness of the foundation. To allow comparison 
to the full elastic solution, we need to write 0 in terms of h* 
and ii*. This is accomplished by considering the quantity a = 
131/2, which is nondimensional. The length of the plug, /, in 
Bogy's solution corresponds to the indenter with 2a. Thus, 

h* = 2h/l, 

where the layer thickness, h, is the same in both cases, as is 
the modulus of the layer E. The substrate stiffness K cannot 
be directly related to the actual elastic modulus of the substrate 
Es. A plane-strain formulation does not allow calculation of 
the total indentation (and hence the compliance) of the surface 
because of the singular nature of the displacements at infinity. 
A rough approximation is that 

K=Es/l. 

Combining the above identifications gives 

a = |3//2= 41 
6(l-V,)(l + ps) 

(4) 

(5) 
H*(fl*) 

where vt and vs are the Poisson's ratios of the layer and sub
strate, respectively. All of the results of interest from Bogy 
(1974) are in terms of this single quantity which involves the 

W 

Fig. 1 The geometry of the shrink-fit problem (a) and the contact prob
lem (6). The thickness of the shell is not shown for clarity. 
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following) considered the elastic contact of a rigid flat indenter 
on a layered elastic half-space. It was found that there are 
three possible contact region configurations depending on the 
geometrical and material properties. In the case of a single 
layer the type of solution depends on the layer thickness to 
indenter half-width ratio, h* =h /a , and the shear modulus of 
the layer relative to the substrate, /** = /*,//*„ where m is the 
shear modulus of the layer and ns is the shear modulus of the 
substrate. Because the calculations involved in the full elastic 
solution are extensive, it is of interest to consider simplifica
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foundation. The complicated system of partial differential 
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ential equation in the surface displacement. However, as will 
be shown, many features of the solution are lost. 

This simplified problem has already been considered in an
other context. The equation for the normal displacement of a 
beam on an elastic foundation is identical to the equation for 
shrink-fit problems involving cylindrical shells with a simple 
redefinition of the parameters. The case of a finite length elastic 
ring shrunk-fit around a cylindrical shell was first considered 
by Paul (1962). Becker (1962) in a discussion of Paul's work 

Brown University, Providence, RI 02912. Currently at the Department of 
Aerospace Engineering and Mechanics, University of Minnesota, MN 55455. 
Assoc. Mem. ASME. 

Manuscript received by the ASME Applied Mechanics Division, Jan. 23,1990; 
final revision, Sept. 11, 1990. 

noted that separation was possible between the ring and the 
shell for a range of the parameters. Becker and Paul only 
considered the case of a single region of separation, although 
Becker noted a two region configuration was possible. Bogy 
(1987) considered problems involving rigid plugs shrunk-fit 
inside cylindrical shells that have one or two regions of sep
aration. These two cases are the only configuration found to 
exist by Bogy. The configuration with no regions of separation 
is not admissible because simple shell theory does not permit 
the displacement kink (slope singularity) that would be needed 
to allow the shell to conform to the plug at all points. The 
finding that there are no solutions with more than two sepa
ration regions agrees with the argument presented in SB89 that, 
there are only three possible contact region configurations. 

To allow comparison, the shrink-fit problem considered by 
Bogy will be reformulated as indenter problem and then his 
results will be presented along with the results of SB89. Figure 
1 shows the geometry of the shrink-fit problem and the cor
responding indentation problem. The ODE that governs the 
behavior of the shell is equation (1) of Bogy (1974), 

(?v//dx* + Atfw = Z/D , (1) 

where w is the normal displacement of the shell and the Z is 
the loading. The bending stiffness, D = Eh*/12(1 -v1), is un
changed in our application, only the definition of /3 needs to 
be modified. In the case of a cylindrical shell, /3 depends on 
the shell radius and Poisson's ratio. For the case of an elastic 
foundation we have 

p = $K/4D, (2) 
where A'is the stiffness of the foundation. To allow comparison 
to the full elastic solution, we need to write 0 in terms of h* 
and ii*. This is accomplished by considering the quantity a = 
131/2, which is nondimensional. The length of the plug, /, in 
Bogy's solution corresponds to the indenter with 2a. Thus, 

h* = 2h/l, 

where the layer thickness, h, is the same in both cases, as is 
the modulus of the layer E. The substrate stiffness K cannot 
be directly related to the actual elastic modulus of the substrate 
Es. A plane-strain formulation does not allow calculation of 
the total indentation (and hence the compliance) of the surface 
because of the singular nature of the displacements at infinity. 
A rough approximation is that 

K=Es/l. 

Combining the above identifications gives 

a = |3//2= 41 
6(l-V,)(l + ps) 

(4) 

(5) 
H*(fl*) 

where vt and vs are the Poisson's ratios of the layer and sub
strate, respectively. All of the results of interest from Bogy 
(1974) are in terms of this single quantity which involves the 

W 

Fig. 1 The geometry of the shrink-fit problem (a) and the contact prob
lem (6). The thickness of the shell is not shown for clarity. 
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LAYER MODULUS 

Fig. 2 The (/i*, h*) parameter space for the contact problem. The solid 
curves are the exact solution for cs = 1/3, the dashed curve is a = 0.929 
and the dot-dashed curve is « = 1.1872. 
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o 
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.001 

LAYER THICKNESS 

Fig. 3 A comparison of the contact dimension d for the exact solution 
(lower solid curve) and the approximate solution (dashed curve) for 
/ i * = 15.0. The contact dimension c, of the exact solution, is the upper 
solid curve. 

two parameters of the full elastic solution. The reduction of 
the number of parameters from two to one is an indication of 
the large amount of simplification involved in this approxi
mation. 

Bogy found that three possible configurations exist for the 
shell surface enclosing the rigid plug. Two of them have the 
same number of separation regions. The short plug solution 
involves contact of the shell with the plug only at its two 
corners. This solution is valid for a parameter value of 
a < 0.929, equality occurs as the shell surface just touches the 
center of the plug. For 0 .929<a< 1.1872, the shell surface 
touches the center of the plug (as well as the corners) and a 
ring load is needed at the center of the plug in the intermediate 
solution. The long plug solution occurs when a > 1.1872, and 
the contact region at the center of the plug has a finite extent 
over which a uniform pressure acts. At the ends of the central 
contact region there are ring loads. The boundary points be
tween these three types of solutions are at a = 0.929 and 
a= 1.1872. Equation (5) allows these points to be drawn as 
curves in the (/x*, h*) parameter space of Fig. 2. These curves 
are drawn as the dashed and dot-dashed curves, respectively. 
The solid curves are the results from SB89 which will be recalled 
shortly. 

For the long plug solution the extent of contact can also be 
calculated. The size of the separated region for the long plug 
solution is denoted by Bogy as /^. The quantity aL = PlL/2 
has the constant value of 0.5936 for this solution. In SB89 we 
calculated the distance from the center of the indenter to the 
point of separation, d. This dimension can be related to /4> as 
follows: 

d= 1-2/4/ /= 1 -2(0.5936)/a , (6) 

where a is given by (5). 
Figures 2 and 3 also include the results from SB89 for the 

exact elastic solution. The solid curves in Fig. 2 are the bound
aries of the zones of existence of the three types of solutions. 
We observe that one solid curve generally separates the zone 
of lower modulus from the rest of the plane. It divides the 
plane into the domains of low modulus, single contact region 
solutions and the high modulus, multiple contact region so
lutions. Because all of the modulus ratios shown in Fig. 2 are 
greater than one, it follows that multiple contact region so
lutions occur only when the layer is stiffer than the substrate. 
The curve that is almost parallel to the modulus axis in the 
high modulus zone divides the multiple contact region zone 
into the two and three contact region zones. 

The single-multiple contact region solution separation curve 
in Fig. 2 on whichp (x) = 0 for some isolated x, can be divided 
into two parts. If, as /̂ * increases for fixed h*, the zero pressure 
occurs first for x = 0 , then crossing the curve in the direction 

of increasing modulus changes the type of solution from one 
to two contact regions. This curve is called the 1-2 boundary 
in Fig. 2. If in this process of increasing n* for fixed h* the 
zero in pressure occurs first for x^0, then further increasing 
the modulus causes the solution to change from a one to a 
three contact region solution. This curve is called the 1-3 
boundary. The 1-3 boundary occurs for thinner layers than 
the 1-2 boundary. The point at which the 1-2 and 1-3 boundary 
curves meet is also the intersection point with the 2-3 boundary 
curve. The 2-3 boundary is the almost horizontal curve which 
separates the multiple contact region zone into zones for the 
two and three contact region solutions. 

The simplified solution under discussion here only displays 
solutions that correspond to the two and three contact region 
solutions. The curves defined by a = 0.929 and a = 1.1872 
should be compared to the 2-3 boundary curve. Figure 2 shows 
that the a = 1.1872 curve corresponds to the 2-3 boundary curve 
in the high-modulus zone. Thus, the transition from two to 
three contact regions in the exact elastic solution occurs at the 
onset of expansion of the central contact region in the ap
proximate solution. The first contact of the beam with the 
indenter (at x = 0) in the approximate solution occurs before 
the exact solution predicts contact. Spreading of the contact 
in the approximate solution cannot occur until the normal ring 
load at that contact point has increased to a value that will 
allow a flat section of the beam to be supported with uniform 
normal pressure. Thus, there exists a range of values for the 
intermediate solution to the approximate problem. The ap
proximate boundary curves extended into the low modulus 
zone, but, because the exact solution predicts complete contact 
in this zone, which the approximate solution cannot model, 
the approximate solution cannot be used in this zone. 

Figure 3 presents the contact dimension d given by both 
solutions for /i* = 15.0. The dashed line is the approximate 
solution. The upper solid curve in this figure is the contact 
dimension c, while the lower is the contact dimension d. Agree
ment is reasonable over the range of layer thickness for which 
the exact solution results are presented. Because the approx
imate solution cannot have more than a point contact at the 
indenter corner, the size of the separation region found using 
the approximate solution will always be larger than the exact 
result. Thus, the approximate solution gives a bound on the 
size of the region over which layer effects dominate the be
havior of the solution. The approximate solution does not have 
a quantity that corresponds to the contact region dimension c 
because the shell only contacts the indenter at its corner. Thus, 
for the approximate solution "c" is always equal to 1. 

It has been shown that an approximation of a beam on a 
Winker foundation to an elastic layer bonded to an elastic half-
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space can predict some aspects of the exact solution. The tran
sition from the 2 to 3 contact region solutions is reasonably 
determined. However, because the approximate solution does 
not admit a one contact region solution nor spreading of the 
contact regions at the corners of the indenter, many features 
of the solution are lost. The range of validity of the approx
imate solution is not a simple region in the (h*, LI*) parameter 
space. The approximate solution is certainly not valid for low 
modulus ratios where a one contact region solution is the 
correct configuration. In the high modulus zone of the pa
rameter space, the approximate solution is only valid in zones 
where the exact solution has c almost equal to one. Also, in 
the area of the parameter space with h* just greater than its 
value on the 2-3 boundary, the approximate solution predicts 
contact at the center of the indenter which does not exist in 
the exact solution. 
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Influences of Large Amplitudes, Transverse 
Shear Deformation, and Rotatory Inertia 
on Free Vibrations of Moderately Thick 
Polygonal Plates: A New Approach 

of thickness, h. Using Reissner's variational theorem and Ba-
nerjee's hypothesis, a set of decoupled differential equations 
in rectangular cartesian coordinates governing the vibrations 
of thick plates have been derived (Bhattcharya and Banerjee, 
1989b). 

In a complex coordinate system Z = x+iy, Z = x-iy. These 
equations in Bhattcharya and Banerjee (1989b) change. Let 

Z = / ( { ) (1) 

be the analytic function which maps the given shape in the Z-
plane onto a unit circle in the £-plane. Substituting the relation 
(1) into the transformed equations in (Z, Z) coordinates, the 
following set of differential equations in (£, £) coordinates 
have been obtained: 

mAl]+77^-^-kl(~)-k2a
2hVU)[{l-u)(.A2+A2) 

5(1 - u1) \Gc 

+ 2(l + v)Ai}+^^kJ^-)[4(Ai+AA) 

+ (A5+A5) +6(A6 + A6) + W(A1+A1) +%AS + 2(A9 + A9)] 

-^-^-T(t)[AM]-k2a
2T2(t)l(l-V)(An+Au) 

5 Gc 

48 — 
+ 2(1 + v)Al0]—^k3\[4Al2+ (Al3+Al3) 

— 12 .. 
- ( ^ 1 4 + ^14)1+72—5T(*Ml5 = 0 

h cp 

where a2 is obtained from the following relations, 
2 

(2) 

—2/2 
ah 

dz\ IcU 
12 / \dU \d£ *-MW 

+ 5? 
dw\ (dz 

dt 

du dz(dz\ du 

a? di\dt) d% 

dv dz 
+ vl\—*— 

dz\ dlmSz(dz 
di di- \dt) a* du \d£j 

dw dco dz dz 
+ (! + ")•• 

dt K # df 
(3) 
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Introduction 

For the nonlinear analysis of moderately thick isotropic plates 
Bhattacharya and Banerjee suggested a modified strain-energy 
expression and a new set of differential equations have been 
obtained in a decoupled form. The accuracy of these equations 
has been tested for square (Bhattacharya and Banerjee, 1989b) 
and circular (Bhattcharya and Banerjee, 1989a) plates with 
immovable as well as movable edge conditions. Results ob
tained are in excellent agreement with other known results. 

The aim of the present paper is to extend this modified 
approach (Bhattcharya and Banerjee, 1989a,b) to study the 
influences of large amplitudes, transverse shear deformation, 
and rotatory inertia on free vibrations of moderately thick 
regular polygonal plates with movable, as well as immovable, 
edge conditions. 

Formulation of the Differential Equation 

Let us consider the free vibrations of thick polygonal plates 
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Table 1 
1969) 

Mapping Function Coefficients (Loura and Sahady, 

Polygons 

Square 
Pentagon 
Hexagon 
Heptagon 
Octagon 

L 

1.08a 
1.053a 
1.038a 

1.029a 
1.022a 

X, 
-0.11a 

-0.07a 
-0.05a 
-0.036a 
-0.028a 

Table 2 Linear Time Period 

T*L (Thick Plate) = - ^ , ( T T ^ O 

T, (Thin Plate) = ̂ , ( | = 0 

Polygons 

Square 
Pentagon 
Hexagon 
Heptagon 
Octagon 

n " * - 0 . 2 , £ = 2.5" 
a Gc 

1.5613 
1.2121 
1.1185 
1.0722 
1.0469 

n 
TL 

1.0261 
1.0285 
1.0296 
1.0303 
1.0308 
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space can predict some aspects of the exact solution. The tran
sition from the 2 to 3 contact region solutions is reasonably 
determined. However, because the approximate solution does 
not admit a one contact region solution nor spreading of the 
contact regions at the corners of the indenter, many features 
of the solution are lost. The range of validity of the approx
imate solution is not a simple region in the (h*, LI*) parameter 
space. The approximate solution is certainly not valid for low 
modulus ratios where a one contact region solution is the 
correct configuration. In the high modulus zone of the pa
rameter space, the approximate solution is only valid in zones 
where the exact solution has c almost equal to one. Also, in 
the area of the parameter space with h* just greater than its 
value on the 2-3 boundary, the approximate solution predicts 
contact at the center of the indenter which does not exist in 
the exact solution. 
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be the analytic function which maps the given shape in the Z-
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following set of differential equations in (£, £) coordinates 
have been obtained: 
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For the nonlinear analysis of moderately thick isotropic plates 
Bhattacharya and Banerjee suggested a modified strain-energy 
expression and a new set of differential equations have been 
obtained in a decoupled form. The accuracy of these equations 
has been tested for square (Bhattacharya and Banerjee, 1989b) 
and circular (Bhattcharya and Banerjee, 1989a) plates with 
immovable as well as movable edge conditions. Results ob
tained are in excellent agreement with other known results. 
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Table 3 Ratio of nonlinear to linear period for the vibration of simply-supported polygonal plates (square of side 2a) 

' - * 

0.6 
0.8 
1.00 

T* , h i 
— for immovable edges-\v = 0.3, \ = v , Banerjee and Datta, 1981), — = —• 
T 2o 10 

Thin Plate 

= 0 

0.9143 
0.8613 
0.8050 

(Bhattacharya 
and 

Banerjee, 
1989b) 

0.9072 
0.8507 
0.7917 

= 2.5 

0.9346 
0.8784 
0.8191 

(Bhattacharya 
and 

Banerjee, 
1989b) 

0.9270 
0.8624 
0.8055 

= 20 

1.0582 
0.9797 
0.9006 

(Bhattacharya 
and 

Banerjee, 
1989b) 

1.0469 
0.9636 • 
0.8809 

= 30 

1.1177 
1.0268 
0.9372 

(Bhattacharya 
and 

Banerjee, 
1989b) 

1.1066 
1.0113 
0.9123 

= 50 

1.2191 
1.1046 
0.9959 

(Bhattacharya 
and 

Banerjee, 
1989b) 

1.2012 
1.0819 
0.9678 

Table 3 Continued 

-"$ 

0.6 
0.8 
1.00 

T* h i 
— for movable edges [i> = 0.3, \ = i>2, Banerjee and Datta, 1981), — =—. 
T 2a 10 

Thin Plate 

= 0 

0.9850 
0.9722 
0.9550 

(Bhattacharya 
and 

Banerjee, 
1989b) 

0.9779 
0.9616 
0.9416 

= 2.5 

1.0105 
1.0017 
0.9782 

(Bhattacharya 
and 

Banerjee, 
1989b) 

1.0029 
0.9857 
0.9647 

= 20 

1.1717 
1.1498 
1.1213 

(Bhattacharya 
and 

Banerjee, 
1989b) 

1.1604 
1.1337 
1.1022 

= 30 

1.2505 
1.2226 
1.1942 

(Bhattacharya 
and 

Banerjee, 
1989b) 

1.2394 
1.2071 
1.1693 

>•(£) 
= 50 

1.3981 
1.3589 
1.3133 

(Bhattacharya 
and 

Banerjee, 
1989b) 

1.3802 
1.3362 
1.2852 
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Mf 

0.6 
0.8 
1.0 
0.6 
0.8 
1.0 

Table 4 Ratio of nonlinear to linear period of vibration of differe 

0 

0.9341 

0.8814 
0.8255 
1.0050 
0.9922 
0.9762 

2.5 

0.9546 
0.8995 
0.8411 
1.0305 
1.0227 
0.9923 

Pentagon 

>@ 
20 

1.0794 
1.0007 
0.9209 
1.1917 
1.1699 
1.1416 

L = 0.3, X = 

30 

1.1397 
1.0478 
0.9577 
1.2708 
1.2436 
1.2145 

v2, (Banerjee and Datta, 

50 

1.2391 
1.1267 
1.0170 
1.4182 
1.3784 

1.3336 

0 

0.9534 
0.9016 
0.8453 
1.0250 
1.0124 
0.9962 

mi)>i= 

2.5 

0.9747 
0.9207 
0.8621 
1.0515 
1.0427 
1.0126 

nt polygons 

$ 
Hexagon 

<£) 
20 

1.0994 
1.0207 
0.9429 
1.2116 
1.1900 
1.1619 

30 

1.1607 
1.0691 
0.9777 

1.2909 
1.2636 
1.2346 

50 

1.2591 
1.1467 
1.0381 
1.4383 
1.3989 
1.3539 

Table 4 Continued 
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--* 

0.6 
0.8 
1.0 
0.6 
0.8 
1.0 

(2a is a dimension in length and related to the side of each polygon.) 

Heptagon 

*® 
0 

0.9784 
0.9201 
0.8632 
1.0451 
1.0352 
1.0177 

2.5 

0.9994 
0.9417 
0.8821 
1.0716 
1.0627 
1.0329 

20 

1.1204 
1.0417 
0.9640 
1.2317 
1.2103 
1.1822 

30 

1.1808 
1.0891 
0.9987 
1.3110 
1.2837 
1.2549 

50 

1.2791 
1.1677 
1.0594 
1.4584 
1.4190 
1.3742 

Octagon 

*•(£) 
0 

0.9954 

0.9429 
0.8830 
1.0652 
1.0567 
1.0391 

2.5 

1.0194 
0.9627 

0.9031 
1.0917 
1.0827 
1.0532 

20 

1.1414 
1.0627 

0.9843 
1.2518 
1.2303 
1.2025 

30 

1.2008 
1.1101 
1.0197 
1.3311 
1.3041 
1.2752 

50 

1.3001 
1.1887 
1.0804 
1.4785 

1.4391 
1.3945 

Here, the A is defined in the Appendix and A is essentially 
the same expression having £ and £ interchanged, ki is a tracing . 
constant identifying the effects of transverse shear deforma
tion, while k2, k-i are tracing constants identifying nonlinear 
vibrations. If kt= 1 or 0, effects are included or not, respec
tively. It is to be noted that the effects of rotatory inertia have 
been neglected because these are considered to be small com
pared with the effects due to transverse shear deformation as 
the plate is undergoing flexural vibrations (Wu and Vinson, 
1969). 

For regular polygons the mapping function is 
Z = Z.$ + A,{5 (4) 

where values of L and X| are given in Table 1. 
Let us choose the deflection function in the following form: 

W=AQT(t) 1-tt 1 -\tt+\ti2+z\i-m2 
(5) 

Clearly, co is 6 dependent and satisfies the simply-supported 

edge conditions, namely, o = 0 and 
d20) 

= 0 at /•=!. Substi-
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tuting equation (4) and (5) in (2) the error function e(£, £, /) 
is obtained. Galarkin's technique requires 

» 2 T I pZ7T p 1 

eG,Z,t)u(S,i,t)rdrdO = 0. (6) 

The orthogonalization of the error function to the spatial func
tion is obvious because of the presence of the sine and cosine 
functions in the (£, £) coordinates. 

The constant a is determined by putting (5) in (3), using (4), 
and integrating over the area of the plate. 

For the movable edge condition, 

a = 0. (7) 
Now, for transverse vibrations, the normal displacement 

w(£. £> 0 i s o u r primary interest. So, the in-plane displacements 
u and v have been eliminated through integration by choosing 
suitable expressions for them compatible with their boundary 
values namely u = 0, v = 0, for immovable edges. 

Evaluating the integrals in (6) and considering the values of 
a obtained from (3) after integrating over the area of the plate, 
one obtains the differential equation with a cubic nonlinearity 
in the following form 

T ( O + C K T ( O + / 3 T 3 ( O = 0 . (8) 

The solution of the above equation subject to the boundary 
conditions 

7(0) =1 

r(0) = 0 

is well known and is obtained in terms of Jacobi's elliptic 
function. The ratio of the nonlinear and linear time period is 

T 1 * 

Y'' 

2K 
IT 

1+1P 
a 

(9) 

where B = —r 
h 

Numerical Results 
Numerical results are presented here in the tabular forms 

for both movable as well as immovable edges, for moderately 
thick, regular polygonal plates. 

Discussion 

1 The tables show that the new approach given in (Bhatta-
charya and Banerjee, 1989b) can be conveniently extended to 
study the dynamic behavior of moderately thick polygonal 
plates and the results obtained thereby are sufficiently accurate 
both for movable and immovable edge conditions. If the map
ping functions are known, the nonlinear behaviors of thick 
plates of any shape can be investigated by using the proposed 
differential equations. This is an advantage of the present 
study. 

2 The results for both movable and immovable edge con
ditions have been obtained from the same differential equation. 
This is an additional advantage. 
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Appendix 
E = 
v = 

Gc = 
P = 
X = 

Ao = 

D = 

a = 
u,v,w = 

T ( 0 = 
Cn = 

Z, 

A, 

An 
An 

An 
AH 

AX5 

Young's modulus 
Poisson's ratio 
shear modulus 
mass density 
material constant 
amplitude of oscillations 

Erf 
•v2) 

= flexural rigidity 
12(1 
coupling parameter 
displacements in x, y, and z-directions, respectively 
nonlinear time-dependent function 

E ] 1 / 2 

= speed of wave propagation along the p(l- V) 

d2z 

surface of the plate 
r.j\ I = r.e-» 
dz _ <fz 
d£ ^ ~ df ^ - d?> z2 = 

d2z 
etc. 

w,22\zx)\z-x)
3- W,2lZ2(ZT)2(Zi)3 

etc. 

w,-2lz2(zl)
2(z-l)

3+rV,rlz2z-2(zl)
2(z-l)

2 

A2 = ^ 3 T(ZT) 4 (Z i )
z -W > 2 TZ 2 (Z T ) 4 Z 

+ 3W,n(Z2)
2(ZT)*- W,,TZ3(Zr)4Z, 

A, = 
A5 = 

A6 = 

A1 = 
A* = 

W,i W-X\W,22(Z-X)2(ZX?- W,2-XZ2Z-X(ZX)2 

- w,X2z2zx{Z-x?+ w,x-xz2z2zxz-x 
(W,n)3(Zx)

2(Zi)2 

(W,X)
2(ZX)

2[W,-3X (Z-x)
2-3W,-2lZ2Z-x 

+ 3W,fx(Z2)
2-W,rxZ-3ZT] 

w,-x[w,-2Xw,2(zx)
2(z-x)

2-w,x-xw,2z2(zx)
2z-x 

- W,2XW,XZ2(Z-X)2ZX + W,fxW,xZ2Z2ZxZ-i\ 

w,-x(z-x) 
"2[W,2-[W,X-X(ZX)2- (w,uYz2zx] 

W,fx[W,2W,-2i.Zx)
2(Z-x)

2 

- w,-2w,xz2zx(z-x)
2~ w,2w,-xz2 (zxfz-x 

+ W,XW,JZ2Z2ZXZJ] 

A9 = W,2W,dZ1)
1lW,rtZi)2 

-3w,-2z2z-x + 3w,-x(z-2y 
- wnZjZj] + ( ^ „ ) 2 z 2 Z i [ - w,-3(z-x)

2 

+ 3W,-2Z-2Z-X-3W,-X(Z2)
2+ W,-xZ-3Zj] 

W,X'X{ZX)\Z-X)A 

{Z-X)5[W,2(ZX)3-W,XZ2(ZX)2] 
W,fxW,xW-x(Zx)\Z-x)

3 

W,2(W,X)2(Z-X)3(Z,)3 

W,-X(W,X)2(Z2)(Z-X)2(ZX)3 

W(Zx)\Z-xf 
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Boundary Elements: An Introductory Course, by C. A. Breb-
bia and J. Dominguez. McGraw-Hill, New York, 1989. 293 
pages. 

REVIEWED BY J. L. TASSOULAS1 

During the last 15 years, the boundary integral equation 
method, also known widely as the "boundary element method" 
(hereafter referred to as the "method") has seen increasing 
use in a variety of engineering problems. The present book is 
an introduction to the subject. Both C. A. Brebbia and J. 
Dominguez have been active in teaching and research on the 
method. 

In a brief introduction, the authors enumerate the main 
advantages of the method over the (more) popular finite ele
ment method. The (biased) comparison of the two methods 
points out that mesh generation is easier when using boundary 
elements, demonstrates, by means of an example, the superior 
performance of the method in problems involving stress con
centrations and claims that the use of boundary elements is 
the only practical approach towards the solution of problems 
posed on infinite domains. Concluding the introduction, it is 
stated that the objective of the book is "to provide a simple 
and up-to-date introduction to the method" so as to help 
increase its popularity among engineers. There is also a sug
gestion that the method be taught at both the undergraduate 
and graduate levels. The book is, however, intended for use 
in a first course on the method. 

Chapter 1 introduces the method as a weighted-residual tech
nique. The discussion is based on boundary value problems in 
one dimension. Other weighted-residual techniques are out
lined as well. Also, the Poisson equation in two dimensions is 
processed as a weighted residual so as to establish the analogy 
between one and more than one dimensions. 

The formulation of boundary elements for problems gov
erned by the Laplace and Poisson equations is presented in 
detail in Chapter 2. Constant, linear quadratic, and higher-
order elements are described for two-dimensional problems. 
A number of computer programs are included so as to dem
onstrate the implementation of the elements. The use of "dis
continuous" elements is suggested to overcome difficulties that 
may arise at boundary corners. This is followed by a quick 
look at boundary elements for three-dimensional problems, 
while the use of boundary element subregions and the for

mulation of axisymmetric boundary elements are discussed 
briefly. 

Boundary elements for elastostatics are considered in Chap
ters 3 and 4. Two computer programs are supplied: one with 
constant elements and another with quadratic elements, both 
for two-dimensional problems. Examples of use of the pro
grams are included while other problems to which the programs 
can be applied are suggested as exercises. 

Finally, in Chapter 5, other topics are covered rather su
perficially: coupling of boundary elements with finite elements, 
boundary elements for fracture mechanics, and the use of the 
method in steady-state elastodynamics. 

References are given after each chapter and in Appendix C. 
The interested reader will be able to locate the rest of the 
literature on the method through these references. 

The book appears to fulfill its promise of a "simple and 
up-to-date introduction to the method." Perhaps, missing from 
the book are even brief discussions of the use of the method 
in other types of problems of engineering interest; e.g., eigen
value problems, transient dynamics problems, and continuum 
mechanics problems involving various nonlinearities. The 
reader may think that the absence of some of these topics from 
the book suggests that the method is not particularly suitable 
for such problems. In any case, for the purposes of an intro
ductory course on the method, the book is worth consideration. 

The Fokker-Planck Equation: Methods of Solution and Ap
plication, 2nd ed., by H. Risken. Springer-Verlag, New York. 

REVIEWED BY T. K. CAUGHEYZ 

This is the second edition (in paperback) of the author's 
excellent 1984 book on the Fokker-Planck Equation, appli
cations, and methods of solution. With the exception of the 
correction of some misprints in the first edition and the ad
dition of a short review of recent developments, the book is 
essentially unchanged from the first edition. Professor Risken 
has made substantial contributions to the application and so
lution of the Fokker-Planck Equation in laser physics, dif
fusion in periodic potentials, and other noise-related areas, 
and has written an excellent survey of such methods. The first 
edition has been very well received, and the new paperback 
edition should reach an even wider audience. 
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